

Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl

Table of contents:

- 1. Definition of argument and further notions.
- 2. Operations on arguments.
- 3. Structural correctness of arguments.

1. Definition of argument and further notions.

References:

[1973] S. N. Thomas (second edition, 1986), *Practical reasoning in natural language.*

[2001] K. Szymanek, Sztuka argumentacji. Słownik terminologiczny.

[2003] K. Szymanek, K. A. Wieczorek, A. Wójcik, Sztuka argumentacji. Ćwiczenia w badaniu argumentów.

[2006] M. Tokarz, Argumentacja, perswazja, manipulacja.

- Argument = konkluzja + przesłanki.
- Przesłanki mogą wspierać konkluzję:

Czasami przesłanki wspierają inne przesłanki:

 $\alpha_{\scriptscriptstyle A}$

 \succ Let **S** be a set of sentences of a given language.

> Let $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ be a finite sequence of nonempty, finite relations defined on the set $\mathsf{P}_{\mathsf{fin}}(\mathsf{S}) \times \mathsf{S}$.

Thus
$$A_m = \{ < P_m^1, \alpha_m^1 >, < P_m^2, \alpha_m^2 >, ..., < P_m^{i_m}, \alpha_m^{i_m} > \}$$
 for $m \le n_A$.

Def. 1.

A is **an argument** iff the following conditions hold: (i) $\alpha_1^1 = \alpha_1^2 = ... = \alpha_1^{i_1}$ (*i.e.* for m = 1); (ii) $\forall j \le i_m \exists k \ \alpha_m^j \in P_{m-1}^k$ for $2 \le m \le n_A$.

Further definitions.

> Assume that $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ is an argument.

Def. 2.

The final conclusion of **A** is the sentence: $\alpha_1^1 = \alpha_1^2 = \dots = \alpha_1^{i_1}$

Def. 3.

A sentence is *a premise* of A iff it is an element of a set belonging to the domain of some of relations:

$$A_1, A_2, ..., A_{n_A}$$

 $< \{<\{\alpha_9\}, \alpha > \}, \\ \{<\{\alpha_4, \alpha_5, \alpha_6\}, \alpha_9 >, <\{\alpha_8\}, \alpha_9 > \}, \\ \{<\{\alpha_1\}, \alpha_5 >, <\{\alpha_2\}, \alpha_5 >, <\{\alpha_3\}, \alpha_5 > \}, <\{\alpha_7\}, \alpha_8 > \} >.$

$$A = \langle A_1, A_2, ..., A_n \rangle$$

Def. 4.

The final argument of **A** is the one-element sequence $<A_1>$.

Def. 5.

The *m*-th level of **A** is the relation A_m (for $m \le n_A$).

Def. 6.

An argument $\langle P, \beta \rangle$ is **an atomic argument** of **A** iff there exists $m \leq n_A$ such that $\langle P, \beta \rangle \in A_m$.

Def. 7.

An argument is *direct* iff it consists of one level only.

Def. 8.

A sentence is *an intermediate conclusion* of \mathbf{A} iff it belongs to the counterdomain of some of its levels, which are higher then 1.

Def. 9.

A sentence is *a first premise* of A iff

— it belongs to an element of the domain of A_{n_A} .

or

— it belongs to an element of the domain of A_m (for $m < n_A$), but it does not belong to the counterdomain of A_{m+1} .

Examples

- final argument
- level of argument
- atomic argument
- direct argument
- intermediate conclusion
- first premise

 $< \{<\{\alpha_9\}, \alpha > \}, \\ \{<\{\alpha_4, \alpha_5, \alpha_6\}, \alpha_9 >, <\{\alpha_8\}, \alpha_9 > \}, \\ \{<\{\alpha_1\}, \alpha_5 >, <\{\alpha_2\}, \alpha_5 >, <\{\alpha_3\}, \alpha_5 > \}, <\{\alpha_7\}, \alpha_8 > \} >.$

 $<\!\!\{<\!\!\{\alpha_2,\alpha_3\},\alpha>\},\{<\!\!\{\alpha_1\},\alpha_2>,<\!\!\{\alpha_1\},\alpha_3>\}\!\!>$

Def. 10

The domain of A is the set of all the premises of A.

Def. 11

The counterdomain of A is the set of all the conclusions of A. *i.e.* the set of intermediate conclusions \cup {final colclusion}

Def. 12

The range of \boldsymbol{A} is the sum of the domain and counterdomain of $\boldsymbol{A}.$

Example

Domain: { $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9$ }

Counterdomain: $\{\alpha, \alpha_5, \alpha_8, \alpha_9\}$

Range: { α , α_1 , α_2 , α_3 , α_4 , α_5 , α_6 , α_7 , α_8 , α_9 }

 $< \{<\{\alpha_{9}\}, \alpha > \}, \\ \{<\{\alpha_{4}, \alpha_{5}, \alpha_{6}\}, \alpha_{9} >, <\{\alpha_{8}\}, \alpha_{9} > \}, \\ \{<\{\alpha_{1}\}, \alpha_{5} >, <\{\alpha_{2}\}, \alpha_{5} >, <\{\alpha_{3}\}, \alpha_{5} > \}, <\{\alpha_{7}\}, \alpha_{8} > \} >.$

Def. 13

A sentence δ directly supports a sentence δ ' in A iff there exists an atomic argument of A, such that δ ' belongs to its domain, and δ belongs to its counterdomain.

Def. 14

A sentence δ_n *indirectly supports* a sentence δ_1 *in* **A** iff there exists a sequence of sentences $<\delta_1, \delta_2, \ldots, \delta_n >$, where $n \ge 3$, such that each of its elements (except for δ_1) directly supports (in **A**) the preceding element.

Def. 15

A sentence δ supports a sentence δ ' in A iff

 δ directly or indirectly supports δ ' in **A**.

Def. 16

An argument is *circular* iff its range contains a sentence, which supports itself (in this argument).

> Assume that $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ and $\mathbf{B} = \langle B_1, B_2, ..., B_{n_B} \rangle$ are arguments.

Def. 17 $(B \subseteq A)$

B is *a subargument* of **A** iff the following conditions hold: (*i*) $n_{\mathbf{B}} \le n_{\mathbf{A}}$; (*ii*) $\exists k \le n_{\mathbf{A}} - n_{\mathbf{B}} + 1$ ($B_1 \subseteq A_k$, $B_2 \subseteq A_{k+1}, \dots, B_{n_{\mathbf{B}}} \subseteq A_{k+n_{\mathbf{B}}} - 1$).

Def. 18 $(B \subset A)$

 \boldsymbol{B} is $\boldsymbol{an}\ internal\ subargument$ of \boldsymbol{A} iff the following conditions hold:

(*i*)
$$n_{\mathbf{B}} < n_{\mathbf{A}};$$

(*ii*) $\exists k \le n_{\mathbf{A}} - n_{\mathbf{B}} + 1$ ($k > 1$ and $B_1 \subseteq A_k$, $B_2 \subseteq A_{k+1}, \dots, B_{n_{\mathbf{B}}} \subseteq A_{k+n_{\mathbf{B}}} - 1$).

Example

Remark 1: $A \subseteq A$, for all A. **Remark 2:** " $B \subset A$ " doesn't mean " $B \subseteq A$ and $B \neq A$ ". 2. Operations on arguments.

- Addition.
- Maximal subarguments.
- Subtraction.

- > Assume that $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$, $\mathbf{B} = \langle B_1, B_2, ..., B_{n_B} \rangle$ and $\mathbf{C} = \langle C_1, C_2, ..., C_{n_C} \rangle$ are arguments.
- > Assume that $1 \le m \le n_A$.

Def. 19

$$\mathbf{A} +_{\downarrow m} \mathbf{B} = \mathbf{C}$$
 iff

- either the final conclusion of **B** is not contained in the counterdomain of A_m and $\mathbf{A} = \mathbf{C}$.
- or the final conclusion of **B** is contained in the counterdomain of A_m and the following condisions hold: (*i*) $n_{\mathbf{C}} = max \{n_{\mathbf{A}}, m + n_{\mathbf{B}} - 1\};$ (*ii*) $C_i = A_i$, if $1 \le i < m$ (for $m \ge 2$) or $i > m + n_{\mathbf{B}};$ (*iii*) $C_i = A_i \cup B_{i-m+1}$, if $m \le i \le n_{\mathbf{A}};$ (*iv*) $C_i = B_{i-m+1}$, if $n_{\mathbf{A}} < i \le n_{\mathbf{C}}$.

Def. 20

$$\mathbf{A} +_{\downarrow} \mathbf{B} = (\dots((\mathbf{A} +_{\downarrow n\mathbf{A}} \mathbf{B}) +_{\downarrow n\mathbf{A}-1} \mathbf{B}) +_{\downarrow n\mathbf{A}-2} \dots) +_{\downarrow 1} \mathbf{B}$$

Def. 21

$\mathbf{A} +_{\uparrow m} \mathbf{B} = \mathbf{C}$ iff

- either the final conclusion of **B** is not contained in any element of the domain of A_m and $\mathbf{A} = \mathbf{C}$
- or the final conclusion of **B** is contained in some element of the domain of A_m and the following condisions hold: (*i*) $n_{\mathbf{C}} = max \{n_{\mathbf{A}}, m + n_{\mathbf{B}}\};$ (*ii*) $C_i = A_i$, if $1 \le i \le m$ (for $m \ge 2$) or $i > m + n_{\mathbf{B}}$; (*iii*) $C_i = A_i \cup B_{i-m}$, if $m < i \le n_{\mathbf{A}}$; (*iv*) $C_i = B_{i-m}$, if $n_{\mathbf{A}} < i \le n_{\mathbf{C}}$.

Def. 22

$$\mathbf{A} + \mathbf{B} = (\dots((\mathbf{A} + \mathbf{B}) + \mathbf{B}) + \mathbf{B}) + \mathbf{B}) + \mathbf{B} + \mathbf{B} + \mathbf{B}$$

Remark 1: Let m > 1. Then $\mathbf{A} +_{\downarrow m} \mathbf{B} = \mathbf{A} +_{\uparrow m-1} \mathbf{B}$ iff

• the final conclusion of \mathbf{B} is contained in the counterdomain of A_m

or

• the final conclusion of **B** is not contained in any element of the domain of A_{m-1} .

(*i.e.* the above equation holds iff the final conclusion of **B** is not any of the first premises on the level m-1 of **A**)

Remark 2: The operations of addition are neither commutative nor associative, but if A, B (and C) have identical final conclusions, then the following equations hold:

$$\mathbf{A} +_{\downarrow 1} \mathbf{B} = \mathbf{B} +_{\downarrow 1} \mathbf{A};$$
$$(\mathbf{A} +_{\downarrow 1} \mathbf{B}) +_{\downarrow 1} \mathbf{C} = \mathbf{A} +_{\downarrow 1} (\mathbf{B} +_{\downarrow 1} \mathbf{C})$$

Def. 23
$$\mathbf{A} + \mathbf{B} = (\mathbf{A} + \mathbf{B}) + \mathbf{B}$$

Remark 1: If the final conclusion of ${\bf B}$ is not in the range of ${\bf A}$, then:

$$\mathbf{A} + \mathbf{B} = \mathbf{A}$$
.

Remark 2: If A is not circular, then A + A = A.

Maximal subarguments

determined by a conclusion

determined by an atomic argument

> Assume that $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ and $\mathbf{B} = \langle B_1 \rangle$ are arguments.

> Assume that **B** is an atomic argument in **A**, where $B_1 \subseteq A_m$ for the level number $m \le n_A$.

Def. 24

 $\mathbf{C} = max(\mathbf{A}, \mathbf{B}, m)$ iff

C is the longest (*e.i.* containing the largest number of levels) of the arguments $C^* = \langle C^*_1, C^*_2, ..., C^*_{n_{C^*}} \rangle$, such that satisfy the following conditions:

(*i*)
$$n_{\mathbb{C}^*} \le n_{\mathbb{A}} - m + 1$$
;
(*ii*) $C^*_1 = B_1$;
(*iii*) if $n_{\mathbb{C}^*} \ge 2$, then for every $2 \le i \le n_{\mathbb{C}^*}$:
 $C^*_i = \{ < P, \, \delta^* > \in A_{i+m-1} : \, \delta^* \text{ is contained in some} \text{ element of the domain of } C^*_{i-1} \}.$

> Assume that $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ is an argument.

> Assume that δ is an element of the counterdomain of A_m for the level number $m \le n_A$.

Def. 25

$$\begin{split} \mathbf{C} &= max(\mathbf{A}, \delta, m) \text{ iff} \\ \mathbf{C} \text{ is the longest of the arguments } \mathbf{C}^* &= \langle C^*_1, C^*_2, \dots, C^*_{n_{\mathbf{C}^*}} \rangle, \\ \text{such that satisfy the following conditions:} \\ (i) & n_{\mathbf{C}^*} \leq n_{\mathbf{A}} - m + 1; \\ (ii) & C^*_1 &= \{\langle P, \delta^* \rangle \in A_m: \delta^* = \delta\}; \\ (iii) & \text{ if } n_{\mathbf{C}^*} \geq 2, \text{ then for every } 2 \leq i \leq n_{\mathbf{C}^*}; \\ & C^*_i &= \{\langle P, \delta^* \rangle \in A_{i+m-1}: \delta^* \text{ is contained in some} \\ & \text{ element of the domain of } C^*_{i-1}\}. \end{split}$$

Remark 1: If **B** is the final argument of **A**, then $max(\mathbf{A}, \mathbf{B}, 1) = \mathbf{A}$. If δ is the final conclusion in **A**, then $max(\mathbf{A}, \delta, 1) = \mathbf{A}$.

Remark 2: If $\{B^1, B^2, ..., B^k\}$ is the set of all atomic arguments of the *m*-th level of **A**, which have the same conclusion δ , then:

 $max(\mathbf{A}, \delta, m) = max(\mathbf{A}, \mathbf{B}^1, m) +_{\downarrow 1} max(\mathbf{A}, \mathbf{B}^2, m) +_{\downarrow 1} \dots +_{\downarrow 1} max(\mathbf{A}, \mathbf{B}^k, m).$

Subtraction of arguments

> Assume that $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ is an argument, and that $\mathbf{B} = \langle B_1 \rangle$ is an atomic (non-final) argument in \mathbf{A} ($B_1 \subseteq A_m$ for $m \leq n_A$).

> Assume that $C = \langle C_1, C_2, ..., C_{n_C} \rangle = max(A, B, m).$

Def. 26

 $\mathbf{A} -_{m} \mathbf{B} = \mathbf{D} \quad \text{iff}$ (i) $m - 1 \le n_{\mathbf{D}} \le n_{\mathbf{A}};$ (ii) if $m \ge 2$, then $D_i = A_i$, for every i < m; (*iii*) if $n_A = n_C + m - 1$, then: • $n_{\mathbf{D}} = max\{j < n_{\mathbf{A}}: A_j - C_{j-m+1} \neq \emptyset\};$ • $D_i = A_i - C_{i-m+1}$, for every $m \le i \le n_{\mathbf{D}}$; (*iv*) if $n_A > n_C + m - 1$, then: • $n_{\mathbf{D}} = n_{\mathbf{A}};$ • $D_i = A_i - C_{i-m+1}$, for every $m \le i \le n_{\mathbb{C}} + m - 1$; • $D_i = A_i$, for every $n_{\mathbf{C}} + m - 1 < i \leq n_{\mathbf{D}}$.

3. Structural correctness of arguments.

For *a structurally correct* argument $\mathbf{A} = \langle A_1, A_2, ..., A_{n_A} \rangle$ it is necessary that the following conditions hold:

(1) For every argument **B**: if $B \subseteq A$, then (the counterdomain of **B**) – (the domain of **B**) = = {the final conclusion of **B**}.

(2) (The domain of A) – (the counterdomain of A) =

= (the set of all the first premises of \mathbf{A}).

(3) For every sentence δ :

if there are *i*, $j \le n_A$, such that the counterdomains of

 A_i and A_j contain δ , then $max(\mathbf{A}, \delta, i) = max(\mathbf{A}, \delta, j)$.

An open problem: Are these conditions sufficient?

Remark 1: The condition (1) doesn't hold iff A is circular.

Remark 2: The condition (2) doesn't hold iff there is a sentence in the domain of A, which is one of the first premises and a conclusion (final or intermediate) at the same time.

Remark 3: The condition (3) doesn't hold iff there is a sentence in the domain of A, which is supported by different subarguments, when it appears on different levels.

Remark 4: If the condition (1) doesn't hold, then at least one of the conditions: (2) or (3) doesn't hold either. The converse implication is not true.

