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ABSTRACT. We discuss the meanings of the concepts: standard, excep-
tion and pathology in mathematics. We take into account some prag-
matic components of these meanings. Thus, standard and exceptional
objects obtain their status from the point of view of an underlying the-
ory and its applications. Pathological objects differ from exceptional
ones — the latter may e.g. form a collection beyond some established
classification while the former are in a sense unexpected or unwilling,
according to some intuitive beliefs shared by mathematicians of the gi-
ven epoch. Standard and pathology are — to a certain extent — flexible
in the development of mathematical theories. Pathological objects may
become ,,domesticated” and give rise to new mathematical domains.
We add a few comments about the dynamics of mathematical intuition
and the role of extremal axioms in the search of intended models of
mathematical theories.

1 Mathematical savoir vivre

Contrary to that what a reader might expect from the title of this section we are not
going to discuss the behavior of mathematicians themselves. Rather, we devote our
attention to the following phrase which is very common in mathematical texts: An
object X is well behaving. Here X may stand for a function, a topological space,
an algebraic structure, etc.

It should be overtly stressed that well behaving of mathematical objects is al-
ways related to some investigated theory or its applications. There is nothing like
absolute well behavior — properties of objects are evaluated from a pragmatic point
of view. Thus, we meet declarations similar to the following, in specific domains
of mathematics:



1. Topology. Hausdorff spaces behave better than general topological spaces.
2. Set theory. Borel sets behave better than arbitrary sets.

3. Analysis. Differentiable functions behave better than continuous functions.
Analytic functions (i.e functions from the class C') behave better than smo-
oth functions (i.e functions from the class C'*°).

4. Algebra. Fields behave better than rings.

5. Computation theory. Recursive functions behave better than arbitrary func-
tions.

6. Geometry. Platonic solids behave better than arbitrary polyhedra.

It should also be mentioned that well behaving has nothing to do with fo be
in majority. Analytic functions are rare among continuous functions, almost every
function is not differentiable anywhere, there are only N recursive functions, etc.
Platonic solids are very special convex polyhedra and are in minority, too. Thus,
well behaving corresponds rather to a prototypic object, useful in a common prac-
tice. Such objects occurred as something like patterns at the beginning of the cor-
responding theory.

The concept in question is also related to the history of mathematics. Objects
may become well behaving only when a theory underlying them is sufficiently
developed. For example, complex numbers were viewed as well behaving only
after proving that they form a field. Similarly for the negative numbers (which,
together with natural numbers form a structure closed under certain operations).
Further examples include e.g. fractals or purely random sequences.

It is worth to add that there exists a certain limitation to the expressive power of
the language of mathematics. Each theory uses at most countably many expressions
because mathematical formulas are finite strings of symbols from at most countable
vocabulary. On the other hand, one proves the existence of many uncountable sets
in many mathematical domains. Due to the mentioned limitation, only countably
many of them can obtain names in the corresponding domain. One should strictly
distinguish between effective descriptions and definitions of mathematical objects.
For example, we can effectively describe only countably many ordinal numbers
(using suitable systems of ordinal notation) while we can of course define also
several uncountable ordinal (and cardinal) numbers.

Exposition of any mathematical theory usually starts with description of ob-
jects which do well behave with respect to this theory or its applications. Then the
presentation is extended in order to point out to several counterexamples. There
exist nice collections of counterexamples in main mathematical theories — cf. e.g.



Gelbaum, Olmsted 1990, 2003, Steen, Seebach 1995, Wise, Hall 1993. The role of
counterexamples is discussed e.g. in the classical work Lakatos 1976.

We distinguish monomathematics from polymathematics (terms introduced in
Tennant 2000). In monomathematics one deals with a specific mathematical struc-
ture — as e.g. natural or real numbers. In polymathematics, in turn, one speaks about
classes of structures — as e.g. groups, rings, fields, topological spaces, Hilbert spa-
ces, Banach spaces, graphs, etc. It seems that it is polymathematics where talking
about well behaving objects makes any sense at all.

2 Standard

First of all, one should notice that the concept of a standard object is not limited
to the objects called standard in mathematical terminology. If an object is called
standard by mathematicians, then this fact expresses their view that the object is
somehow typical in the considered domain. There may exist, however, many other
objects which deserve a qualification of being typical, prototypic, normal, etc. In
some cases the name standard is given to structures which are intended models of
a given theory. We will say a few words about intended models in the last part of
the paper.

One of the important procedures in mathematics is to represent objects from a
given domain in so called normal, standard, canonical, etc. forms. It is often the
case that only after such a representation one is able to prove theorems about the
initial — allegedly diversified — class of objects. Examples of the transformation in
question are, among many others:

1. Logic. Conjunctive and disjunctive normal forms, prefix normal form, Sko-
lem normal form, etc.

2. Set theory. Cantor normal form (for ordinal numbers).
3. Algebra. Jordan normal form (for matrices over an algebraically closed field).

4. Number theory. Canonical representation of integers (as products of powers
of prime numbers).

5. Analysis. Canonical differential forms.
6. Formal languages. Chomsky, Greibach, Kuroda normal forms.

7. Recursion theory. Kleene normal form.



Another procedure, in a sense similar to the one mentioned above, is based on
representation theorems — a very powerful tool in many mathematical domains.
Examples of such theorems are:

1.

Stone Representation Theorem. Each Boolean algebra is isomorphic to a field
of sets.

. Cayley Representation Theorem. Each finite group is isomorphic to some

group of permutations.

Mostowski Contraction Lemma. Every extensional well founded structure is
isomorphic to a transitive structure.

Riesz Representation Theorem. Let H be a Hilbert space with scalar product
(-, -). Then for every linear functional y* from the dual space H* there exists
exactly one element y € H such that

y*(z) = (z,9)
for all z € H. The mapping y* — v is an anti-linear one-one isometry.

Nash Theorem. Every Riemann manifold can be isometrically embedded in
some Euclidean space.

. Whitney Representation Theorem. For any m-dimensional differential ma-

nifold there exists its embedding into a 2m-dimensional Euclidean space
(m > 0).

Representation Theorem for Lie algebras. Every Lie algebra over a field is
isomorphic to a subalgebra of some associative algebra.

. Godel Representability Theorem. Every recursive function is representable

in Peano arithmetic.

In a sense, each completeness theorem in logic is a kind of a representation
theorem. Also algebraic characterization of elementary equivalence serves as an
example of representation of semantic notions.

Further, also several classification procedures may be conceived of as bringing
order to the domain in which we observe some regularities. Here are a few exam-

ples:

1.

Classification of finite simple groups. Every finite simple group is isomorphic
to one of the following groups:



(a) a cyclic group of prime order
(b) an alternating group of degree at least 5

(c) asimple group of Lie type (among which several further classifications
are made)

(d) one of the 26 sporadic simple groups.

. Classification of simple Lie groups. Each simple Lie group either belongs to
one of the infinite series A,,, By, C,, Dy, or else is isomorphic with one of
the five exceptional simple Lie groups, i.e. with one of the: Go, Fy, Eg, Er,
FEs. The series correspond to:

(a) A, series: special linear groups SL(n + 1)

(b) B, series: special orthogonal groups SO(2n + 1)
(c) C, series: symplectic groups Sp(2n)

(d) D, series: special orthogonal groups SO(2n).

. Classification of surfaces. Every closed compact connected surface without
boundary is homeomorphic with one of the three following:

(a) two-dimensional sphere
(b) connected sum of g thori, g > 1

(c) connected sum of k projective planes, k > 1.

. Classification of Riemann surfaces. Each simply connected Riemann surface
is conformally equivalent to one of the following surfaces:

(a) elliptic — the Riemann sphere C U {oo}
(b) parabolic — the complex plane C
(c) hyperbolic —the opendisc D = {z € C: |z| < 1}.

. Frobenius Theorem. Every associative algebra over the field of real numbers
is isomorphic with one of the fields: R (real numbers), C (complex numbers)
or H (quaternions).

. Hurwitz Theorem. Any normed algebra with division is isomorphic either
with R, or C, or H or O (octonions).

. Ostrowski Theorem. Any field complete with respect to an Archimedean
norm is isomorphic with either R or C and the norm is equivalent with the
usual norm determined by the absolute value.



8. Pontriagin Theorem. Any connected locally compact topological field is iso-
morphic with either R, or C or H.

Classifications are ubiquitous in mathematics. We form more and more abs-
tract objects (e.g. quotient spaces, quotient algebras, etc.) starting from an initial
universe and creating new objects as equivalence classes.

A very special standard structure in mathematics is the set of all natural num-
bers (with operation of addition and multiplication as well as with the successor
operation and zero as a distinguished element). This structure precedes, both con-
ceptually and historically, other number systems (rational numbers, integers, reals,
complex numbers). There are two ways in which one can create number systems:

1. Genetic. One generalizes the concept of number, passing from one domain
to another, wider domain. Operations which were not allowed in the starting
domain (as e.g. division of integers) become possible in a wider domain. Ol-
der domains become special cases of new domains. The domains are inter-
connected by homomorphisms, preserving the arithmetical operations. This
was the way arithmetic was developed up to the middle of XIX century.

2. Axiomatic. Modern approach to number systems is an axiomatic one: we
specify the axioms which must be obeyed by (arithmetical) objects and ope-
rations on them. This approach originates with the works of Peano, Gras-
smann, Dedekind, Weber, Hilbert.

Before ,.the structural revolution” which took place in mathematics of the XIX
century non-standard could mean rare from the point of mathematical practice or
rejected on the basis of some intuitive beliefs. The Pythagoreans were shocked
by non-commensurable magnitudes. Hence irrationality of, say, v/2 meant the pre-
sence of an ,,alien intruder” in the harmonious world of rational numbers. Similarly,
early algebraists thought of v/—1 as something belonging to mathematical fiction
and not mathematical reality. This is reflected in the name imaginary number used
also today. The common belief that the Euclidean geometry describes accurately
and adequately the physical world was responsible for the view that it is the only
»true” geometry and as such it is the only standard.

The discovery of non-Euclidean geometries, the development of abstract alge-
bra (groups, rings, fields, etc.), the arithmetization of analysis — these great achie-
vements of mathematics in XIX century created new contexts in which the notion
standard might be used. It seems that recently by standard (objects or structures)
one understands the prototypic, most successful in applications, somehow central
in the investigated domain objects or structures. To a certain extent this understan-
ding is reflected in teaching of mathematics (at least below the university level).



The standard model of Peano arithmetic is uniquely (up to isomorphism) cha-
racterized in a second order language. Mathematicians themselves take for granted
that it is a perfectly determined structure. The logicians, in turn, keep on recalling
that the first-order Peano arithmetic is not complete (and not categorical in any in-
finite power). This theory has continuum distinct countable models. Moreover, it
has 2% (the highest possible number of) different models in any infinite power . It
is a wild theory. At the moment, non-standard models of arithmetic are not widely
used in mathematics — with a notable exception of non-standard analysis, where
they enable us to talk in a precise way of infinitely small (and infinitely large)
numbers. Recall that these infinitesimals were accepted by Leibniz (though with
only metaphysical and not mathematical explanation), then were forbidden in the
time of Cauchy, Weierstrass and their contemporaries. It was only some sixty years
ago when they obtained a precise mathematical formulation proposed by Abraham
Robinson.

The problem of establishing what is standard is more complicated in set theory
(more exactly, in Zermelo-Fraenkel first order set theory, which — as it is claimed
— may serve as a basis for all the mathematics). The accepted linguistic usage
requires to call a model 9t of this theory standard, if the element relation €™
of the model is the actual element relation € restricted to the universe of the model
. Each transitive model is standard and each standard model is well founded.
Assuming the existence of a standard model implies the existence of a minimal
standard model which is contained in all standard models.

However, set theory is far from being categorical. The method of forcing (Co-
hen 1966) can be used for the construction of many diversified models of set theory.
»~Normal” mathematicians (i.e. these who are not working on set theory) seem to
believe in the universe of true sets and do not worry about subtle incompleteness
phenomena inseparable from set theory itself. It is not possible to predict the future
of set theory. It may happen that it will be replaced by another (more fundamental?)
theory. It may happen that we will think of set theory in a similar way we think cur-
rently about such branches of mathematics as algebra or topology (cf. Mostowski
1967).

3 Exception

What is an exceptional object in mathematics? First, we are not talking about
exceptional objects in any absolute sense. Exceptions are always connected with
some results established within a certain mathematical theory. The most typical si-
tuation occurs when one classifies objects (according to some chosen criteria) and
a few objects do not fit into any of the classes.



1. Sporadic (finite simple) groups. The classification of all finite simple groups
gives, besides a few infinite regular families of such groups also 26 groups
not showing any predictable pattern. You may call them exceptional groups,
but from a purely formal point of view there is nothing strange in the fact
that some classes of the classification contain only one member.

2. Special Lie groups. The five groups Ga, Fy, Fg, Fr, Eg are distinguished
among all simple Lie groups, because they do not fit into any of the four
patterns of all the remaining such groups. Properties of the groups from the
four infinite series are well known. Many properties of the special groups are
also known — in particular, there are numerous connections between these
groups and concepts from theoretical physics, as it was shown in the last
decades.

The term exceptional can be applied not only to objects that lack properties
taken into account during classifications but also to such objects which are distin-
guished due to possession of regularities absent in all other objects from a given
class.

1. Platonic solids in n dimensions. In three dimensions there are exactly five
Platonic solids, as it is well known from antiquity. They are convex poly-
hedra with faces formed by regular polygons such that at each vertex there
is the same number of edges meeting at it. The Platonic solids are excep-
tional between convex polyhedra in the sense that they possess a lot of nice
symmetries. Such regularly symmetric cells exist also in higher dimensions
—e.g. in the fourth dimension there are six of them.

2. Standard model of Peano arithmetic. On the one hand, natural numbers are
the most standard objects in mathematics. On the other, the standard model
o of Peano arithmetic PA is a very exceptional structure in the realm of all
countable models of this theory:

(a) My is the only well-ordered model of PA
(b) My is the only recursive model of PA (Tennenbaum theorem)

(c) Mo is a prime model of PA.

Other contexts in which one talks about exceptional objects include looking for
counterexamples.

1. Alexander horned sphere. This topological object is homeomorphic with the
sphere S2. However, it divides the space R? in a different way S? does: its



inside is homeomorphic with the inside of S? but its outside is not home-
omorphic with the outside of S2. Hence it provides a counterexample to the
Jordan-Schonflies theorem in three dimensions.

2. Mertens conjecture. The Mertens function M (n) is defined by:

M) = 3 nlk),

1<k<n

where 1 is the Mobius function. The Mertens conjecture states that for all
n > 1
|M(n)] < v/n.

It was conjectured by Stieltjes (1885, published 1905) and Mertens (1897)
and disproved by Odlyzko and te Riele (1985). The first counterexample to
the conjecture, though not explicitly known today, lies somewhere between
10'* and exp(1.59-10%°). In 2006 Kotnik and te Riele proved that there exist
infinitely many numbers n such that Mn) 1.2184, but so far no examples

Jn
of them are known.

Still another situation when mathematicians talk about exceptions (or even pa-
thology) is the absence of a recognizable pattern in a class (or series) of objects
for which they expected to find such a pattern. But not always lack of the pattern
indicates pathology:

1. Prime numbers. The prime numbers form a very distinguished sequence of
natural numbers. The concept of a prime number is very elementary — it is,
as a matter of fact, recursive. There exist algorithms which establish whether
a given natural number is prime or not. However, the distribution of primes
remains one of the most mysterious problem of not only number theory but
also some other branches of mathematics. One can prove that there are infi-
nitely many primes of a given form, one can prove that there occur arbitrarily
long arithmetic sequences consisting entirely of primes, one can estimate the
number of primes below a given natural number, etc. However, one can not
say that we fully recognize the pattern according to which primes are allege-
dly distributed among all natural numbers.

4 Pathology

The very term pathological immediately implies some negative associations. Ma-
thematical objects named pathological (sometimes also: paradoxical) appear as
unexpected and, moreover, unwilling.



There seem to be at least two typical situations in which one speaks about
pathological objects in mathematics:

1. A clash with established intuitions. At a given epoch, mathematicians share
intuitive views about the concepts they are dealing with. Discoveries of new
kinds of objects may contradict these intuitions. But if the new objects appear
fruitful in applications, if they are equipped with a sound theory, then the
initial intuitions are forced to change.

(a) Infinity. During centuries of its evolution mathematics continuously
escaped from the fear of infinity. Actual infinity was treated with suspi-
cion in the ancient times, then it became more and more domesticated,
so to speak. We can see this process in the development of calculus, in
the work with infinite series, in reaching the formally correct definition
of a limit, etc. Some properties of infinite collections seemed parado-
xical (e.g. contradicting the postulate of Euclid that a part can not be
greater than the whole), but then a change of perspective took place:
the numerical equivalence of a set with its proper subset was taken as a
formal definition of an infinite set.

(b) Numbers. Mathematicians gradually overcame the resistance against
new kinds of numbers which naturally arose in arithmetical and alge-
braic problems. Thus, irrational, negative and imaginary numbers ente-
red the realm of mathematics as fully accepted objects only after it was
shown that they behave properly — form structures closed with respect
to prescribed operations.

2. New definitions of concepts formerly understood in an intuitive way. This
situation arose e.g. in the case of a general definition of function. Formerly,
by a function one understood a recipe according to which one value could be
obtained as depending on other values. After accepting the most general de-
finition — a function as a set of ordered pairs — a plenty of monsters entered
the stage. The first examples of continuous though nowhere differentiable
functions were given by Bolzano and Weierstrass. ,,Space filling” functions
were defined by Peano and Hilbert. All these monstra contradicted some in-
tuitive beliefs about that how (the diagram of) a function should look like.
This was the price for replacing intuitive views (based e.g. on concepts from
outside mathematics, such as motion) by precise formal definition. Without
any doubt this was a just solution: the development of mathematics is impos-
sible without intuitions, but they should be nevertheless always abandoned
when the deductive work begins.

10



A prototypic example of an object originally thought of as a pathological one
and then becoming normal, standard, ,,domesticated” is the Cantor set. Recently no
one among professional mathematicians considers it as a pathology. This is due to
its fundamental role in e.g. topology. Only in popular books authors try to frighten
the innocent readers with devilish mysteries of the Cantor set and other fractal sets.

Traditionally, when speaking of paradoxical objects and constructions one re-
calls the Banach-Tarski theorem which — as it is sometimes claimed — strongly
violates our intuitions concerning volume and, in general, measure. It should be
kept in mind, however, that the proof of this theorem is highly ineffective (axiom
of choice is used) and the ,,pieces” into which the original ball is ,,cut” are non-
measurable in the sense of Lebesgue. Hence, if one wants to talk about violation
of intuitions in this case, then one should refer rather to the proof, and not to the
theorem itself.

It is ridiculous — in our opinion at least — to expect that our common intuitions
connected with everyday experience should be respected at any stage of sophisti-
cated mathematical constructions. At any rate, there are cases in which operating
with well known objects, using perfectly natural proof techniques one arrives at
results which are strongly divergent from common intuitions:

1. Smale’s theorem. This theorem states that it is possible to turn a sphere 52
inside out in a three-dimensional space R? (with possible self-intersections)
without creating any crease. One speaks also of eversion of the sphere in
this context. The proof of the theorem itself does not involve very sophisti-
cated tools: one simply shows that there exists a regular homotopy of two
immersions of S? into R3. Moreover, some physical models illustrating the
eversion in question were elaborated — one can find in the net several movies
showing how the eversion obtains.

2. Exotic spheres. We recall that an exotic sphere is a differentiable manifold
M that is homeomorphic but not diffeomorphic to the standard Euclidean
n-sphere. This means that M is topologically indistinguishable from Euc-
lidean sphere, but admits a smooth structure which is essentially different
from the standard such structure. The first exotic spheres were discovered
by John Milnor: he proved that there exist distinct smooth structures on S7
(there are 28 such structures on S7). In some dimensions there are no exotic
spheres (e.g. in dimensions: 1, 2, 3, 5, 6, 12), in other there exist thousands
of them. Should we call exotic spheres pathological? If so, then we should
admit that we have deep understanding of differential structures in very high
dimensions which not seem to be the case today. The problem whether there
exist exotic spheres in the fourth dimension remains open. If such an exotic
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4-sphere existed, then it would be a counterexample to the smooth generali-
zed Poincaré conjecture in dimension 4.

3. Exotic R*. We recall that an exotic R?* is a differentiable manifold that is
homeomorphic to the Euclidean space R*, but not diffeomorphic to it. Let us
also recall that dimension 4 is exceptional in this respect: exotic structures
do not occur on R” for n # 4. But R* itself admits a continuum of distinct
smooth structures on it. Again, we see that dimension 4 remains very myste-
rious.

We do hope that the above examples show that the concept of pathology in ma-
thematics is pragmatically biased and relative to the development of mathematical
theories.

1. Surprising results. Sometimes it is difficult to draw a boundary between
unexpected surprises and pathologies in mathematics. For example, the exi-
stence of pathological satisfaction classes was, one may justly assume, a
surprise. So on the one hand it is perhaps surprising that there are so many
such classes and, on the other, that their properties contradict our intuitions
concerning the relation of satisfiability.

2. Pathology versus mystery. One should remember that the non-existence of a
recognizable pattern need not mean that one is surrounded by pathologies.
It is not the case that everything we do not understand yet is automatically
paradoxical or pathological. Mathematical knowledge does not form a closed
system.

S Dynamic character of mathematical intuition

Like any science, mathematics has its context of justification and context of disco-
very. The first is based solely on deduction — mathematical statements are accepted
only when their proofs are given. It should be emphasized that proof in logic and in
mathematics are different concepts — the former is defined purely formally, while
the latter contains a pragmatic component. Mathematical theorems have to be ac-
cepted by the community of mathematicians and hence proof in mathematics de-
pends also on psychological and sociological criteria. It is believed, however, that
any mathematical proof can be transformed (at least in theory) to a proof satisfying
criteria of logical correctness.

The most important component of the context of discovery in mathematics is
based on (mathematical) intuition. We think that it is unreasonable — at the present
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moment — to speculate about our cognitive abilities responsible for mathematical
intuitions. Rather, we propose to understand mathematical intuition as a complex
of verbalized (!) beliefs about the world of mathematics. It is probable that not
everything concerning mathematical intuitions can be verbalized. However, only
explicitly stated judgments about it can ever be put into investigation. We also
prefer to talk about intuition that (something holds) rather than about intuition of
(some object).

Mathematical intuition is presented in the axioms, which is evident: they are
accepted without proof, on the basis of some intuitive beliefs alone. One should
keep in mind, however, that in the most important mathematical domains axiomatic
approach was preceded by a huge cumulation of knowledge about the domain in
question. The literature on this subject is huge. Let us only mention that e.g. the
paper Grzegorczyk 1962a discusses possible bases of justification for axioms of
mathematical systems and the paper Feferman, Friedman, Maddy, Steel 2000 tries
to answer the question of whether mathematics needs new axioms.

We meet mathematical intuition also in the everyday practice of mathemati-
cians — in reasoning by analogy, in making generalizations, in several heuristic
rules of thumb, in using inductive assumptions before formulation of a hypothe-
sis to be proven, etc. Needless to say, the main body of mathematical education
(especially teaching on the elementary level) is based on intuitive explanations.

Why should we talk about intuition when discussing standards, exceptions and
pathologies? There are at least two reasons for that, we think:

1. What a standard object is, depends on our intuitive beliefs about what is
normal, prototypic, etc. in a given domain.

2. As we have seen from the examples of the previous section, pathologies
sometimes become ,,domesticated”. This, in turn, forces changes in our ma-
thematical intuitions.

Unlike the more-or-less stable intuitions connected with everyday experience,
mathematical intuition is more dynamic. Major sources of changes of mathematical
intuition seem to be:

1. Antinomies and paradoxes. Each time we find a contradiction in a piece of
mathematical considerations we have to get rid of it which implies rethin-
king the assumptions leading to this contradiction. Thus, for example, an
allegedly innocent assumption that every property determines a set led to
the Russell paradox. In order to save set theory from such contradictions we
have changed the formulation of the axiom of comprehension, which of co-
urse implied the corresponding change in our intuitions concerning sets. In
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the case of some paradoxes, however, we do not literally change our intu-
itions but rather admit that the intuitions of the everyday experience no lon-
ger apply at a certain level of sophistication of a mathematical theory (cf. for
instance sublime constructions in general topology (or algebraic topology, or
differential topology) or theory of infinite sets).

. Scientific programs. Changes of intuitions can be also made deliberately, as
a result of conducting some program.

(a) Arithmetization of analysis. The beginnings of differential and integral

calculus were not soundly based (according not only to the current cri-
teria of correctness, but also to those of that era). It was a great achie-
vement of mathematicians of the XIX century to change this situation.
Instead of thinking in terms of kinematic analogies (movement) and
geometrical intuitions, one proposed to base analysis on arithmetical
relations only.

(b) Algebraic geometry. Not very long after first investigations in topology

(c)

(d)

(e)

took place one started to describe topological properties using also al-
gebraic tools. In many cases it is much more easier to characterize to-
pological spaces via algebraic characteristics associated with them.

Geometrization conjecture. Thurston’s geometrization program is an
example of setting up new directions in mathematics. Out of the seven
Millenium Problems proposed by the Clay Institute only one (Poincaré
conjecture) has been solved quite recently. The problem itself is closely
related to the Thurston’s program.

Large cardinal axioms. The axioms of set theory (ZF first order set
theory) characterize the concept of set and the relation € very weakly.
The current work on set theory is directed partly by the search for new
axioms which could change this situation. Typical examples of such
new axioms are postulates requiring the existence of very large cardinal
numbers. Not all problems of set theory can be solved with such axioms
(e.g. the continuum hypothesis could not be resolved in this way) but,
still, large cardinal axioms appeared fruitful e.g. in investigations of
consistency strength of theories.

Hilbert program. The original Hilbert program required — roughly spe-
aking — that we should prove the consistency of mathematics using
finitary tools only and, besides, prove also the completeness of mathe-
matical knowledge. Due to the well know incompleteness results the
program in this setting can not be realized — it can be only realized
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partially. But the lesson obtained was fruitful: we have changed our
intuitive beliefs about intimate connections between proof and truth in
mathematics.

(f) Hilbert problems. Hilbert problems, stated by him in 1900, influenced
the mathematics of the whole XX century. It is sufficient to look at
the list of Fields medalists in XX century to see how many efforts of
mathematicians of this period were concentrated around problems from
Hilbert’s list.

3. New results. Accumulation of new knowledge about the investigated domain

is not without influence on our intuitions. It is sometimes claimed that in-
tuitive beliefs lack justification (and hence do not form knowledge). This
seems not be true in the case of mathematical intuitions. Probably each pro-
fessional mathematician will agree that his intuitions become more and more
deep, sublime and sophisticated as a result of his growing knowledge of the
subject.

Consider a few examples of changes in intuition:

1.

Up to the results of Ruffini and Abel in the first decades of the XIX century
mathematicians believed that algebraic equations of any degree can be solved
by radicals. Now we know that this is possible only for equations of degree
less than 5.

. Even the great Cauchy believed once that the pointwise limit of a sequence

of continuous functions is a continuous function, too. Now we know that we
should assume uniform continuity in order to obtain a limit which will be
continuous.

. The gradual expansions of number domains doubtlessly evoked changes in

our intuitions concerning numbers.

. The discovery of non-Euclidean geometries changed mathematicians’ be-

liefs supporting the view that the Euclidean geometry is the only, true, em-
pirically confirmed geometry.

Mathematical intuition is influenced by (among others):

1. Aesthetic values. Professional mathematicians very often declare that their

intuitions strongly depend on aesthetic values — theories, theorems, proofs,
constructions should be beatiful, in addition to the self-evident criteria of
correctness.
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2. Empirical experiments. It is reasonable to assume that the origins of arithme-
tic lie in the processes of counting, the origins of geometry lie in measuring
lengths, areas and volumes, the origins of differential and integral calculus
are influenced by reflections on motion, change, velocity, etc. There always
was an interconnection between research in physics and mathematics. It is
astonishing, how many ideas of pure mathematics developed allegedly wi-
thout any connection to the physical world have found — sooner or later —
their applications in physics.

3. Mathematical fashion. This influence should not be underestimated. Each
spectacular achievement in mathematics causes increase of interest in the
domain in question. Also ambitious research programs attract mathemati-
cians to focus their work on a chosen subject. The effects of these collective
efforts direct the main streams of mathematics.

Two major sources of mathematical intuition seem to be:

1. Our cognitive resources. Most likely, our intuitions are determined by the
senses we have at our disposal. It is sometimes stressed that mathematical
intuitions are mostly visual, partly connected also with movement abilities.
What are the basic mechanisms responsible for intuitive thinking still rema-
ins mysterious. The results of several experiments do not explain much in
this respect. One could also speculate how would our mathematics look like,
if we were — say — Rational Blots living in a completely liquid environment,
without whatsoever access to any rigid bodies. Should we then start with ge-
neral topological spaces, with some kind of proximity idea instead of deve-
loping Euclidean geometry? One may construct several thought experiments
of this kind, but it seems to be a speculative frolic only. The genuine task
is to explain really existing mathematics and our mathematical intuitions as
responsible for the growth of mathematical knowledge.

2. Symbolic violence in the school. Teaching mathematics is not based on me-
morizing. Rather, it is an interactive process of common problem solving,
analyzing examples, conducting constructions etc. At the beginning, a con-
siderable role is played by teacher’s persuasion techniques. Then, pupils are
directed to think in a way approved by the teacher, who is training them,
correcting their mistakes and showing the proper way to solution of the pro-
blems. It is often claimed that the main goal of teaching mathematics is just
to evoke correct mathematical intuitions — the role of calculating abilities is
only secondary.
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6 Extremal axioms

The term extremal axiom (according to what we know used for the first time in
Carnap, Bachmann 1936) has its origins in Hilbert’s Grundlagen der Geometrie —
Hilbert added to his system of axioms for geometry an extra axiom, the axiom of
completeness which was supposed to express an idea that the underlying system
of geometrical objects (points, lines and planes) is unable to any extension without
violation of the remaining axioms. In this form, the axiom of completeness was not
a statement of the object language of the theory, it belonged to metalanguage, as
expressing some view about models of geometry. It has been replaced by the axiom
of continuity in the later versions of Grundlagen der Geometrie. As a consequence,
one can prove the categoricity of the system in question.

Categoricity (or categoricity in power) and completeness are among the de-
sirable properties of mathematical theories, in a sense. Mathematicians identify
isomorphic objects, i.e. objects which are indistinguishable from the point of view
of their internal structure. Objects in mathematics are always classified ,,up to iso-
morphism”. This kind of indistinguishability is thus based on algebraic criteria. A
theory 7' is categorical in power &, if all models of T of power x are isomorphic.

A weaker kind of indistinguishability is based on semantic criteria. Two struc-
tures 2, °B (of the same signature) are elementarily equivalent if the set of sentences
true in 2 coincides with the set of sentences true in ®B. Isomorphism implies ele-
mentary equivalence but not vice versa. If all models of a theory are elementarily
equivalent, then the theory is complete: for any sentence 1) of its language, either
1 or = is a theorem of the theory in question.

Isomorphism and elementary equivalence enable us to classify models of the-
ories. There are numerous theorems in model theory (classical and modern), con-
cerning categoricity (in power) and completeness e.g. (we give only informal for-
mulations, without technical details):

1. Ryll Nardzewski theorem. The following condition are equivalent for any
(consistent) theory 7™:

(a) T is Ny-categorical.
(b) For every natural number n, T" has only finitely many n-types.
(c) For every natural number n, every n-type is isolated.

(d) For every natural number n, the Stone space Sy, (7) is finite.

2. tos-Vaught theorem. If a theory T' (without finite models) is consistent and
categorical in some infinite power, then it is complete.
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3. Morley theorem. If a theory is categorical in one uncountable power, then it

is categorical in all uncountable powers.

An important contribution to the investigation of categoricity is the Grzegor-
czyk’s paper written half a century ago (Grzegorczyk 1962b). The main results of
this paper are the following:

1.

The author discusses several meanings connected with the concept of cate-
goricity, which partly depend on the understanding of the term model.

Using some model-theoretic results, he shows a certain weakness of the no-
tion of categoricity in power.

Then he discusses a notion of categoricity based on models with an absolute
interpretation of set-theoretical concepts.

Grzegorczyk introduces a new, very important notion of a constructive mo-
del, using the well known procedure of Skolemization. He calls a theory con-
structively categorical, if any two of its constructive models are isomorphic.
Then he proves the theorem about existence of constructive models (based
on terms). He gives also a necessary and sufficient condition for a theory to
be constructively categorical.

. The author proves that:

(a) Robinson’s arithmetic has a constructively categorical axiom system
(the standard natural numbers form its constructive model).

(b) The complete system of the arithmetic of real numbers has a construc-
tively categorical axiom system (its constructive model is isomorphic
to the set of all real algebraic numbers). Also the complete system of
Euclidean geometry is constructively categorical.

Grzegorczyk introduces two kinds non-categorical theories. A theory 71" is
essentially non-categorical if and only if it has no consistent extension with
a constructively categorical axiom system. A theory T' is weakly essentially
non-categorical if and only if it has no recursively enumerable consistent
extension with a constructively categorical axiom system. He proves that
the theory of a dense ordering with at least two elements is essentially non-
categorical. He also proves some more general theorems concerning the no-
tions in question.
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7. Finally, the author considers still another notion of categoricity: a theory T’
is called p-categorical if and only if it has a minimal model and any two of
its minimal models are isomorphic. Here by a minimal model of a theory T’
one means any model 9T of 7" such that if 91 is a model of 7" and a submodel
of 9, then 901 and N are isomorphic. Grzegorczyk proves that:

(a) The complete theory of dense ordering is u-categorical.
(b) Every minimal model is at most denumerable.

(c) Any theory which has no finite models and has minimal models and is
categorical in power Ry is p-categorical.

(d) The elementary arithmetic of natural numbers is p-categorical.

Again, we should ask the question: what categoricity, completeness and extre-
mal axioms have to do with the concepts of standard, exception and pathology?
The answer may include, among others, the following:

1. As categoricity and completeness imply uniqueness of models (either in al-
gebraic or in a semantic sense), they both could be partly responsible for
determination what is standard according to a given theory.

2. Extremal axioms were thought of as a kind of warranty of the uniqueness of
the investigated domain. Hence, they also could be responsible for forming
ideas what a standard — according to a theory in question — should be.

The papers Awodey, Reck 2002a, 2002b discuss the historical context of the
origins of the notions of categoricity and completeness (cf. also e.g. Corcoran 1980,
1981).

Extremal axioms are either minimal or maximal — they demand that the model
should be either minimal or maximal, not merely with respect to the size of its
universe but rather to its structural properties. The most famous extremal axioms
are:

1. Axiom of continuity. The structure of the continuum has always puzzled ma-
thematicians. What is it consisted of — indivisible individuals or continua
,all the way down”? Do infinitely small magnitudes have any real existence?
How is it possible to obtain an object with positive measure (e.g. an interval)
from separate points which do not have any extension? These and many other
similar questions have been waiting for centuries for precise and adequate
answers.
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(a) Axiom of continuity in geometry. Hilbert’s Axiom of Completeness from
his Grudlagen der Geometrie has the following form in editions 2—-6:

The elements (points, lines, planes) of geometry constitute a
system of things which cannot be extended while maintaining
simultaneously the cited axioms, i.e., it is not possible to add
to this system of points, lines, and planes another system of
things such that the system arising from this addition satisfies
axioms AI-V1.

This axiom was later replaced by the axiom of linear completeness and
finally by a form of the axiom of continuity for the system of real num-
bers. In this final form it belongs to the object language and not to the
metalanguage of geometry. There are also other ways of expressing the
completeness in question, notably the one proposed by Tarski — cf. e.g.
Borsuk, Szmielew 1975.

(b) Axiom of continuity in algebra. The usual ordering of rational numbers
is dense — taking any two of them one can find a number between them
(actually, infinitely many such numbers). However, the density condi-
tion is not sufficient for a consistent linear ordering of both rational
and irrational numbers. Here continuity of the real numbers enters the
stage. There are many (more than a dozen) ways to express the con-
dition of continuity in this case — the most commonly known are the
proposals by Dedekind (real numbers as cuts in the ordering of rational
numbers) and Cantor (real numbers as equivalence classes of sequen-
ces of rational numbers satisfying the Cauchy condition). In modern
formulations, The Axiom of Continuity is added to the usual axioms of
an ordered field (R, +,-,0,1, <) and may have e.g. one of the follo-
wing forms (cf. Blaszczyk 2007, 306):

e For any cut (A, B) in (R, <) either in A there exists the greatest
element, or in B there exists the smallest element.

e Any non-empty bounded from above subset A C R has the lowest
upper bound in R.

e Any infinite and bounded subset A C R has a limit point in R (in
order topology).

e (R,+,-,0,1,<) is an Archimedean field and for any sequence
(an) € R there exists a € R such that lim a, = a.

n—oo
e (R,+,-,0,1,<) is an Archimedean field and for any descending
chain of closed intervals (A,,) we have (] 4,, # 0.
n
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Let us recall the definition of a real closed field as an ordered field
where the order relation is a maximal one compatible with the opera-
tions of the field. In this case we have several alternative (equivalent to
the above) characterizations of real closed fields, e.g. it is an ordered
field in which every positive element has the root and every polynomial
of odd degree has a root. Thus, maximality condition (concerning or-
der) can be replaced by an equivalent one without any explicit reference
to models of the theory and hence without any necessity of quantifying
over the space of models.

2. Induction axiom in arithmetic. Axiom of induction may be considered either
as a single sentence in a second order language or as an axiom scheme in a
first order language:

Second order axiom:

0eXAVz (zeX —s(z)e X) = Ve (reX),

where s is the symbol for successor.

First order scheme:

((0) AV (Y(x) = ¢ (s(x)))) = Vo ¢(x),

where () is any formula with one free variable of the language of Peano
arithmetic.

In the first case, one can prove the categoricity of the underlying theory. In
the second, due to the incompleteness theorem, the axiom scheme of induc-
tion is not sufficient for the elimination of alien intruders — non-standard
natural numbers. There are several methods of constructing non-standard
models of arithmetic — cf. e.g. Grzegorczyk 1971. PA is not finitely axioma-
tizable — we can not replace the infinite induction scheme by any finite set of
formulas equivalent to it. Neither can we restrict the complexity of formulas
in it and simultaneously keep the full force of PA. For more recent research
on these topics see e.g. Kaye 1991 or Héjek, Pudlak 1993.

3. Restriction axioms in set theory. These axioms were supposed to express mi-
nimality conditions for the universe of all sets. Recently, this idea is abando-
ned — we rather try to impose some maximality conditions on this universe,
allowing the existence of as many sets as possible.

21



(a)

(b)

Fraenkel’s axiom of restriction. Fraenkel axiom says, roughly speaking,
that there are no more sets than those whose existence follows from the
axioms of set theory. Its formulation in Fraenkel 1928 runs as follows:

Axiom der Beschrdnkheit. AuBer den durch die Axiome II bis
VII (bzw. VIII) gefordeten Mengen existieren keine weitere
Mengen.

Judging from Fraenkel 1928 one may suppose that Fraenkel was in-
terested in achieving some kind of uniqueness of the set-theoretical
universe with his axiom of restriction. He discussed this axiom also in
the context of whether all sets should be well founded (Fraenkel 1928,
354):
Unsere Axiome enthalten nimlich keine Verfiigung iiber die
urspriinglichen ,,Bausteine” beliebiger Mengen, oder allge-
mein iiber die Natur (d.h. iber die Elemente) derjenigen Men-
gen, die nicht schon durch die Axiome vollig gesichert sind.

But the axiom of restriction is not necessary to decide this problem —
a proper axiom is the axiom of regularity. Georg Schiemer has poin-
ted out that it is likely that Fraenkel got an inspiration for his Axiom
of Restriction from Dedekind’s considerations about natural numbers,
and especially from his Kettentheorie (Schiemer 2010). The set of all
natural numbers is a minimal chain; similarly the universe of all sets
should be in some — to be made precise — sense minimal.

Godel’s axiom of constructibility. Axiom of Constructibility was not
conceived as a restriction axiom, though it has a form of axiom of mi-
nimality in set theory. The inner model of all constructible sets was de-
vised in order to prove that if set theory ZF is consistent, then also ZF
plus the axiom of choice and the Continuum Hypothesis is consistent.
As everybody remembers (cf. Godel 1940), at successor stages in buil-
ding the constructible universe one makes use of the poorest powerset
operation possible: the powerset of x contains only definable subsets of
x. At limit stages we take of course unions of all stages constructed so
far. The class of all constructible sets is a minimal countable transitive
model of set theory containing all ordinal numbers. Kurt Gédel himself
was against axioms of restriction in set theory and he overtly expres-
sed his view in favour of axioms of maximality (Godel 1964, quotation
after CW 11, 262-263):

On the other hand, from an axiom in some sense opposite to
this one [i.e. to the Axiom of Constructibility — JP], the ne-
gation of Cantor’s conjecture could perhaps be derived. I am
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thinking of an axiom which (similar to Hilbert’s completeness
axiom in geometry) would state some maximum property of
the system of all sets, whereas axiom A [i.e. the Axiom of
Constructibility — JP] states a minimum property. Note that
only a maximum property would seem to harmonize with the
concept of set [...]

It seems that nobody in the community of set theoreticians has ever se-
riously taken into account a possibility of adjoining the Axiom of Con-
structibility to the body of fundamental axioms of set theory. “Normal”
mathematicians may have different opinion in this respect — cf. Fried-
man’s judgment in Feferman, Maddy, Steel, Friedman 2000, 436-437.
Nevertheless, the Axiom of Constructibility, taken as a working as-
sumption, has many consequences of considerable interest, in combi-
natorics, algebra, model theory, theory of recursive functions, etc. Ho-
wever, the Axiom of Constructibility implies e.g. the nonexistence of
measurable cardinals as well as the negation of Suslin hypothesis. The
prize to be paid, if one accepts this axiom seems to be too high, com-
pared with its alleged naturalness and evident economy. We prefer to
stay in the Cantor’s Paradise.

(¢) Suszko’s axiom of canonicity. Roman Suszko has written his Canonic
axiomatic systems (Suszko 1951) with the goal of explicating the Sko-
lem’s (alleged) Paradox. He also stressed that his explication does not
refer to the Lowenheim-Skolem theorem itself. Suszko claimed that
his axiom of canonicity is a formal counterpart of Fraenkel’a axiom of
restriction. Independently, some similar ideas were suggested by John
Myhill (cf. Myhill 1952). As far as we know, nobody has developed
Suszko’s approach later.

(d) Critique of restriction axioms. Restriction axioms in set theory were
criticized from the very beginning. They have been rejected already by
von Neumann in 1925 and — though on different grounds — by Zermelo
in 1930. The most destructive critique of minimal axioms is presented
in Fraenkel, Bar-Hillel, Levy 1973. We are not going to report on that
here — let us only add that the authors give some — based on pragmatic
grounds — arguments for maximality axioms in set theory.

4. Large cardinal axioms. These axioms are supposed to express maximality
conditions for the universe of all sets. There is already a huge literature on
this subject — the interested reader may consult e.g. the monograph Kanamori
1994. One may of course ask whether such axioms are natural, whether they
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justly express ,the spirit” of set theory — cf. e.g. Bagaria 2005. At any rate,
these axioms have appeared very fruitful in the development of modern set
theory — cf. e.g. the discussion in Koellner 2010.

Extremal axioms expressed mathematicians’ dreams: a pursuit of intended mo-
dels of their theories. First order logic, though equipped with many nice and conve-
nient deductive properties is very poor as far as its expressive power is concerned.
However, logical subtleties are usually not extremely interesting for working ma-
thematicians. Jon Barwise has put it in the following way (Barwise 1985, 7):

But if you think of logic as the mathematicians in the street, then the
logic in a given concept is what it is, and if there is no set of rules
which generate all the valid sentences, well, that is just a fact about
the complexity of the concept that has to be lived with.

Intended models of mathematical theories are determined only on the meta-
linguistic level. The fact that theories themselves can not uniquely determine their
intended models should not be surprising — finally, the very concept intended mo-
del contains an irremovable pragmatic component. Similarly for the concepts of
standard and pathology, as we tried to show above.

7 A final word

We admit that all the above remarks bring no essentially new insights into the
realm of mathematics. But we do hope that they at least clarify some pragmatic
components involved in the way we speak about mathematical objects: standard
ones, exceptional, and pathological. The mathematical examples chosen in the pa-
per belong to the most typical though they were picked up in a sense randomly,
without any claim to completeness. It might be an entertaining challenge to work
on standards, exceptions and pathologies in separate branches of mathematics from
a historical perspective.
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