Strukturalna poprawność argumentu.

Marcin Selinger
Uniwersytet Wrocławski
Katedra Logiki i Metodologii Nauk
marcisel@uni.wroc.pl

Table of contents:

1. Definition of argument and further notions.
2. Operations on arguments.
3. Structural correctness of arguments.

1. Definition of argument and further notions.

References:
[1973] S. N. Thomas (second edition, 1986),
Practical reasoning in natural language.
[2001] K. Szymanek,
Sztuka argumentacji. Stownik terminologiczny.
[2003] K. Szymanek, K. A. Wieczorek, A. Wójcik, Sztuka argumentacji. Ćwiczenia w badaniu argumentów.
[2006] M. Tokarz, Argumentacja, perswazja, manipulacja.

- Argument = konkluzja + przesłanki.
- Przesłanki moga wspierać konkluzję:

- łącznie (zespołowo, szeregowo)

- rozłącznie (rozdzielnie, równolegle)

- w sposób mieszany
- Czasami przesłanki wspieraja inne przesłanki:

$>$ Let \mathbf{S} be a set of sentences of a given language.
$>$ Let $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>$ be a finite sequence of nonempty, finite relations defined on the set $\mathrm{P}_{\text {fin }}(\mathbf{S}) \times \mathbf{S}$.

Thus $A_{m}=\left\{<P_{m}^{1}, \alpha_{m}^{1}>,<P_{m}^{2}, \alpha_{m}^{2}>, \ldots,<P_{m}^{i_{m}}, \alpha_{m}^{i_{m}}>\right\}$ for $m \leq n_{\mathbf{A}}$.

Def. 1.

A is an argument iff the following conditions hold:
(i) $\alpha_{1}^{1}=\alpha_{1}^{2}=\ldots=\alpha_{1}^{i_{1}} \quad($ i.e. for $m=1) ;$
(ii) $\forall j \leq i_{m} \exists k \alpha_{m}^{j} \in P_{m-1}^{k} \quad$ for $2 \leq m \leq n_{\mathrm{A}}$.

Further definitions.

> Assume that $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>$ is an argument.

Def. 2.

The final conclusion of \mathbf{A} is the sentence:

$$
\alpha_{1}^{1}=\alpha_{1}^{2}=\ldots=\alpha_{1}^{i_{1}}
$$

Def. 3.
A sentence is a premise of \mathbf{A} iff it is an element of a set belonging to the domain of some of relations:

$$
A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}
$$

Examples

$$
\mathbf{A}=\left\langle A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}\right\rangle
$$

Def. 4.
The final argument of \mathbf{A} is the one-element sequence $<A_{1}>$.
Def. 5.
The \boldsymbol{m}-th level of \mathbf{A} is the relation A_{m} (for $m \leq n_{\mathrm{A}}$).
Def. 6.
An argument $<\{<P, \beta>\}>$ is an atomic argument of \mathbf{A} iff there exists $m \leq n_{\mathrm{A}}$ such that $<P, \beta>\in A_{m}$.

Def. 7.

An argument is direct iff it consists of one level only.

Def. 8.

A sentence is an intermediate conclusion of \mathbf{A} iff it belongs to the counterdomain of some of its levels, which are higher then 1.

Def. 9.

A sentence is a first premise of \mathbf{A} iff

- it belongs to an element of the domain of $A_{n_{\mathrm{A}}}$. or
- it belongs to an element of the domain of A_{m} (for $m<n_{\mathrm{A}}$), but it does not belong to the counterdomain of A_{m+1}.

Examples

- final argument
- level of argument
- atomic argument
- direct argument
- intermediate conclusion
- first premise

$$
\begin{aligned}
& <\left\{<\left\{\alpha_{9}\right\}, \alpha>\right\}, \\
& \left\{<\left\{\alpha_{4}, \alpha_{5}, \alpha_{6}\right\}, \alpha_{9}>,<\left\{\alpha_{8}\right\}, \alpha_{9}>\right\} \\
& \left.\left\{<\left\{\alpha_{1}\right\}, \alpha_{5}>,<\left\{\alpha_{2}\right\}, \alpha_{5}>,<\left\{\alpha_{3}\right\}, \alpha_{5}>\right\},<\left\{\alpha_{7}\right\}, \alpha_{8}>\right\}>
\end{aligned}
$$

$\left\langle\left\{\left\langle\left\{\alpha_{2}, \alpha_{3}\right\}, \alpha\right\rangle\right\},\left\{\left\langle\left\{\alpha_{1}\right\}, \alpha_{2}\right\rangle,\left\langle\left\{\alpha_{1}\right\}, \alpha_{3}\right\rangle\right\}\right\rangle$

Def. 10

The domain of \mathbf{A} is the set of all the premises of \mathbf{A}.

Def. 11

The counterdomain of \mathbf{A} is the set of all the conclusions of \mathbf{A}.
i.e. the set of intermediate conclusions \cup \{final colclusion\}

Def. 12

The range of \mathbf{A} is the sum of the domain and counterdomain of \mathbf{A}.

Example

Def. 13

A sentence δ directly supports a sentence δ^{\prime} in \mathbf{A} iff there exists an atomic argument of \mathbf{A}, such that δ ' belongs to its domain, and δ belongs to its counterdomain.

Def. 14

A sentence δ_{n} indirectly supports a sentence δ_{1} in \mathbf{A} iff there exists a sequence of sentences $<\delta_{1}, \delta_{2}, \ldots \delta_{n}>$, where $n \geq 3$, such that each of its elements (except for δ_{1}) directly supports (in \mathbf{A}) the preceding element.

Def. 15

A sentence δ supports a sentence δ^{\prime} in \mathbf{A} iff δ directly or indirectly supports δ^{\prime} in \mathbf{A}.

Def. 16

An argument is circular iff its range contains a sentence, which supports itself (in this argument).

circular

non-circular

$>$ Assume that $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>$ and $\mathbf{B}=<B_{1}, B_{2}, \ldots, B_{n_{\mathrm{B}}}>$ are arguments.

Def. $17 \quad(\mathrm{~B} \subseteq A)$
\mathbf{B} is a subargument of \mathbf{A} iff the following conditions hold:
(i) $n_{\mathrm{B}} \leq n_{\mathrm{A}}$;
(ii) $\exists k \leq n_{\mathrm{A}}-n_{\mathbf{B}}+1\left(B_{1} \subseteq A_{k}, B_{2} \subseteq A_{k+1}, \ldots, \quad B_{n_{\mathrm{B}}} \subseteq A_{k+n_{\mathrm{B}}-1}\right)$.

Def. $18 \quad(\mathrm{~B} \subset \mathbf{A})$
\mathbf{B} is an internal subargument of \mathbf{A} iff the following conditions hold:
(i) $n_{\mathbf{B}}<n_{\mathbf{A}}$;
(ii) $\exists k \leq n_{\mathbf{A}}-n_{\mathbf{B}}+1(k>1$ and

$$
\left.B_{1} \subseteq A_{k}, B_{2} \subseteq A_{k+1}, \ldots, B_{n_{\mathrm{B}}} \subseteq A_{k+n_{\mathrm{B}}}-1\right)
$$

Example

Remark 1: $\mathbf{A} \subseteq \mathbf{A}$, for all \mathbf{A}.
Remark 2: " $\mathbf{B} \subset \mathbf{A}$ " doesn't mean " $\mathbf{B} \subseteq \mathbf{A}$ and $\mathbf{B} \neq \mathbf{A}$ ".
2. Operations on arguments.

- Addition.
- Maximal subarguments.
- Subtraction.

Addition of arguments

"conclusional"

"premisal"

$>$ Assume that $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>, \mathbf{B}=<B_{1}, B_{2}, \ldots, B_{n_{\mathrm{B}}}>$ and $\mathbf{C}=<C_{1}, C_{2}, \ldots, C_{n_{\mathrm{C}}}>$ are arguments.
> Assume that $1 \leq m \leq n_{\mathbf{A}}$.

Def. 19

$$
\mathbf{A}+{ }_{\downarrow m} \mathbf{B}=\mathbf{C} \text { iff }
$$

- either the final conclusion of \mathbf{B} is not contained in the counterdomain of A_{m} and $\mathbf{A}=\mathbf{C}$.
- or the final conclusion of \mathbf{B} is contained in the counterdomain of A_{m} and the following condisions hold:
(i) $n_{\mathrm{C}}=\max \left\{n_{\mathbf{A}}, m+n_{\mathbf{B}}-1\right\}$;
(ii) $C_{i}=A_{i}$, if $1 \leq i<m$ (for $m \geq 2$) or $i>m+n_{\mathbf{B}}$;
(iii) $C_{i}=A_{i} \cup B_{i-m+1}$, if $m \leq i \leq n_{\mathrm{A}}$;
(iv) $\mathrm{C}_{i}=B_{i-m+1}$, if $n_{\mathrm{A}}<i \leq n_{\mathrm{C}}$.

Def. 20

$$
\mathbf{A}++_{\downarrow} \mathbf{B}=\left(\ldots\left(\left(\mathbf{A}+_{\downarrow n \mathbf{A}} \mathbf{B}\right)+_{\downarrow n \mathbf{A}-1} \mathbf{B}\right)+_{\downarrow n \mathbf{A}-2} \ldots\right)+_{\downarrow 1} \mathbf{B}
$$

Def. 21

$$
\mathbf{A}+_{\uparrow m} \mathbf{B}=\mathbf{C} \text { iff }
$$

- either the final conclusion of \mathbf{B} is not contained in any element of the domain of A_{m} and $\mathbf{A}=\mathbf{C}$
- or the final conclusion of \mathbf{B} is contained in some element of the domain of A_{m} and the following condisions hold:
(i) $n_{\mathbf{C}}=\max \left\{n_{\mathbf{A}}, m+n_{\mathbf{B}}\right\}$;
(ii) $C_{i}=A_{i}$, if $1 \leq i \leq m($ for $m \geq 2)$ or $i>m+n_{\mathbf{B}}$;
(iii) $C_{i}=A_{i} \cup B_{i-m}$, if $m<i \leq n_{\mathbf{A}}$;
(iv) $\mathrm{C}_{i}=B_{i-m}$, if $n_{\mathbf{A}}<i \leq n_{\mathbf{C}}$.

Def. 22

$$
\mathbf{A}+{ }_{\uparrow} \mathbf{B}=\left(\ldots\left((\mathbf{A}+\hat{\uparrow n \mathbf{A}} \mathbf{B})+{ }_{\uparrow n \mathbf{A}-1} \mathbf{B}\right)+{ }_{\uparrow n \mathbf{A}-2} \ldots\right)+_{\uparrow 1} \mathbf{B}
$$

Remark 1: Let $m>1$. Then $\mathbf{A}+_{\downarrow m} \mathbf{B}=\mathbf{A}+_{\uparrow m-1} \mathbf{B}$ iff

- the final conclusion of \mathbf{B} is contained in the counterdomain of A_{m}
or
- the final conclusion of \mathbf{B} is not contained in any element of the domain of A_{m-1}.
(i.e. the above equation holds iff the final conclusion of \mathbf{B} is not any of the first premises on the level $m-1$ of \mathbf{A})

Remark 2: The operations of addition are neither commutative nor associative, but if \mathbf{A}, \mathbf{B} (and \mathbf{C}) have identical final conclusions, then the following equations hold:

$$
\begin{gathered}
\mathbf{A}++_{\Downarrow 1} \mathbf{B}=\mathbf{B}+{ }_{\Downarrow 1} \mathbf{A} ; \\
\left(\mathbf{A}+{ }_{\Downarrow 1} \mathbf{B}\right)+{ }_{\Downarrow 1} \mathbf{C}=\mathbf{A}+{ }_{\Downarrow 1}\left(\mathbf{B}+{ }_{\Downarrow 1} \mathbf{C}\right) .
\end{gathered}
$$

Def. 23

$$
\mathbf{A}+\mathbf{B}=\left(\mathbf{A}+{ }_{\uparrow} \mathbf{B}\right)+_{\downarrow 1} \mathbf{B}
$$

Remark 1: If the final conclusion of \mathbf{B} is not in the range of \mathbf{A}, then:

$$
\mathbf{A}+\mathbf{B}=\mathbf{A} .
$$

Remark 2: If \mathbf{A} is not circular, then $\mathbf{A}+\mathbf{A}=\mathbf{A}$.

Maximal subarguments

determined by a conclusion

determined by
an atomic argument

> Assume that $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>$ and $\mathbf{B}=<B_{1}>$ are arguments.
> Assume that \mathbf{B} is an atomic argument in \mathbf{A}, where $B_{1} \subseteq A_{m}$ for the level number $m \leq n_{\mathbf{A}}$.

Def. 24

$$
\mathbf{C}=\max (\mathbf{A}, \mathbf{B}, m) \text { iff }
$$

\mathbf{C} is the longest (e.i. containing the largest number of levels) of the arguments $\mathbf{C}^{*}=<C^{*} 1, C^{*}{ }_{2}, \ldots, C^{*} n_{\mathrm{C}^{*}}>$, such that satisfy the following conditions:
(i) $n_{\mathrm{C}^{*}} \leq n_{\mathrm{A}}-m+1$;
(ii) $C^{*}{ }_{1}=B_{1}$;
(iii) if $n_{\mathbf{C}^{*}} \geq 2$, then for every $2 \leq i \leq n_{\mathbf{C}^{*}}$:
$C_{i}{ }_{i}=\left\{<P, \delta^{*}\right\rangle \in A_{i+m-1}: \delta^{*}$ is contained in some element of the domain of $\left.C^{*}{ }_{i-1}\right\}$.
> Assume that $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>$ is an argument.
> Assume that δ is an element of the counterdomain of A_{m} for the level number $m \leq n_{\mathbf{A}}$.

Def. 25

$$
\mathbf{C}=\max (\mathbf{A}, \delta, m) \mathrm{iff}
$$

\mathbf{C} is the longest of the arguments $\mathbf{C}^{*}=<C^{*} 1, C^{*}{ }_{2}, \ldots, C^{*} n_{\mathrm{C}^{*}}>$, such that satisfy the following conditions:
(i) $n_{\mathbf{C}^{*}} \leq n_{\mathbf{A}}-m+1$;
(ii) $C^{*}{ }_{1}=\left\{\left\langle P, \delta^{*}>\in A_{m}: \delta^{*}=\delta\right\}\right.$;
(iii) if $n_{\mathbf{C}^{*}} \geq 2$, then for every $2 \leq i \leq n_{\mathbf{C}^{*}}$:
$C^{*}{ }_{i}=\left\{<P, \delta^{*}\right\rangle \in A_{i+m-1}: \delta^{*}$ is contained in some element of the domain of $\left.C^{*}{ }_{i-1}\right\}$.

Remark 1: If \mathbf{B} is the final argument of \mathbf{A}, then $\max (\mathbf{A}, \mathbf{B}, 1)=\mathbf{A}$. If δ is the final conclusion in \mathbf{A}, then $\max (\mathbf{A}, \delta, 1)=\mathbf{A}$.

Remark 2: If $\left\{\mathbf{B}^{1}, \mathbf{B}^{2}, \ldots, \mathbf{B}^{k}\right\}$ is the set of all atomic arguments of the m-th level of \mathbf{A}, which have the same conclusion δ, then:
$\max (\mathbf{A}, \delta, m)=\max \left(\mathbf{A}, \mathbf{B}^{1}, m\right)+_{\downarrow 1} \max \left(\mathbf{A}, \mathbf{B}^{2}, m\right)+_{\downarrow 1} \ldots+_{\downarrow 1} \max \left(\mathbf{A}, \mathbf{B}^{k}, m\right)$.

Subtraction of arguments

> Assume that $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{A}}$ is an argument, and that $\mathbf{B}=$ $<B_{l}>$ is an atomic (non-final) argument in \mathbf{A} ($B_{1} \subseteq A_{m}$ for $m \leq n_{\mathrm{A}}$).
> Assume that $\mathbf{C}=<C_{1}, C_{2}, \ldots, C_{n_{C}}>=\max (\mathbf{A}, \mathbf{B}, m)$.

Def. 26

$$
\mathbf{A}_{-m} \mathbf{B}=\mathbf{D} \text { iff }
$$

(i) $m-1 \leq n_{\mathbf{D}} \leq n_{\mathbf{A}}$;
(ii) if $m \geq 2$, then $D_{i}=A_{i}$, for every $i<m$;
(iii) if $n_{\mathbf{A}}=n_{\mathbf{C}}+m-1$, then:

- $n_{\mathbf{D}}=\max \left\{j<n_{\mathbf{A}}: A_{j}-C_{j-m+1} \neq \varnothing\right\}$;
- $D_{i}=A_{i}-C_{i-m+1}$, for every $m \leq i \leq n_{\mathbf{D}}$;
(iv) if $n_{\mathbf{A}}>n_{\mathbf{C}}+m-1$, then:
- $n_{\mathbf{D}}=n_{\mathbf{A}}$;
- $D_{i}=A_{i}-C_{i-m+1}$, for every $m \leq i \leq n_{\mathbf{C}}+m-1$;
- $D_{i}=A_{i}$, for every $n_{\mathbf{C}}+m-1<i \leq n_{\mathbf{D}}$.

3. Structural correctness of arguments.

For a structurally correct argument $\mathbf{A}=<A_{1}, A_{2}, \ldots, A_{n_{\mathrm{A}}}>$ it is necessary that the following conditions hold:
(1) For every argument \mathbf{B} :
if $\mathbf{B} \subseteq \mathbf{A}$, then (the counterdomain of \mathbf{B}) - (the domain of $\mathbf{B})=$ $=\{$ the final conclusion of $\mathbf{B}\}$.
(2) (The domain of \mathbf{A}) - (the counterdomain of \mathbf{A}) = $=($ the set of all the first premises of $\mathbf{A})$.
(3) For every sentence δ :
if there are $i, j \leq n_{\mathbf{A}}$, such that the counterdomains of A_{i} and A_{j} contain δ, then $\max (\mathbf{A}, \delta, i)=\max (\mathbf{A}, \delta, j)$.

An open problem: Are these conditions sufficient?

Remark 1: The condition (1) doesn't hold iff \mathbf{A} is circular.
Remark 2: The condition (2) doesn't hold iff there is a sentence in the domain of \mathbf{A}, which is one of the first premises and a conclusion (final or intermediate) at the same time.

Remark 3: The condition (3) doesn't hold iff there is a sentence in the domain of \mathbf{A}, which is supported by different subarguments, when it appears on different levels.

Remark 4: If the condition (1) doesn't hold, then at least one of the conditions: (2) or (3) doesn't hold either. The converse implication is not true.

Example

