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35 A few comments on  Loś–Suszko theorem . . . . . . . . . . . . . . 82
36 Ramified matrices and ramified logics . . . . . . . . . . . . . . . 84

8 Matrix Vrs Algebraic Semantics 87
37 Implicative logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
38 More on algebraic semantics . . . . . . . . . . . . . . . . . . . . . 89
39 Properly l–algebraic logics . . . . . . . . . . . . . . . . . . . . . . 91
40 A bit of philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 The Class Matr(C) 97
41 Some operations on matrices . . . . . . . . . . . . . . . . . . . . 97
42 Reduced products of matrices . . . . . . . . . . . . . . . . . . . . 99
43 Czelakowski’s theorems . . . . . . . . . . . . . . . . . . . . . . . 100
44 The proof of Czelakowski’s theorems . . . . . . . . . . . . . . . . 101

10 The Class Matr∗(C) – More On Standard Logics 105
45 Some more conditions for a logic to be standard . . . . . . . . . . 105
46 Some corollaries to theorem 43.1 . . . . . . . . . . . . . . . . . . 106
47 Matr∗(C) for equivalential logics . . . . . . . . . . . . . . . . . . 108
48 Subdirectly irreducible matrices . . . . . . . . . . . . . . . . . . . 111

11 Referential Matrices Vrs Frames 115
52 K–standard referential matrices . . . . . . . . . . . . . . . . . . . 115
53 Referential matrices vs neighborhood frames . . . . . . . . . . . . 117
54 Referential matrices vrs relational frames . . . . . . . . . . . . . 119
55 Comparing the relative strength of different semantics . . . . . . 120



CONTENTS 5

12 Referential Matrices Some General Results 123
49 Referential algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 123
50 Selfextensional logics . . . . . . . . . . . . . . . . . . . . . . . . . 126
51 An useful lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

13 Logics Strongly Finite 131
56 A syntactical test for strong finiteness . . . . . . . . . . . . . . . 131
57 The lattices of strengthenings of a strongly finite consequences . 133
58 Hereditary properties . . . . . . . . . . . . . . . . . . . . . . . . . 135
59 Degree of maximality . . . . . . . . . . . . . . . . . . . . . . . . . 139
60 Some applications of Theorem 59.3 . . . . . . . . . . . . . . . . . 141

14 Finite Formalizations And Decidability 143
61 Two algebraic lattices . . . . . . . . . . . . . . . . . . . . . . . . 143
62 Finitely axiomatizable theories and finitely based logics . . . . . 144
63 Axiomatizable theories and parafinitely based logics . . . . . . . 145
64 A generalized version of Herrop’s theorem and some problems

concerning decidability . . . . . . . . . . . . . . . . . . . . . . . . 146
65 Finite approximability and finite model property . . . . . . . . . 149

15 Comparing Different Logics Via Definability Relation 151
66 Definitional extensions . . . . . . . . . . . . . . . . . . . . . . . . 151
67 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
68 Definitional variants . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 159

Index 171



6 CONTENTS



Preface

The book is based on the lectures I delivered at Instituto de Matemática e Estatistica e
Ciencia de Camputacao, Universidade Estadul de Campinas, during my stay in Brazil
at summer 1981; some of them were repeated at Instituto de Matemática e Estatistica,
Universidade de Sao Paulo.

While the general topic of may lectures was the theory of propositional calculi, I
concentrated myself on results obtained by Polish logicians, especially those grouped
around the Section of Logic of the Institute of Philosophy and Sociology of the Polish
Academy of Sciences. Consequently, the results mentioned above play the central role
in this volume too. Now, as I explain below, many of them are of specific origin.

As early as in 1976, at one of the workshops organized annually by the Section
of Logic of the Polish Academy of Science there was put forward idea to write a
book on the theory (methodology) of propositional calculi. As a part of the project,
various open problems in the area have been attacked and eventually many of them
solved. The results obtained by J. Czelakowski, Z. Dywan, W. Dziobak, J. Hawranek,
M. Maduch, G. Malinowski, T. Prucnal, W. Sachwanowicz, R. Suszko, M. Tokarz,
P. Wojtylak, A. Wroński, J. Zygmunt, to mention as least some names have been often
both of crucial importance for the project and of considerable theoretical significance
by themselves. As one may expect, I largely exploited them in my Brazilian lectures.

The book we have planned is still under preparations. It is to consist of two
parts: The Theory of Propositional Calculi – An introduction by the author of this
volume and The Theory of Propositional Calculi – Selected Topics by J. Czelakowski
and W. Dziobak. Clearly this volume covers some of the topics to be discussed in The
Theory of Propositional Calculi, especially in its first part An Introduction but their
exposition differs, often considerably, from that to be found in the book prepared. In
this sense this publication is independent from the planned one.

Although the work on this book was concluded only after my return to Poland, the
substantial part of it have been done during my stay in Brazil sponsored by FAPESP
(Fundacao de Amparo a Pasquisa do Estado de Sao Paulo, Brazil, grant no 80/1188-
8). I benefited a great deal and in various ways from the opportunity to have scientific
context with my Brazilian colleagues and friends. My greatest debt has been to Prof.
Ayda I. Arruda, at that time the Director of Instituto de Matematica e Estatistica
e Ciencia de Computacao, Universidade Estadul de Campinas both for the care she
took for creating me excellent conditions for work and for her keen and penetrating
interest in the ideas I discussed in my lectures. Also I own a special debt to Prof.
Newton C. A. da Costa for his invitation to Instituto de Matematica e Estatistica,
Universidade de Sao Paulo and stimulating discussions we held, and to Prof. Elias
Alves for his introducing me to people from the Logical Center of UNICAMP and his
assisting me on many occasions. The complete list of Brazilian logicians who deserve
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my gratitude would be very large indeed. I hope that they will accept my collective
thanks for everything I own them.

In conclusion I would like to thank to all who help me to prepare the final version

of the manuscript. My special thanks are due to J. Czelakowski, W. Dziobak and

other my collaborators and friends for their valuable criticism and suggestions, to

R.  Ladniak for his undertaking the arduous at of getting the manuscript ready for the

publisher, to Alicja Dȩbska for preparing index, and to Mrs Jadwiga Krasnowska for

her excellent typing of the manuscript.



Chapter 1

Logical Systems

1. Propositional languages

1.1. We shall not discern between propositional (i.e. 0-order) languages and
their algebras of formulas. Thus if S is the set of all formulas (sentences)
formed by means of propositional variables p1, p2, . . . , pi . . . and connec-
tives §1, . . . , §n, the abstract algebra

S = (S, §1, . . . , §n)

will be referred to as the propositional language determined by the symbols
mentioned above. Each §i has > 0 arguments. We assume that at least
one of the connectives is not nullary.

If otherwise is not stated clearly, the number of propositional variables
that a language involves will be assumed to be denumerable. The set of
all variables of the language S will be denoted by V ar(S). More generally,
given any set of formulas X ⊆ S, we define V ar(X) to be the set of all
variables appearing in formulas in X.

1.2. The language determined by the familiar connectives ∧,∨,→,¬ will be
called standard. The standard language will be denoted by L and the set
of all its formulas by L. We shall refer to the formulas of L as standard
formulas.

The formulas of the form (α → β) ∧ (β → α) will be abbreviated as
α ←→ β. This convention will be applied to all languages that involve ∧
and →, L in particular.

1.3. Given any propositional language S and any two formulas α, β of that
language, we assume that they are identical α = β, iff they are formed
by exactly the same elementary symbols, i.e. propositional variables and
connectives, in exactly the same manner. From the algebraic standpoint
it means that propositional language is an abstract algebra free in the
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10 CHAPTER 1. LOGICAL SYSTEMS

class of all algebras similar to it and freely generated by the set of all
propositional variables.

1.4. Let α, β be formulas of S. The formula α is said to be a substitution
instance of β iff α = eβ, for some endomorphism e of S. In what follows
endomorphisms of propositional languages will be, as a rule, referred to
as substitutions.

Observe that given any formula α and any substitution e, eα = e′α,
for all e′ such that ep = e′p for all propositional variables p appearing in
α. (Incidentally, the notion of a propositional variable appearing in α can
be defined in terms of substitutions as follows. A variable p1 appears in
α iff eα 6= α, for any substitution e such that ep = p for all p 6= p1 and
ep1 6= p1).

The following familiar convention will be very useful. Given any formulas
α, β1, . . . , βn, and any propositional variables p1, . . . , pn we define

α(β1/p1, . . . , βn/pn) = eα,

where e is the substitution defined by for all variables p.

Sb(X) will denote the set of all substitution instances of formulas in X.

If Sb(X) = X, i.e. if X is closed under substitutions, the set X will be
called invariant.

2. Logical calculi

2.1. By a logic we shall mean a system of inferences rather than formulas. In
order to define this notion rigorously we need some preparations.

An inference in language S will be defined to be a couple (X, α), such
that X ⊆ S, α ∈ S. Inferences of the form (∅, α) will be called axiomatic.
If X is finite, the inference (X, α) will be said to be finitary.

Instead of (X, α), we shall write X ` (` α, if X = ∅). Under this
convention, X ` α is merely another notation for (X, α), and the symbol
` does not represent any specific relation between X and α. Still, if a par-
ticular propositional logic is defined, we shall discern between inferences
valid and invalid on the ground of that logic. Thus, X ` α can be treated
as a metasentence that reads “there is a logically valid inference from X
to α”. Observe that, if we think about X ` α as a metasentence then,
albeit it can be asserted about any X and any α, it can be truly asserted
only about some X and some α. To define a logic is to define which of
the assertions of the form X ` α are true (valid) and which are not.

2.2. An operation C defined on sets of formulas of S is said to be a consequence
operation (A. Tarski [1930a]) iff it satisfies the following conditions:

(T1) X ⊆ C(X),
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(T2) C(C(X)) ⊆ C(X),

(T3) If X ⊆ Y then C(X) ≡ C(Y ).

2.3. If moreover for all substitutions e,

( LS) eC(X) ⊆ C(eX),

(J.  Loś and R. Suszko [1958]) the consequence will be called structural.

2.4. By a (propositional) logic we shall mean either a couple (S, C), S being a
propositional language and C being a structural consequence on S, or C
itself. In the latter case we shall refer to C as a logic (defined) in S.

2.5. Couples of the form (S, C), C being a consequence on S but not neces-
sarily structural, will be referred to as propositional calculi. Thus each
propositional logic is a propositional calculus but not vice versa.

2.6. If α ∈ C(X), the inference X ` α will be referred to as valid in C, or just
as an inference of C.

The set of all inferences valid in C will be denoted by `C . Of course, we
shall write X `C α rather than X ` α ∈ `C . When viewed as a relation,
`C will be called the consequence relation corresponding to C.

2.7. If α ∈ C(∅), ` α will be called a theorem of C.

Observe that if C is structural, both the set inferences of C and that of
theorems of C are closed under substitutions, i.e.

a. C(∅) = Sb(C(∅)),
b. X `C α implies eX `C eα, for all substitutions e.

If C(α) = S, S being the set of all formulas of the language of C, the
formula α is said to be inconsistent (or else consistent) with respect to
C, C-inconsistent (C-consistent), for short. Similarly, if for some set of
formulas X, C(X) = S, the set X is called C-inconsistent. Observe that,
in general, a C-inconsistent set X need not involve any C-inconsistent
formula. Note also that C-inconsistency need not be a property preserved
under substitutions; e may happen to be consistent with respect to C even
if α is not.

If for each X

(C) C(X) = S implies C(Xf ) = C, for some finite Xf ⊆ X,

the consequenceC is called l-compact.

2.8. If C satisfies the following condition:

(F) If α ∈ C(X) then α ∈ C(Xf ) for some finite Xf ⊆ X,
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the consequence C is called finitary.

The consequences that are both structural and finitary are called stan-
dard. In general, standard consequences need not be l-compact.

2.9. Note. Conditions (T1)–(T3) do not exhaust the full list of axioms for
consequence operation set by A. Tarski in [1930a] (see also [1935a]). In
particular, we have not demanded the set of all formulas on which the con-
sequence C is defined to be denumerable. The postulate of denumerability
was dropped out already by J.  Loś [1953]. Though the languages with de-
numerably many formulas are of special importance, nonadenumerable
languages are quite legitimate objects of investigations.

Apart from (T1)–(T3) and the denumerability of the language, Tarski
postulated each consequence to be finitary (i.e. to satisfy condition (F))
and l-compact. As a matter of fact, he required even more than l-compactness,
since he postulated that

(CT) C(X) = S implies that C(α) = S, for some α ∈ X.

The set conditions we have selected to define the notion of consequence
coincides with that accepted by J.  Loś and R. Suszko [1958].

Some logicians prefer to study consequence relation rather than con-
sequence operation. Of course, as the consequence relation is viewed as
a relation is viewed as a relation between a set of formulas and a single
formula each consequence relation defines a consequence operation and
vice versa. Following G. Gentzen [1934–5] one can view the consequence
relation as a binary relation between sets of formulas. But then corre-
spondence between consequence relations and consequence operations is
no longer one to one. Here we shall not dwell on this issue, for details see
D. Scott, 1974.

2.10. Two methods of defining a logic (in a given language S) are of special
importance: semantic that consists in postulating certain truth condition
for the formulas of S and syntactical that consists in postulating logical
validity of some selected inferences.

From the technical standpoint, to define truth-conditions for S amounts
to define a set H of functions v : S → S{0, 1} called admissible valuations
for S. If v(α) = 1, for all α ∈ X, we interpret X as a set of such formulas
of S that are simultanously true under the truth conditions imposed on
the language.

We trust the reader to verify that the operation CnH defined by

(∗) α ∈ CnH(X) iff for all v ∈ H, v(α) = 1

whenever v(β) = 1, for all β ∈ X

is a consequence operation. It will be referred to as the consequence pre-
serving truth (under the set of admissible valuations H).



13

In general CnH need not be a logic, i.e. a structural consequence.
Roughly speaking, in order for CnH to be a logic, the truth conditions
that define H should be “structural” in the sense that they refer only
to the “logical structure” of sentences defined by the occurrences of log-
ical connectives, not to their “content”, the latter being represented by
propositional variables the sentences involve. Incidentally, the notion of
a structural consequence (cf. 2.3) is meant to explicate this very idea of
structurality. The conditions under which CnH is structural are stated in
rigorous terms in Section 16.

The way in which the syntactical methods works is even simpler. To
each set Σ of inferences if S, there correspond a consequence ClΣ, being
the weakest consequence among all consequences relative to which all in-
ferences in Σ are valid. (For the definition of a consequence weaker than
another one, and proof that for each Σ, there is a ClΣ see Section 4).

2.11 Classical two-valued propositional logic, denoted throughout this book as
K, may serve as a typical example of a logic defined semanticly. The set
of admissible valuations for (the language of) K is the set of truth-value
assignment defined by the familiar two-valued truth tables. Of course,
syntactical definition of K are available. However, both from the historical
and intuitive standpoint, the definition of K in terms of truth-tables is a
standard one, i.e. any adequate definition of K should be equivalent to it.

Intuitionistic propositional logic will be denoted by J . It provides an
example of a logic that was originally (A. Heyting [1930], [1930a]) defined
synactically with the help of Modus Ponens (i.e. the set of all inferences
of the form α, α → β ` β, cf. 11.5) and suitably selected axiomatic
inferences.

2.12. Needless to say that the definition of the set of inferences that are to
determine a logic may by given in semantic terms, while the set H of
admissible valuations may be defined in purely syntactical terms. If this
were the case, the methods that was called syntactical should be called
semantic and vice versa. We just have assumed that the definition of
H involves in an essential way the notion of truth, while no semantic
considerations intervene explicitly in the definition of Σ.

Still, one must agree that the difference between syntax and semantics
is much more of philosophical than technical nature. Note, for instance,
that the analyzes carried out in terms of truth can be carried out in terms
of theories; the admissible valuations need not be interpreted as functions
that assign truth-values to sentences but as characteristic functions of
certain theories (call them for instance “admissible”). The quest for truth,
that seems to be the cornerstone of any scientific activity, can be replaced
by the quest for a “good” theories. This seems to be the gist of program
put forward by R. K. Meyer, 1978, who launched attack on Tarskian
concept of truth, with an attempt to show that Tarskian style semantics
may have workable alternatives based just on the notion of a theory.
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We should mention that apart that from syntactical or semantic in-
terpretation, the logical validity may be viewed as a pragmatical notion,
defined in terms of rationality of behavior; the inference X ` α is logically
valid if one who accepts all sentences in X must accept α unless be behaves
irrationally. An illustration of how this idea can be conveyed in rigorous
technical terms, provides pragmatical interpretation of  Lukasiewicz Logic
given by R. Giles [1974].

3. Closure bases

3.1. In general, by a theory we shall mean a set of formulas. But, given a
consequence C, by a theory of C we shall mean a theory X closed under
C, X = C(X). The theory S will be referred to as the trivial theory
of C. It was A. Tarski ([1930], [1930a], [1935a]) who started systematic
investigations into properties of theories of propositional calculi or, as he
called them, deductive systems.

The set of all theories of C will be denoted by ThC .

3.2. Verify that:

a. For each consequence C, ThC is a closure system (i.e. for each X ⊆
ThC ,

⋂
X ∈ ThC), C(∅) and S being the least and the largest element

of it, and hence it is a complete lattice.
b. For each closure system X on S, there exists a consequence C such

that ThC = X.

3.3. Let X = 2S . We say that X is a closure base for a consequence C iff for
each X, C(X) =

⋂
{Y ∈ X : X ⊆ Y }. Observe that

a. If all Xt, t ∈ T , are closure bases for C, so is
⋂

Xt

b. ThC is the largest closure base for C.

In general, C need not have the smallest closure base. We shall turn
back to this point later, cf. Section 22.

3.4. Lemma. (R. Suszko) The following conditions are equivalent:

(i) C is structural.
(ii) ThC is closed under counterimages of substitutions, i.e. for each

X ∈ ThC , and for each substitution e, ~eX = {α : eα ∈ X} ∈ ThC .
(iii) There is a closure base X for C closed under counterimages of sub-

stitutions.

Proof. (i)→(ii). Assume that C is structural, X = C(X), and e is
a substitution. We have to show that C(~eX) ⊆ ~e(X) (by 2.2.(T1) the
converse is valid for all X). Observe that we have

eC(~eX) ⊆ C(e~eX) ⊆ C(X) = X,
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which yields C(~eX) ⊆ ~eX, as desired.

(ii)→(iii). Obvious.

(iii)→(ii). Let X =
⋂

Y, for some Y ⊆ X. Let e be a substitution. We
have to show that there exists a Y′ ⊆ X such that ~eX =

⋂
Y′. Verify that

Y′ = {~eY : Y ∈ Y} has the desired property.

(ii)→(i). Of course eX ⊆ C(eX). Consequently, X ⊆ ~eC(eX), and
C(X) ⊆ C(~eC(eX)). But, by (ii) C(~eC(eX)) = ~eC(eX), and we arrive at
C(X) ⊆ ~eC(eX), which yields  Loś-Suszko’s condition eC(X) ⊆ C(eX).�

The lemma, we have just proved, will turn out to be very useful; we
shall exploit it on many occasions.

4. Consequence operations from a complete
lattice

4.1. Given any propositional language S, the consequence operations in S are
ordered as to their “strength”: we say that C1 is weaker than C2 (or,
alternatively, C2 is stronger than C1) iff C1(X) ⊆ C2(X), for all X.

The ordering relation will be denoted by 6, and its proper part by <.

4.2. Verify that the following conditions are equivalent:

a. C1 6 C2,

b. ThC2 ⊆ ThC1 ,

c. `C1 ⊆ `C2 .

4.3. Lemma. For each set Q of consequences in S, the consequence CQ defined
by

(1) CQ(X) =
⋂
{C(X) : C ∈ Q},

is the greatest lower bound of Q, inf Q.

Proof. Apply 4.2b. �

Now, observe that the operation S on sets of formulas defined by

(2) S(X) = S

is the strongest consequence in S. S will be referred to as the inconsistent
(or trivial) consequence in, S all the others will be called consistent, or
non-trivial.

As a corollary to what has been said above we have
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4.4. Theorem. Let C be the set of all consequences in S. Then (C,6) is a
complete lattice. �

(The fact that closure operations from a complete lattice is well known, see
e.g. P. M. Cohn, 1965. Consequence operations are just closure operators
defined on algebras of a special kind, cf. 1.3)

4.5. The weakest consequence in S will be denoted by Id, and called the idle
consequence in S. Id is defined by

Id(X) = X.

4.6. Lemma. Let Q be a set of consequences in S. Then

Thsup Q =
⋂
{ThC : C ∈ Q}.

Proof. The intersection of any set of closure systems is easily seen to be
a closure system. Hence,

⋂
{ThC : C ∈ Q} is a closure system. Denote the

consequence it determines, cf. 3.2b, as CQ. Since
⋂
{ThC : C ∈ Q} ⊆ Thc,

for all C ∈ Q, then C 6 CQ for all C ∈ Q. Suppose that C 6 C ′ for all
C ∈ Q. Then ThC′ ⊆ ThC for all C ∈ Q, and thus

ThC′ ⊆
⋂
{ThC : C ∈ Q},

and we conclude that CQ = sup Q. �

4.7. Theorem. Let C0 be a set of all structural consequences in S. Then
(C0,6) is a complete sublattice of the lattice of all consequences in S.

Proof. Let Q be a set of structural consequences. If all C ∈ Q are
structural, so is inf Q. Let us show this. We have, cf. 4.3, inf Q = CQ.
Now, eCQ(X) = e

⋂
{C(X) : C ∈ Q} ⊆

⋂
{eC(X) : C ∈ Q} ⊆

⋂
{C(eX) :

C ∈ Q} = CQ(eX), as desired.

In view of 3.4, in order to show that sup Q is structural it suffices to
show that Thsup Q is closed under counterimages of endomorphisms. Let
X be a theory of sup Q. Then, by 4.6, X is a theory of all C ∈ Q. They
are structural and hence, by 3.4, for all substitutions e, ~eX is a theory of
all C ∈ Q. But then, by 4.6, ~eX is a theory of sup Q. �

5. A bit more about the lattice of structural con-
sequence

5.1. Lemma. Let Q be a set of standard consequences defined in a language
S. Then for each α and each X, α ∈ sup Q(X) iff there is a finite sequence
Ci1 , . . . , Cin

of consequences from Q such that

α ∈ Ci1(Ci2 . . . (Cin
(X)) . . .).

Proof. Straightforward. �
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5.2. Lemma. Denote by Cf
0 the set of all standard consequences in S.

(i) For each finite Q ⊆ Cf
0 , inf Q ∈ Cf

0 ,

(ii) For each Q ⊆ Cf
0 , sup Q ∈ Cf

0 ,

(iii) For some Q ⊆ Cf
0 , inf Q /∈ Cf

0 .

Proof (i). Apply lemma 4.3 to prove that inf Q is finitary whenever
Q is a finite set of finitary consequences. If moreover the consequences in
Q are structural then, by 4.7, inf Q is structural, and hence standard.

(ii) – by lemma 5.1.

(iii) – select any connective § of S. For each n ∈ ω, define

Cn(X) =

{
X, if no formula in X involves more than n occurrences of §,
S, otherwise.

Let α0, α1, . . . be a sequence of formulas of S such that each αi involves
exactly i occurrences of §. Let C = inf{Cn : n ∈ ω}. Verify that all Cn

are standard and hence, by 4.7, C is structural. Apply 4.3 to show that
C({αn : n ∈ ω}) = S, and C(Xf ) = Xf for any finite Xf ⊆ {αn : n ∈ ω}.
Select any formula β such that β = αi for no i ∈ ω. Then β ∈ C({αn :
n ∈ ω}), but β /∈ C(Xf ) for no finite Xf ⊆ {αn : n ∈ ω}. Hence C is not
standard. �

5.3. Denote by 6f the relation on consequences in S defined by

(f1) C1 6f C2 iff for all finite X, C1(X) ⊆ C2(X).

Define also

(f2) C1 =f C2 iff both C1 6f C2 and C2 6f C1.

Of course, C1 =f C2 reads: C1 and C2 coincide on finite sets of formulas.
Note that

a. 6f is a quasi-ordering relation.

b. The restriction of 6f to any set Q of finitary consequence is an or-
dering relation on Q. In particular, 6f is an ordering in the set of
standard consequences.

c. If C1 is finitary, then C1 6f C2 iff C1 6 C2.

5.4. Theorem. Let C, C0, and Cf
0 be as already defined (cf. 4.4, 4.7, and

5.2). Then

(i) (Cf
0 ,6f ) is a sublattice of the lattice (C0,6)

and hence
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(ii) (Cf
0 ,6f ) is a sublattice of the lattice (C,6).

Moreover

(iii) Cf
0 ,6f ) is a complete lattice, though it is a complete sublattice of

neither (C0,6) nor of (C,6).

Proof. (i) is an immediate corollary to lemma 5.2, and (ii) follows
from (i). From 5.2 (iii) it follows that (Cf

0 ,6f ) is not a complete sublattice
of any of the lattices mentioned of condition (iii) of 5.4. Still, in view of
5.2 (ii) (Cf

0 ,6f ) is a complete lattice; given any Q ⊆ Cf
0 , sup Q in the

lattice (C,6) and that in (C,6f ) coincide, now define Cf by

Cf (X) =
⋂
{
⋃
{C(Xf ) : Xf is a finite subset of X} : C ∈ Q},

then Cf = inf Q in (Cf
0 ,6f ).

5.5. An element a of a lattice (A,6) is said to be an atom of the lattice iff the
following conditions are satisfied:

(i) The lattice (A,6) contains a least element; we shall denote it by 0A.

(ii) 0A < a, and

(iii) There is no b ∈ A, such that 0A < b < a.

Similarly if

(j) There is a greatest element in (A,6); we shall denote it by 1A,

(jj) a < 1A, and

(jjj) There is no b ∈ A such that a < b < 1A,

then a will be called a coatom of (A,6).

5.6. Let C be a structural consequence. Then, by [C)0 we shall denote the filter
in (Co,6) generated by C, C0 being the set of all structural consequences
in the language of C. Similarly if C is standard by [C)f

0 we shall denote
the filter in (Cf

0 ,6f ) generated by C; Cf
0 being the set of all standard

consequences in the language of C.

Of course, [C)0 is the set of all logics stronger than C, and [C)f
0 is the

set of all standard logics stronger than C, and, of course, both ([C)0,6)
and ([C)f

0 ,6f ) are lattices. Moreover, the former is a complete sublattice
of the lattice (C0,6) and the latter a complete sublattice of the lattice
(Cf

0 ,6f ).

In the logical terminology the atoms of ([C)0,6), if any, are called
direct (structural) successors of C and the coatoms of that lattice, if any,
are called structural maximalizations of C. The atoms of ([C)f

0 ,6f ), if
any, are called direct standard successors of C, and the coatoms of that
lattice, if any, are called standard maximalizations of C.
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A lattice (A,6) is said to be atomic (coatomic) iff for each a ∈ A there
is an atom (coatom) b ∈ A such that b 6 a, unless a = 0A (a 6 b, unless
a = 1A). We conjecture that

a. A lattice of the form ([C)0,6) need be neither atomic nor coatomic.
What is more,

b. ([C)0,6) need have neither atoms nor coatoms.

The following example may be useful in dealing with the problem raised.
Let S be a language that involves two unitary connectives ♦, �. Abbrevi-
ate �� . . .�α as �iα where i is the number of � preceding α. Define C0

to be the weakest structural consequence of all structural consequences C
that satisfy the following conditions:

(1) C(♦α) = S, for all α

(2) C({�i♦α : i > 1}) = S, for all α

(3) �i♦α ∈ C(∅), for all i > 1 and all α such that the cardinality of the
set of all subformulas of α > i.

(The notion of a subformula of a formula α is obvious. If a rigorous
definition is desired the following will do β is a subformula of α iff there
is a formula γ and a variable p such that α = γ(β/p).)

We shall show that there is no maximalization of C0 in the set of structural
consequences. Assume the contrary. Let C0 6 C ′ and let C ′ be a maximal
structural consequence. In view of condition (2) there must exist p such
that �i♦p /∈ C ′(∅), for some i, for otherwise C ′(∅) = S. Assume that
�n♦p /∈ C ′(∅) and consider the set Sb(�n♦p). If C ′(Sb(�n♦p)) 6= S then
C ′ is strictly weaker than c′′ defined by the condition

C ′′(X) = C ′(X ∪ Sb(�n♦p)),

for �n♦p ∈ C ′′(∅). On the other hand C ′′(Sb(�n♦p)) = C ′(Sb(�n♦p))
6= S, hence C ′′ is not trivial. It would follow that C ′ is not maximal,
contrary to the assumption we made. Hence C ′(Sb(�n♦p)) = S, which
implies that

♦q ∈ C ′(Sb(�n♦p))

Let e be the substitution defined by the condition er = ♦nr, for each
propositional variable r. Clearly we have

e♦q = ♦n+1q ∈ C ′(e Sb(�n♦p))

But, in view of condition (3) imposed on C0 and in view of the fact that
C0 6 C ′, we have

e Sb�n♦p ∈ C ′(∅).
Hence ♦n+1q ∈ C ′(∅) which, by condition (1), yields that C ′ is incon-
sistent. Being trivial, C ′ is not maximal contrary to the assumption we
made.
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The argument we have presented shows that the consequence C0 defined
above admits no structural maximilization, thus the lattice ([C)0,6) has
no coatoms.

5.7. Theorem. For each standard C, the lattice ([C)f
0 ,6f ) is coatomic, i.e.

for each standard C there is a standard maximization of C.

Proof. Observe that a structural consequence C ′ is trivial iff p ∈ C ′(∅).
Indeed, if C ′ is a structural then p ∈ C ′(∅) implies ep ∈ C ′(∅) for all
substitutions e, and thus S ⊆ C ′(∅). Let C be a standard consistent logic.
Consider any chain ζ ⊆ [C)f

0 of consistent logic. By lemma 5.2 (ii) sup ζ ∈
[C)f

0 . Now p /∈ sup ζ(∅), for p /∈ C ′(∅) for any C ′ ∈ ζ. Indeed, suppose
that p ∈ sup ζ(∅), then by lemma 5.1, p ∈ Ci1(Ci2 . . . (Cin

(∅) . . .) for some
Ci1 , . . . , Cin ∈ ζ. Since ζ is a chain there is a strongest consequence among
Ci1 , . . . , Cin . Let it be Cik

. Then p ∈ Cik
(∅), contrary to the assumption

that Cik
is consistent.

Since, as we have shown, sup ζ is both standard and consistent, each
chain ζ of consistent logics in [C)f

0 has an upper bound. Hence, by Zorn’s
lemma, the set of all consistent logics in [C)f

0 contains some maximal ele-
ments. Of course, any such element is a standard maximalization of C, and
thus a coatom of ([C)f

0 ,6f ). Moreover, the lattice ([C)f
0 ,6f ) is coatomic,

since for each C ′ ∈ [C)f
0 , the maximalization of C ′ is a maximalization

of C.

5.8. A logic that is maximal in the lattice ([C)f
0 ,6f ), i.e. a standard maxi-

malization of C need not be maximal in ([C)0,6). This remark is quite
obvious, still it is not easy to produce a simple example that would prove
it. Anyway, the one given below is rather involved.

Let ♦, � be connectives of S. Define:

T1 = {♦k�m♦nα : k > 0,m > 1, n > k, α ∈ S},
T2 = {♦�mα : m > 0, α ∈ S},
T = T1 ∪ T2,

N = {♦k�m♦n�lα : k > n > 1, m, l > 1, α ∈ S}.

In turn, define two consequences C and C+ in S by

(C) α ∈ C(X) if and only if there is a finite subset Y ⊆ X such that for
each substitution e, if eY ⊆ T then also eα ∈ T .

(C+) α ∈ C+(X) if and only if there is a finite or infinite subset Y ⊆ X
such that for each substitution e, if eY ⊆ T then also eα ∈ T .

We shall leave to the reader the proof of the following:

(i) Both T and N are invariant sets.

(ii) C is a standard consequence.
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(iii) C+ is a structural consequence.

(iv) Both C and C+ are consistent.

(v) If α /∈ T then for some substitution e, eα ∈ N .

(vi) If α ∈ N then C(α) = S.

(vii) T ⊆ C(∅).
(viii) C 6 C+.

Suppose that C ′ is a standard consequence strictly stronger than C,
then for some X and α, α /∈ C(X) though α ∈ C ′(X). We may assume
that X is finite and for some substitution e, eX ⊆ T and eα /∈ T . By (v)
the latter gives e′eα ∈ N , for some substitution e′. At the same time, by
(i) we know that e′eX ⊆ T . This by (vii) yields C(e′eX) ⊆ C(∅) ⊆ C ′(∅).
By structurality of C ′ we have e′eα ∈ C ′(e′eX) ⊆ C ′(∅) and this, by the
assumption of the proof and (vi), gives C ′(∅) = S, i.e. c′ is inconsistent.
This proves that C is maximal in the lattice [C)f

0 .

It is easily seen that q ∈ C+(♦p, ♦♦p, . . .), where p and q are variables,
though q /∈ C(♦p, ♦♦p, . . .). Thus C+ is strictly stronger than C.

5.9. Note. The results in this section are based mainly on R. Wójcicki [1971].
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Chapter 2

Are Logics Determined by
Logical Theorems?

6. Structural completeness

6.1. The term ‘logic’ is very often applied in the sense of logical theory or
system of logical theorems. Under the terminology to which we subscribe
here, to define a logic in the sense above amounts to define the set C(∅),
where C is a logic.

It is quite obvious that C(∅) does not determine C uniquely, except for
the case when C(∅) = S, S being the set of all formulas of the language of
C. This remark is true, however, if C is meant to be any structural conse-
quence, whatsoever. But, of course, if one imposes on C some additional
postulates it may turn out that, at least in some cases, the correspondence
between C and C(∅) is one-to-one.

6.2. Suppose that, given any system of logical theorems L, by the logic properly
corresponding to L one means the strongest logic that preserves logical
truth, i.e. the strongest logic in the set of all logics C such that C(L) = L.
It is a matter of proof to show that such a logic always exists.

6.3. Theorem. Given any set of formulas L ⊆ S, let QL be the set of all
structural consequences in S such that C(L) = L. Let CL = sup QL.
then

a. CL(L) = L. Moreover,

b. If L is invariant then CL(∅) = L.

Proof. Observe that QL is not empty since it involves at least the idle
consequence Id, i.e. the consequence defined by Id(X) = X. Of course,
Id is structural.

23
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Since all consequences in QL are structural then, by 4.7, sup QL = CL

is structural. Now, by lemma 4.6, we have

CL(L) =
⋂
{X : L ⊆ X and C(X) = X, for all C ∈ QL}

Hence, CL(L) = L, and this concludes the proof of part a. of theorem.

In order to establish b. verify that if L is invariant, then the operation
C∗

L defined by
C∗

L(X)− CL(X ∪ L)

is a structural consequence. By the definition CL 6 C∗
L. On the other

hand C∗
L(L) = L and hence C∗

L 6 CL. Thus the two consequences coin-
cide, and since CL(∅) = L, we obtain CL(∅) = L, we obtain CL(∅) = L.
�

6.4. Call a logic C structurally complete with respect to X iff C(X) = X and
C is the strongest logic with that property.

A logic is said to be structurally complete iff it is structurally complete
with respect to C(∅).

6.5. The trouble with the solution suggested in 6.2 is that we expect the logic
to allows us to derive not only logically true conclusions from logically
true premisses but also true conclusions from true premisses. In view of
6.3 and 6.4 the strongest logic preserves L (L being an invariant set of
all logically true sentences) is just the structurally complete logic C such
that C(∅) = L. Now, as we shall argue in Section 9, if a logic preserves
truth, most likely, it is not structurally complete.

Before we examine the notion of structural completeness closer let us
define some auxiliary notions of substantial methodological significance.

7. Rules of inference and inferential bases

7.1. A rule of inference can be viewed as a set of instructions of the form

(r) From X infer α,

or equivalently, from the formal point of view, as a set of inferences X ` α.
Of course, in all formal considerations the purely set-theoretical definition
is preferable to the pragmatical one.

Write r(X, α), when X ` α is an instance of the rule r, i.e. X ` α ∈ r.
If all instances of r are finitary, the rule will be called finitary, if all them
are axiomatic the rule will be called axiomatic.

7.2. A rule r that is closed under substitutions, i.e. r(X, α) implies that
r(eX, eα), for all substitutions e, is called structural. By

(s) X/α
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we shall denote the rule that consist of all substitution instances of the
inference X ` α, i.e. X/α = {eX ` e : e is a substitution}. The rules of
the form (s) will be called sequential. Of course, all sequential rules are
structural. Furthermore, each structural rule is the set-theoretic union of
some sequential rules.

A rule that both structural and finitary will be referred to as standard.

7.3. A rule r will be said to preserve X, and X will be said to be closed under
r, iff for all X ′ and all α, if X ′ ⊆ X and r(X ′, α) then α ∈ X.

7.4. Given a consequence C we shall say that a rule r is valid with respect to
C or, equivalently, r is a rule of C iff for all X and all α, r(X, α) implies
that α ∈ C(X).

Verify that r is a rule of C iff r preserve all theories of C. In general a
rule that preserves C(∅) need not be a rule of C.

7.5. It is rather obvious, anyway one can prove it easily, that each consequence
operation is uniquely determined by its rules of inference. More rigorously,
the following holds true. Let C1, C2 be consequence operations, then

a. C1 = C2 iff the set of all rules of C1 coincides with that of C2.

Verify also that:

b. If C1, C2 are structural then C1 = C2 iff the set of all structural rules
of C1 coincides with that of C2.

c. If C1, C2 are finitary then C! = C2 iff the set of all finitary rules of
C1 coincides with that of C2.

d. If C1, C2 are standard then C1 = C2 iff the set of all standard rules
of C1 coincides with that of C2.

7.6. Let Q be a set of rules of inference. The weakest consequence in the set of
all consequence C such that all rules in Q are rules of C will be denoted
as ClQ and referred to as determined by Q. At the same time Q will be
referred to as an inferential base for ClQ.

Let A be a set of formulas and Q a set of rules. A consequence C will
be said to be determined by (A,Q) iff C is determined by Q∪{rA}, where
rA is the axiomatic rule defined by

rA = {` α : α ∈ A}.

In what follows (A,Q) will be treated merely as another notation for
Q ∪ {rA}, and thus couples of the form (A,Q) will be called inferential
bases (for the consequences they determine) on a part with inferential
bases in the proper sense of word. The formulas in A will be referred to
as the axioms of the inferential base (A,Q).



26 CHAPTER 2. ARE LOGICS DETERMINED BY. . .

7.7. Given any consequence C and any set of rules Q, we shall say that C ′ is
the strengthening of C by means of Q, and we shall denote C ′ as C(+Q),
iff C ′ is the consequence determined by the set of rules of C enlarged by
the rules in Q. If C 6 C ′ and there is a set of formulas A such that
C(A ∪ X) = C ′(X), for all X, C ′ will be referred to as an axiomatic
strengthening of C (by means of the set of axioms A), and will be denoted
by C(+A).

Verify that the strengthening of C by A coincides with the strengthening
of C by means of the rule rA defined as in 7.6.

A straightforward but very useful is the following

7.8. Theorem. Let Qt, t ∈ T be consequence operations and for each t,
let Qt be an inferential base for Ct. Let C = sup {Ct : t ∈ T}. Then
Q =

⋃
{Qt : t ∈ T} is an inferential base for C. �

8. More on structural completeness

8.0. Denote by KH the logic defined in the {→,¬}-fragment
(L � {→,¬}) of L by an inferential base defined by the following schemata:

(H1) ` ¬(α→ β)→ α

(H2) ` ¬(α→ β)→ ¬β

(H3) α→ β, β → γ ` α→ γ

(H4) α→ (β → γ), α→ β ` α→ γ

(H5) ¬α→ β, ¬α→ ¬β ` α

With the help of truth tables one verifies quite easily that both the
axioms and rules of the base are classically valid (valid in K). Thus KH

is weaker than K. (Since in the classical logic ∧ and ∨ are definable in
terms of → and ¬, we may apply the same symbol to denote the classical
logic defined in L and that defined on the reduct L � {→,¬}).

The logic KH was defined by H. Hiż [1957], who also proved that it has
the following “strange” properties:

(a) KH(∅) = K(∅),
(b) Modus Ponens (p, p→ q/q) is not a rule of KH , and hence

(c) KH < K.

What exactly is so strange about this result? R. Suszko [1961] p.204
quotes the following remark made by H. Hiż in a conversation “the opinion,
sometimes expressed, that a complete system of tautologies constitutes an
adequate characterization of valid inferences of the sentential kind is shown
to be unjustified”.
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Indeed, it is often believed that logical inferences are determined by
logical theorems. This to some extent explains why logicians are so often
preoccupied with certain systems of logical theorems paying little attention
to logically valid rules of inference.

But perhaps a logically valid rule of inferences is just a structural
rule that preserves the set of logical theorems? Unfortunately this idea
brings us back to the condition of structural completeness we have already
discussed.

8.1. Theorem. A logic C is structurally complete iff each structural rule that
preserves C(∅) is a rule of C.

Proof. Assume that C is structurally complete and assume that r
preserves C(∅). Then Clr(C(∅)) = C(∅). Hence Clr 6 C. This implies
that each inference of Clr is an inference of C, and consequently r is a
rule of C.

Now suppose that C is not structurally complete. Let C ′ be a structural
consequence operation such that C(∅) = C ′(∅) and C < C ′. Of course
all structural rules of C are rules of C ′, but not vice versa. Let r be a
structural rule characteristic of C ′ i.e. such that it is not a rule of C.
Since C ′(∅) = C(∅), r preserves C(∅). �

8.2. As a matter of fact it is just Theorem 8.2 that usually serves as a definition
of structural completeness. Then the definition given in 6.4 becomes a
theorem (cf. R. Wójcicki [1973]; D. Makinson [1976]).

The notion of structural completeness was introduced to the theory of
propositional calculi by W. A. Pogorzelski [1971]. He was also the first to
start systematic investigations of this property. It should by mentioned
that the original definition of structural completeness was not equivalent
to the one given here. A logic C was defined by W. A. Pogorzelski to be
structurally complete iff all standard (thus both structural and finitary,
not merely structural) rules that preserve C(∅) were rules of C.

It should also be noted that the notion of structural completeness need to
be restricted to logics only, and can be applied to all propositional calculi
(cf. W. A. Pogorzelski [1971]). In order to obtain such a general definition
just replace the word ‘logic’ in 8.2 by ‘consequence’. In connection with
the last remark let us notice that some logics become structurally complete
when strengthened by the substitution rule (from α infer all substitution
instances of α). If C is the original logic, denote the strengthening by
C̄. The consequences of the form C̄ are sometimes called quasi-structural.
In general they are not structural. In each language S there are only
two consequences which are structural and quasi-structural at the same
time. These are the inconsistent consequence S (cf. 4.3) and the almost-
inconsistent consequence S∅ defined by S∅(∅) = ∅ and S∅(X) = S, for all
non-empty X.  Lukasiewicz logics may serve as an example of logics that
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become structurally complete when transformed to quasi-structural form,
cf. M. Tokarz [1972].

8.3. A consistent logic C such that no consistent logic is properly stronger than
C is referred to as maximal (i.e. a logic is maximal iff it is maximal in the
set of all non-trivial logics of a given language).

8.4. A consistent logic C such that no logic that is an axiomatic strengthening
of C, but C itself, is consistent is referred to as Post-complete.

From the two definitions given above it follows almost immediately:

8.5. Theorem. A consistent logic is maximal iff it is both structurally com-
plete and Post-complete. �

(A paper by M. Tokarz [1973] is a useful survey of various notions of
completeness.)

8.6. Classical two-valued propositional logic is an obvious example of a logic
that is maximal and thus structurally complete.

In a outline, this can be shown as follows. The semantic interpretation
for K is provided by well-known two-valued truth tables. If α /∈ K(X)
then one may assign truth-values to variables in X and α so that all β in
X become true (take the value 1) and α becomes false (takes the value 0).
Now substitute p → p, for each variable q to which 1 was assigned, and
substitute ¬(p → p), for each variable q′ to which 0 was assigned. Let e
be the substitution we have defined. Then eX ⊆ K(∅) and K(eα) = L
(the logic K is assumed to be defined in the standard language L).

In order to gave the logic stronger than K we must strengthen K by
a structural rule that is not a rule of K, i.e. it must involve an inference
X ` α such that α /∈ K(X). But the argument we presented shows that
such a strengthening must be inconsistent (and thus K+X/α-inconsistent
as well); a K-inconsistent sentence eα would be derivable from K(∅). Thus
K is maximal.

Of course, there are logics other than K that are structurally complete
(cf. e.g. T. Prucnal [1973], [1975], [1976]; M. Tokarz [1972]), not to men-
tion that each logic can be transformed to be structurally complete. Still,
which is hardly surprising, not too many logics of established significance
are structurally complete.

9. Some examples

9.1. Example 1.  Lukasiewicz many-valued logics. Two-valued truth-tables
for K are extend to n-valued by adding 1

n−1 , . . . , n−2
n−1 as intermediate

truth values. ω-valued truth tables involve all fractions of the form k
n ,

0 6 k 6 n, i.e. all rational numbers in the interval [0, 1]. The operations
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corresponding to ∧,∨,→,¬ defined by the truth tables can be numerically
defined as follows:

( L∧) x ∧ y = min(x, y),

( L∨) x ∨ y = max(x, y),

( L→) x→ y = min(1, 1− x + y),

( L¬) ¬x = 1− x.

The customary definition of n-valued (ω-valued)  Lukasiewicz logic as
the set of all formulas that have the value 1 under all value assignments
in n-valued (ω-valued) truth-tables is not very useful for us. But before
we suggest a definition of a  Lukasiewicz logic in the inferential sense let
us define the truth-table interpretation in a bit more rigorous way.

Denote by Ln the set {0, 1
n−1 , . . . , n−2

n−1 , 1}, and by Lω the union of all
Ln, n > 2. Apply the same symbols to denote the algebras

(∗) Lη = (Lη,∧,∨,→,¬), η = 2, 3, . . . , ω

where the operations ∧,∨,→,¬ are defined by  Lukasiewicz truth-tables.
 Lukasiewicz truth-table algebras we have just defined coincide wits the logi-
cal matrices for many-valued logics defined in J.  Lukasiewicz and A. Tarski
[1930].

Observe that the functions that are usually referred to as truth-value
assignments in  Lukasiewicz η-valued truth-tables are just homomorphism
from L into Lη. From now on, they will be referred to as valuations in
Lη.

Following  Lukasiewicz we interpret 1 as “true”. In fact, valuations in
Lη were intended to represent all “admissible” truth-value assignments,
i.e. all truth-value assignments that conform to the intended meaning of
the connectives of L, under the assumption that η-valued logic is the one
that is accepted. Though they are not exactly the same as admissible
valuations in the sense of 2.10 (except from η = 2, they have more than
two values), it is clear what is to be meant by  Lukasiewicz η-valued truth
preserving logic,  Lη.

Verify that the operation  L defined by:

α ∈  Lη(X) iff for each valuation α in Lη,

λα = 1 whenever λβ = 1 for all β ∈ X,

is (a) the strongest truth preserving consequence under valuations in Lη,
and (b) it is structural.

Furthermore, verify that

(c)  L2 = K.
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As we shall see later (cf. 13.6), the term “ Lukasiewicz η-valued logic”
admits more interpretations than the one we have defined. Incidentally,
what is often means to be  Lukasiewicz η-valued logic in inferential sense is
the logic defined by Modus Ponens and the set of all inferences of the form
` α, where λ(α) = 1, for all valuations λ in Lη, i.e. by Modus Ponens and
the content ζ(Lη) of Lη defined by

ζ(Lη) = {` α : λ(α)− 1, for all valuations λ in Lη).

This seems to be an ad hoc way of defining  Lukasiewicz logic, still it turns
out (R. Wójcicki, 1976) that, except from η = ω, the logics defined in the
way described, coincide with  Lukasiewicz truth-preserving logic  Lη.

Now we are in a position to examine whether  Lukasiewicz logics (read
 Lukasiewicz truth-preserving logics) are structurally complete. Observe
that for no  Lukasiewicz logic  Lη, η > 3, that involves 1

2 as a truth value
( L3,  L5, . . . ,  Lη) the following rule

(p ∨ ¬p)→ (p ∧ ¬p)/q

is truth preserving. To see this assigne 1
2 to p and 0 to q. With the help

of R. McNaughton [1951] theorem concerning definability in  Lukasiewicz
matrices, one may prove that there is no formula α such that the truth
value of α is 1

2 , under all truth assignments in n-valued matrices, n =
2, 3, . . .. Since (p ∨ ¬p)→ (p ∧ ¬p) takes the value 1 only if 1

2 is assigned
to p, the fact that there is no such α implies that no substitution instance
of (p ∨ ¬p) → (p ∧ ¬p) is logically true in  Lukasiewicz logics. If so, then
the rule we have defined preserves logical truth, simply because it never
applies to logically true premisses.

A suitable modification of the rule we have discussed allows to repeat
the argument for any of the remaining logics. For instance in the case of
 L4 one has to use

(p ∨ ¬p)→ ((p ∨ ¬p)→ (p ∧ ¬p))/q.

It follows from the argument presented that:

–  Lukasiewicz logics (of the kind we have defined!) are not structurally
complete,

– we should keep them as such unless we do not care about preserving
truth.

9.2. Example 2. Modal logics. We shall adopt the following convention.
Given a modal system that is customarily denoted by a symbol X, we
shall denote it by MX . Thus for instance Kripke’s system K will be
denoted MK . S4 will be denoted MS4 etc.

Again, as in the case of  Lukasiewicz’s systems, modal systems are sets of
formulas not consequences. They are defined with the help of some rules,
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but if, say, the necessitation rule p/�p is applied to define MK , it does
mean that p/�p must be the rule of the logical consequence corresponding
to modal systems should be defined. We shall discuss the matter later.

Of course, if for a particular system there is a semantics that not only
is a more or less convenient tool for formal analyses, but also presents us
with some philosophically acceptable interpretation of that system (some
modal systems, MK , Feys –von Wright’s MT , MS4, MS5, among others,
seem to have such semantics), then the consequence corresponding to the
system can be defined, along the pattern we have already discussed, as
the truth preserving consequence.

We should be prepared, however, that if we follow this approach, typ-
ically modal rules, such as p → q/�p → �q, will turn out not to be
truth-preserving. And there is a little surprise in that. From the intuitive
standpoint they are not truth-preserving either. From that p→ q is true
it does not follow by any means that �p→ �q is true, (of course, � is to
be interpreted as it is necessary that). Observe that rar is the material
implication, i.e. p → q is false only if p is true and q false. Thus, for
instance, the implication

Paris is Paris → Paris is the capital of France

is true, but if the components of it are prefixed by it is necessary that it
becomes false. Even more obvious is that p/�p is not truth preserving.
Thus we face the choice: modal logics cannot be at the same time truth-
preserving and structurally complete. Of course, we face this dilemma
only if we insist on viewing modal logics as logics in the inferential sense.

9.3. Example 3. Intuitionistic propositional logic J (cf. 2.11). Let us leave
open the question under which interpretation J is a truth-preserving logics.
Anyway it is not structurally complete. Not all rules that preserve J(∅)
are rules of J . As an example may serve:

(KP ) ¬p→ (q ∨ r)/(¬p→ q) ∨ (¬p→ r)

(cf. R. Harrop, 1960) or

(MI) ((p→ q)→ (p ∨ r))/((p→ q)→ p) ∨ ((p→ q)→ r))

(cf. Minc [1972]).

As a matter of fact J is structural incomplete to a “very large degree”.
As it was proved by W. Dziobak [1980], there are 22λr0

logics J+ > J such
that J+(∅) = J(∅).

(Dziobak’s result is only apparently inconsistent with the fact established
by V. A. Jankov [1968]) that the cardinal number of all superintuition-
istic logics is 2αr0 . Jankov’s theorem concerns superintuitionistic logics
meant to be systems of theorems that include J(∅), and are closed under
both Modus Ponens and substitutions. Dziobak dealt with consequence
operations.)
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9.4. Example 5. Relevant logics. Perhaps A. R. Anderson and N. D. Belnap’s
[1958] system E if entailment, of the same authors – cf. N. D. Belnap [1967]
– system R of relevant implication, and R. K. Meyer and J. M. Dunn’s
[1969] system RM are the best known and most important. They are again
systems of formulas. Still, in the systems we mentioned, the implication
connective is meant to represent the consequence operation: α→ β reads
‘α entails β’. This allows us to assign in a natural way to each relevant
system S the relevant consequence operation S by postulating that

(→) α ∈ ~S(α1, . . . , αn) iff (α1 ∧ . . . ∧ αn)→ α ∈ S.

Some further conditions that define ~S on ∅ and infinite sets of formulas
should be added, see Section 15.

The approach we have mentioned seems to be the only acceptable from
philosophical standpoint, still, what is usually meant by logical conse-
quences corresponding to E, R, RM are consequences CE , CR, CRM deter-
mined by the inferential bases (E,AD,MP ), (R,
AD,MP ), (RM,AD,MP ) respectively, where MP is Modus Ponens and
AD is Adjunction Rule

(AD) p, q/p ∧ q.

The systems we are discussing, as well as many other relevant systems, are
just defined with the help of these rules. Though ~E, ~R, ~RM rather than
CR, CR, CRM deserve to be called relevant consequence, in what follows,
just to conform to the usual practice, by relevant logics we shall mean the
latters not the formers.

There is a very special reason why relevant consequences must be noto-
riously structurally incomplete, when defined in an adequate way, i.e. by
condition (→). The relevant systems are expected to satisfy the relevance
principle or, at least, the weak relevance principle. Now:

a. The relevance principle holds for X iff for all α, β if α → β ∈ X
then V ar(α)∩V ar(β) 6= ∅, i.e. α and β have at least one variable in
common.

b. The weak relevance principle holds for X iff for all α, β, if α→ β ∈ X,
V ar(α) ∩ V ar(β) = ∅ then both ¬α and β belong to X.

On the other hand, α→ α is a theorem in most of relevant systems.

From the two facts stated above it follows directly that the rule

(∗) p→ p/q → q

cannot be a rule of any “genuine” relevant consequence though, no doubt,
all relevant logicians would agree that this rule preserves not only truth
but also logical truth. However, it violates both the relevance and weak
relevance principle.
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This remark does not settle the question of whether CE , CR, CRM are
structurally complete. The rule p → p/q → q is the rule of all these
consequences. But for example

(IN) p,¬p/q

already is not. Though, of course, it preserves logical truth. All systems
E,R, RM are closed under it.

9.5. Example 6. Logics tolerating inconsistency. As useful survey of para-
consistent logics, as the logics tolerating inconsistency are called, was
given by A. I. Arruda [1980]. Perhaps the most representative for this
group of logics are S. Jaśkowski’s discussive (or discursive) calculi (cf.
S. Jaśkowski [1948], [1969]) and N. C. A. da Costa logic Cn, 1 6 n < ω
(cf. N. C. A. da Costa [1958]).

By very definition of a paraconsistent logic, in no paraconsistent logic
rule IN , we have just discussed, is valid. Similarly as relevant logics,
paraconsistent logics do not involve contradictory theorems.

9.6. The idea of the logic properly corresponding to a system of logical theo-
rems has very little to do with the notion of structural completeness.

Our discussion was motivated by heuristic reason. We went in the wrong
direction on purpose, just, in order to define the problem in a clear way.

If there is any possibility to indicate among all structural consequence
operations that share a system of logical theorems the one (as we have put
it), properly corresponding to that system, the possibility must involve
making use of some form of the Deduction Theorem. We shall make this
idea precise in the next chapter. But before we reexamine our problem
from the new angle, let us swell on inferential bases for a while.

10. More on inferential bases. Proofs

10.1. Let Q be a set of rules of inference. A sentence α is said to be provable from
X by means of (rules in) Q iff there exists a finite sequence of formulas
(called a proof of α from X by means of Q)

α1, α2, . . . , αn

such that

(i) α = αn,
(ii) for each αi, i = 1, . . . , n, either αi ∈ X or for some Y ⊆ {α1, . . . ,

αi−1}, Y ` αi is an instance of a rule in Q.

One easily verifies that, if α is provable from X by means of Q, then
α ∈ ClQ(X). The converse need not hold true. Let us examine the matter
closer.

With the help of 4.3 one easily verifies that the following is valid
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10.2. Lemma. Let Q be a set of rules. For each set of formulas X, ClQ(X) is
the least superset of X closed under all rules in Q. �

We shall often refer to sets of the form ClQ(X) as the closure of X
under Q.

10.3. Theorem. If all rules in Q are finitary, then for all α, and all X, α ∈
ClQ(X) iff α is provable from X means of Q.

Proof. Let α be provable from X by means of Q. Then α belongs to
each superset Y of X closed under Q, as one may easily show by induction
with respect to the length of the proof. Hence, by 10.2, α ∈ ClQ(X).

Now suppose that α ∈ ClQ(X) and all rules in Q are finitary. Put
Cl0Q(X) = X, and for each i > 0 define β ∈ CliQ(X) iff either

(i) β ∈ Cli−1
Q (X), or

(ii) for some Y ⊆ Cli−1
Q (X), Y ` β is an instance of a rule in Q.

The union
⋃

CliQ(X) : i > 0 is closed under the rules in Q, and since it
is contained in all supersets Y of X that are closed under Q it is the least
of all such supersets, and consequently, by 10.2, we obtain

ClQ(X) =
⋃
{CliQ(X) : i > 0}.

If α ∈ ClQ(X) then, for some i > 0, α ∈ CliQ(X). If i = 0, then α ∈ X
and, of course it is provable from X. Applying a recursive argument, verify
that the same holds true for all i. �

(Observe that, as follows immediately from the definition of a proof,
α is provable from X by means of Q iff α is provable from X by means
of finitary rules in Q. Thus, in fact, it would be natural to restrict the
notion of a proof to finitary rules only.)

10.4. Theorem. Let S be a propositional language and C a unary opera-
tion defined on sets of formulas of S. Then the following conditions are
satisfied:

(i) C is a consequence operation iff there exists a set of rules of inference
Q such that C = ClQ.

(ii) C is a structural consequence iff there exists a set of structural rules
Q such that C = ClQ.

(iii) C is a finitary consequence iff there exists a set of finitary rules Q
such that C = ClQ.

(iv) C is a standard consequence iff there exists a set of standard rules Q
such that C = ClQ.
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Proof. (i) We have to prove only the implication from the left to right.
Verify that if C is a consequence and Q is the set of all rules of C then
C = ClQ.

(ii) First verify that if C is structural and Q is the set of all structural
rules of C then C = ClQ. Second, assume that C = ClQ and all rules
in Q are structural. Verify that each set of the form ~eClQ(X), e being a
substitution, is closed under rules in Q and hence is a theorem of ClQ.
This by Lemma 3.4, implies the structurality of ClQ.

(iii) If C is finitary and Q is the set of all finitary rules of C, then
C = ClQ. Conversely, if for some set Q of finitary rules C = ClQ, then,
by 10.3, α ∈ C(X) iff α is provable from X by means of Q. But proofs are
finite sequences of formulas, and hence α ∈ C(X) implies that α ∈ C(X ′)
for some finite X ′, which is exactly condition (F), cf. 2.8, defining finitary
consequences.

(iv) Verify that if C is standard and Q is the set of all standard rules of
C then C = ClQ. Conversely, if C = ClQ for some standard set of rules Q
then, by (ii) and (iii), C is both structural and finitary, hence standard.�

10.5. Let us conclude this section with a few definitions.

a. Let Q, Q′ be inferential bases. If ClQ = ClQ′ we say that Q and Q′

are equivalent.

b. If Q and Q ∪ {r} are equivalent, the rule r is said to be derivable
from Q. The rules in Q are often referred to as the primitive rules of
the base Q.

10.6. Note. Theorems presented in this section are already “classical”. Theo-
rem 10.3 should be credited to A. Tarski [1935], while 10.4 to J.  Loś and
R. Suszko [1958].
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Chapter 3

Well-Determined Logics

11. Basic definitions and theorems

11.1. Let C be a logic that involves → and ∧. We shall say that C is well-
determined (in terms of → and ∧) iff for all α, β,

(W1) C is standard,

(W2) C(α ∧ β) = C(α, β),

(W3) α ∈ C(β) iff β → α ∈ C(∅).

11.2. Let us briefly comment on the definition given above. Any binary connec-
tive ∧ (in this remark, consider ∧ to be a variable representing connectives
rather than any specific connective) that satisfies W2 is called conjunction
with respect to C.

It is perhaps worthwhile mentioning that a connective ∨ is said to be
disjunction with respect to C iff the language of C involves ∨ and the
following holds true

(∨) C(X, α ∨ β) = C(X, α) ∩ C(X, β).

Let us adopt the convention under which α1 ∧ . . . ∧ αn will be treated
as an abbreviation for (α1 ∧ (α2 ∧ . . . (αn−1 ∧ β)). A similar convention
will be adopted for disjunction. In many logics (but of course not in all)
the order of conjuncts as well as disjuncts does not matter, in the sense
that C(α) = C(β) whenever α, β differ only as to the order of conjuncts
of the conjunctions (disjuncts of the disjunctions resp.) they involve.

From the definition 11.1 it follows immediately that:

11.3. Theorem. If C is a well-determined logic then C(∅) defines C uniquely.�

What are the conditions to be satisfied by C(∅) in order for C to be
well-determined?

37
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11.4. Call a set of sentences L deductive iff there is a well-determined logic C
such that C(∅) = L.

11.5. Theorem. L is deductive iff the following conditions are satisfied.

(D1) L is closed under substitutions,

(D2) For all α, α→ α ∈ L,

(D3) L is closed under the following rules of inference:
Rearrangement of Antecedent (RE) γ, γ′ : γ → p/γ′ → p, where
γ, γ′ are any formulas such that V ar(γ) = V ar(γ′) and the only
connective appearing in both γ and γ′ is ∧. (Observe that (RE) is a
class of sequential rules not a single rule).
Enlargement of Antecedent (EA): p→ q/(p ∧ r)→ q,
Composition (CM): p1 → q1, p2 → q2/(p1 ∧ p2)→ (q1 ∧ q2),
Transitivity (TR): p→ q, q → r/p→ r,
Modus Ponens (MP): p, p→ q/q,
Cancellation of a Valid Conjunct (CV): p, (p ∧ q)→ r/q → r.

Proof. (→). This part of proof is straightforward and we shall leave
it to the reader.

(←−) Assume that L satisfies (D1), (D2), (D3), and put

α ∈ ~L(X) iff (α1 ∧ . . . ∧ αn)→ α ∈ L,

for some α1, . . . , αn ∈ ∪L.

Observe, that condition W3 can by replaced by

(W3′) α ∈ C(α1, . . . , αn) iff (α1 ∧ . . . ∧ αn)→ α ∈ C(∅).

The resulting set of conditions will be equivalent to the original one. We
shall show that under the assumption made, W1, W2, W3 hold true.

Apply (D2) and make use of the rules CM and TR to show that ~L satisfies
Tarski’s conditions (T1) – (T3) (cf. 2.2), and hence is a consequence
operation. Since L is closed under substitutions, ~L is structural, and it
follows directly from the definition of ~L that ~L is finitary. Hence it is
standard, as required by (W1).

Apply the rules RE, EA and D2 to show that ~L satisfies (W2).

Now, in order to establish (W3), assume that α ∈ ~L(β1, . . . , βn), n > 1.
Hence for some β′1, . . . , β

′
m ∈ ~L ∪ {β1, . . . , βm} we have

(1) β1 ∧ . . . ∧ β′m → α ∈ L.

But, clearly, we have also

(2) (β′1 ∧ . . . ∧ β′m ∧ β1 ∧ . . . ∧ βn)→ α ∈ L,
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for (2) is derivable from (1) by successive applications of EA. What we
have to do now is to apply successively either RE or CV in order to get
rid of all β′1, . . . , β

′
m; observe that each β′i either belongs to L, or doubles

some of βj , j = 1, . . . , n. In this way we arrive at

(3) β1 ∧ . . . ∧ βn → α ∈ L ⊆ ~L(∅),

exactly as wanted. (The argument covers the case n = 1).

Suppose, in turn, that

(4) β1 ∧ . . . ∧ βn → α ∈ ~L(∅).

Then, for some γ1, . . . , γm ∈ L,

(5) (γ1 ∧ . . . ∧ γm)→ ((β1 ∧ . . . ∧ βn)→ α) ∈ L.

Apply successively CV in order to get

(6) γm → ((β1 ∧ . . . ∧ βn)→ α) ∈ L,

and then apply MP to get

(7) (β1 ∧ . . . ∧ βn)→ α ∈ L

thus concluding the proof. �

11.6. There are many logics that are well-determined. Observe, that to this
category belongs each logic C that is standard involves conjunction (cf.
11.2) and for which Deduction Theorem holds true, i.e.

(DT ) α ∈ C(X, β) iff β → α ∈ C(X).

The classical two-valued propositional logic K and the intuitionistic logic
J are obvious examples of well-determined logics.

12. Deductive systems and well-determined
logics

12.1. In what follows, given any set of formulas L being a deductive system, by
~L we shall denote the consequence operation defined just as in 11.5, and
we shall refer to ~L as to well-determined logic based on L.

There is a very special reason why, if not always then at least consid-
erably often, ~L fully deserves to be treated as the consequence “properly
corresponding” to L, (cf. 6.2) and thus to ~L(∅). It seems very natural to
postulate that in order for →, and C to be properly defined they must be
linked by the condition

(→) β ∈ C(α) iff α→ β ∈ C(∅).
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The meaning of α → β is often claimed to be best conveyed by saying
that α entails β. Now, if α logically entails β (i.e. β ∈ C(α)) then α→ β
is logically valid (α → β ∈ C(∅)), and vice versa. But, even if we insist
upon the “material” interpretation of → (α → β is true unless α is true
and β false), if we keep interpreting C as logical derivability (or logical
entailment), (→) remains valid.

Now, if the language of C involves ∧, and the condition (again a very
natural one)

(∧) C(α ∧ β) = C(α, β)

holds true, then (→) and (∧) imply

α ∈ C(β1, . . . , βn) iff (β1 ∧ . . . ∧ βn)→ α ∈ C(∅),

i.e. when C is well-determined, just the condition that defines C(X) in
terms of → and ∧ for all finite X.

12.2. The argument presented above is, I hope, a good one to the effect that ~L
should be treated as distinguished among all logics C such that C(∅) = L.
We must realize however, that if one defines a logic L as certain deductive
set of formulas one need not necessarily view ~L to be the logical conse-
quence corresponding to L. What one who invented the system L means
by the derivability based on L, need not coincide with what we have de-
fined to be the well-determined logic based on L. But after all the inventor
of L may by so happy with “discovering” a new logical system (and just
joining the Pantheon of founders of logic) that he may not bother with
such a trifle as when and how one can use his “logic” as a logic, i.e. an
instrument of deduction.

13. Are  Lukasiewicz logics well-determined?

13.1. If by  Lukasiewicz logics we mean the logics  L3,  L4, . . . ,  Lω defined in 9.1
then they are not. Indeed, in all these logics ¬(α → β) is a consequence
of α ∧ ¬α but in none of these logics (α ∧ ¬α)→ ¬(α→ β) is a theorem.
Thus none of these logics satisfies condition (→) (cf. 12.1). There is,
however, more to be said about  Lukasiewicz logics in this context.

Define α →n β recursively as follows α →1 β = α →1 β and α →n

β = α → (α →n−1 β). Now, for each  Lukasiewicz logic  Ln, n finite, the
following is easily seen to be true

(1)  Ln(α ∧ β) =  Ln(α, β),

(2) α ∈  Ln(β1, . . . , βn) iff (β1 ∧ . . . ∧ βn)→n−1 α ∈  Ln(∅).
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Actually, we have not only (2) but also (cf. 29.4)

(2′) α ∈  Ln(X, β) iff β →na1 α ∈  Ln(X).

“Not only” because (2′) combined with (1) implies (2), but (1) and (2) all
by themselves do not suffice to derive (2′).

An interesting thing about →n−1 is that when we define ¬n−1 by

¬n−1α =df α→n−1 ¬(α→ inf)

then ∧, ∨,→n−1, ¬n−1 fragment of  Ln, n = 3, 4, . . . os an isomorphic copy
of the classical logic K with →n−1 corresponding to classical implication
→ (i.e. → in the language of K) and ¬n−1 corresponding to classical
negation (cf. M. Tokarz [1971]).

As we shall see later (cf. 30.3), for each finite n,  Ln is a finitary and
thus it turns out that each  Ln, though not well-determined in terms of
 Lukasiewicz implication and conjunction, is still well determined in terms
of →n−1 and ∧.

 L is not finitary (cf. R. Wójcicki [1976]) and hence it is not well-
determined in terms of any connectives.

We have then the following

13.2. Theorem.

a) None of the logics  Ln, n finite > 3, is well determined in terms of →,
∧.

b) Each of the logics  Ln, n finite > 3, is well determined in terms of
→n−1, ∧.

c) There are no connectives in terms of which  Lω is well-determined.�

Let us, now, have a lock at  Lukasiewicz logics from quite a different
angle. Curiously enough we have

13.3. Theorem All systems ζ(L3), . . . , ζ(Lω) are deductive.

Proof. Verify that each of  Lukasiewicz systems satisfies conditions
(D1) – (D3) of Theorem 11.5. �

Then, what are the logics
−−−→
ζ(L3), . . . ,

−−−→
ζ(Lω)? They certainly are not

truth-preserving logics  L3, . . . ,  Lω, we have consider thus far. We leave to
the reader an easy task to verify that the following holds true.

13.4. Theorem. For each η = 3, 4, . . . , ω, each X and each α, the following
two conditions are equivalent

(i) α ∈
−−−→
ζ(Lη)(X)
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(ii) For each valuation v in η-valued  Lukasiewicz matrix

v(α) > inf(v(X))

(we define inf ∅ = 1). �

Then, it turns out that
−−−→
ζ(Lη) preserve the degree of truth rather than

truth; when applied to sentences whose truth-values are all greater than
x, they yield conclusions whose truth-values are again greater than x.

From 13.4 we immediately have

13.5. Corollary. For each η = 3, 4, . . .,

a.
−−−→
ζ(Lη)(∅) =  Lη(∅)

b.
−−−→
ζ(Lη) <  Lη.

13.6. Are
−−−→
ζ(Lη)  Lukasiewicz logics? They surely deserve to be called that

way. Thus there are at least two kinds of  Lukasiewicz logics: truth-
preserving  Lukasiewicz logics  L3, . . . ,  Lω and welladetermined  Lukasiewicz
logics

−−−→
ζ(L3), . . . ,

−−−→
ζ(Lω). If not supplement with a suitable epithet,  Lukasiewicz

logic is an ambiguous term.

14. Well determined modal logics

14.1. By the modal language we shall mean the language (L,�), i.e. the stan-
dard language L extended by the familiar connective � (‘it is necessary
that’). Instead of (L,�) we shall write L�. The formulas of L�. will be
referred to as modal formulas, and their set will be denoted by L�.

By a modal logic we shall mean any logic C defined in L�. If, moreover,
all inferences of the classical logic K are valid in C, the logic C will be
referred to as a modal logic based on K.

The following remark is in order here. It would not be true to say
that if C is a modal logic based on K then K 6 C, for K and C are
defined in different languages. But for any two languages S1, S2; S1 being
a sublanguage of S2, and for any logic C1 in S1 there exists a logic C2 in
S2 being a natural counterpart of C1 in S2. This is the weakest logic in
S2 in which all inferences C1 are valid. In order words, C2 results from
C1 by closing the inferences of C1 under all substitutions in S2. The logic
C2 of the kind defined will be referred to as the natural extension (rather
than natural counterpart) of C1 onto S2.

Now if K0 is such an extension of K onto L� then, obviously, we have
K0 6 C.

14.2. A set of modal formulas M will be said to be a modal system based on K,
a modal system for short, iff
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(M1) K(∅) ⊆M ,

(M2) M is closed under substitution and Modus Ponens.

With the help of 11.5 one easily verifies that:

14.3. Theorem. All modal systems based on K are deductive, and for each
such system M ,

−→
M is a modal logic based on K. �

Thus, for each modal system M , there exists a welladetermined logic−→
M . Conversely, for each well-determined modal logic C based on K, C(∅)
is a modal system. Hence, the correspondence between well-determined
modal logics and modal systems (both being based on K) is one-to-one.
Below, some examples of modal systems are given.

14.4. Example. A modal system M is said to be classical (cf. K. Segerberg
[1971]) iff it is closed under the

Replacement Rule (RR): p←→ q/�p←→ �q.

The smallest classical modal system is usually denoted as E. Under the
convention we adopted, cf. 9.2, it will be denoted by ME .

14.5. Example. If M is classical, closed under the rule

p→ q/�p→ �q.

and moreover involves all formulas of the form

(�α ∧�β)→ �(α ∧ β),

then the system M is called regular.

The least regular system is denoted by C — we shall denote it MC .

14.6. Example. If M is regular and closed under

Necessitation Rule (NR): p/�p

it is called normal. The least normal system is known as Kripke’s logic.
Usually it is denoted by K, we shall denote it MK .

17.7. Example. The smallest normal system that involves all formulas of the
form

�α→ α

is known as Feys-von Wrigh’s system T , thus MT in our notation.

14.8. Example. The system MT enlarged by all formulas of the form

�α→ ��α

is Lewis’ system S4, thus MS4 in our notation.
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14.9. Example. Again MT , this time enlarged by all formulas of the form

♦�α→ �α

where ♦ is defined by
♦α =df ¬�¬α,

is called Brouwer’s system B, in our notation MB .

14.10. Example. Lewis’ system S5, in what follows denoted by MS5, is the
smallest modal system that contains both B and S4.

14.11. Example. A modal system based on K that contains all formulas of the
form

α←→ �α

is called a trivial modal system. We shall denote it by MTR. The con-
nective � in MTR can be viewed as the classical two valued assertion
connective defined by the truth-table

α �α
1 1
0 0

15. Surprisingly enough, relevant logics are not
well-determined

15.1. This is somewhat surprising indeed, because under the intended interpre-
tation the relevant implication,→means “entails”. That is why Anderson–
Belnap’s E is called Entailment. Now the logics such as CE , CR, CRM

(cf. 9.4) are not well determined because the corresponding systems E,
R, RM are not closed under CV (cf. 11.5). Indeed, both p → p, and
((p→ p) ∧ q)→ (p→ p) are valid in these systems, but not q → (p→ p);
the latter formula being derivable by CV from the former ones.

The paradox has a simple solution. As we have already noticed, cf.
Section 9, consequences CE , CR, CRM , etc. called pseudo-relevant. We
shall not risk, however, modifying the terminology that, though wrong, is
well established.

15.2. Given any relevant system S, the logic C properly corresponding to S
should be defined to be the standard logic such that

(i) C(∅) = ∅

(ii) α ∈ C(β1, . . . , βn) iff (β1 ∧ . . . ∧ βn)→ α ∈ S.

We have already suggested to denote this logic by
−→
S .

What is strange of the logics of that kind is that they are purely inferential:
in view of (i)

−→
S (∅) = ∅. But is it strange indeed? An attempt to answer this

question would lead us too far from what should be of our prime interest.



Chapter 4

Truth-valuations

16. Theories vs truth-valuations

16.1. By a binary truth-valuations for a language S we shall mean a mapping
v: S → {0, 1, }, with 0 and 1 interpreted as falsity and truth respectively.
If the function V is defined only for a subset X ⊆ S, it will be referred to
as a partial-truth-valuation.

Given an inference X ` α and valuation (possibly partial) V we shall
say that V satisfies (or verifies) X ` α, if either v(α) = 1 or v(β) = 0,
for some β ∈ X. If v(α) = 0, and v(β) = 1 for all β ∈ X we shall say
that v falsifies X ` α. The valuation v will be said to satisfy (verify) X, if
v(α) = 1, for all α ∈ X, and it will be said to falsify X when v(α) = 0, for
some α ∈ X. Accordingly, v verifies (falsifies) α if v(α) = 1 (v(α) = 0).

As we have already noticed, cf 2.10, the following is easily seen to hold
true:

16.2. Theorem. For each set of truth valuations H for S, the operation CnH

on subsets of S defined by

α ∈ CnH(X) iff all v ∈ H satisfy X ` α,

is a consequence operation. �

CnH is the consequence preserving truth under H. Occasionally it will
be also referred to as the consequence determined by H.

16.3. As it is common, we shall apply the word “semantics” in a twofold manner.

Given a class σ we shall call it a semantics in the generic sense or σ-
semantics iff to each σ′ ⊆ σ there has been assigned a consequence opera-
tion Cnσ′ . (Thus, rigorously speaking, σ-semantics is the couple (σ,Cn),
where Cn is the operation that assigns to each σ′ ⊆ σ the consequence
Cnσ′).

45
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On the other hand, given any σ-semantics, by a semantics in the par-
ticular sense (of the kind σ) we shall mean any subclass σ′ ⊆ σ.

Correspondingly, there are two notion of (strong) completeness as well
as two notions of weak completeness, both being applied in logical inves-
tigation

a. A consequence C is complete (weakly complete) with respect to a
σ-semantics iff for some σ′ ⊆ σ, C = Cnσ′ (C(∅) = Cnσ′(∅), resp.)

b. Let σ be a semantics in the general sense. A consequence C is com-
plete (weakly complete) with respect to a particular semantics σ′ ⊆ σ
iff Cnσ′ 6 C (Cnσ′(∅) ⊆ c(∅) resp.)

Recall that C is said to be sound (weakly sound) with respect to σ′ ⊆ σ
if C 6 Cnσ′ (C(∅) ⊆ Cnσ′(∅)).

If C is both sound and complete (weakly sound and weakly complete)
with the respect to a particular semantics σ′, we shall say that σ′ is ade-
quate (weakly adequate) with the respect to C.

We trust the reader not to confuse the two notions of completeness.
Still, when dealing with a semantics in the particular sense, we shall try
to avoid the term completeness and, if possible, carry out our analyzes in
terms of adequacy.

16.4. Theorem. Let X be a family of sets of formulas, and let H be a set of
truth-valuations. For each set of formulas X define XX to be the charac-
teristic function of X (i.e. XX(α) = 1 iff α ∈ X), and for each valuation
v define Xv to be the set of which v is the characteristic function. Then

a. X is a closure base for a consequence C iff
{XX : X ∈ X} is an adequate semantics for C.

b. H is an adequate semantics for a consequence C iff {Xv : v ∈ H} is a
closure base for C.

Proof. Of course a. and b. are equivalent and hence it suffices to prove
any of these conditions, say a. Let X be a closure base for C. Suppose
that α ∈ C(X). If for some Y ∈ X, XY verifies all β ∈ X then X ⊆ Y
and hence, C(X) ⊆ C(Y ) = Y . This yields XY (α) = 1. Now, suppose
that α /∈ C(X). Then for some Y ∈ X, X ⊆ Y and α /∈ Y , which yields
XY (X) ⊆ q and XY (α) = 0. Thus, indeed {XX : X ∈ X} is adequate for
C. In order to get the “only if” part of a. just reverse the argument. �

Since for each C at least ThC is a closure base for C, we have

16.5. Corollary. For each consequence C there exists a truth-valuational
semantics H adequate for C, i.e. each consequence operation is complete
with the respect to the truth-valuational semantics.

With the help of Suszko’s lemma 3.4 one can easily define sufficient
and necessary conditions for H to determine a logic; of course, in general,
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CnH need not be structural. As a matter of fact we shall need only the
following

16.6. Lemma. Let H be an adequate semantics for C. If for each valuation
v ∈ H and for each substitution e, the valuation ve defined by

ve(α) = 1 iff v(eα) = 1.

is in H, the consequence CnH determined by H is structural.

Proof. Apply Lemma 3.4. �

In what follows, if CnH is structural, the semantics H will be referred
to as a logical space of valuations.

17. Epistemic valuations for L
17.1. Let T a non-empty set and 6 a partial ordering on T . The couples of the

form (T,6) are called posets. Here we shall refer to them as epistemic
frames.

The elements of T will be referred to as stages of investigation (or just
points), and 6 as a temporal succession. For a philosophical interpretation
of epistemic frames that motivates the terminology we adopted here, cf.
A. Grzegorczyk [1964], [1968].

17.2. Let (T,6) be an epistemic frame. A partial function ε : T × L → {0, 1, }
will be said to be an epistemic valuation for the standard language L,
defined relatively to (Y,6), iff for all α, β, and all t ∈ T , and all t ∈ T , it
satisfies the following conditions:

(1) ε(t, α) = 1 implies ε(t′, α) = 1, for all t′ > t

(∧) ε(t, α ∧ β) = 1 iff ε(t, α) = ε(t, be) = 1

(∨) ε(t, α∨β) = 1 iff either ε(t, α) = 1, or ε(t, β) = 1, or ε(t, α) = ε(t, β) =
1

(→) ε(t, α→ β) = 1 iff for all t′ > t, ε(t′, β) = 1 whenever ε(t′, α) = 1

(¬) ε(t,¬α) = 1 iff for no t′ > t, ε(t′, α) = 1

(t′ is assumed to run over T , t′ > t is an alternative notation for t 6 t′).

By producing a suitable example (e.g. take T to be a 1-element set, and
define ε to satisfy the classical truth=functional conditions) one can show
that the conditions of Definition 17.2 are consistent.

Apply an inductive argument in order to prove:

17.3. Lemma. Let (T,6) be an epistemic frame. let ε0 be a partial function
from T × V ar(L) into {0, 1} such that for all t, t′ ∈ T and all p ∈ V at(L)
if t 6 t′ then ε0(t, p) = 1 implies ε0(t′, p) = 1.
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a. For each such function ε0 there exists an epistemic valuation ε for L
defined relatively to (T,6) such that ε � V ar(L) = ε0.

b. If ε1 � V ar(L) = ε2 � V ar(L), both ε1 and ε2 being epistemic valu-
ations for L defined relatively to (T,6), then for each α, and each
t ∈ T , ε1(t, α) = 1 iff ε2(t, α) = 1. �

Let F be a set of epistemic frames. Denote by CnF,L (or just by
CnF) the consequence operation that preserves truth under all epistemic
valuations defined relatively to the frames in F. More explicitly, though
in a somewhat roundabout way, CnF,L can be defined as follows.

Denote by H(F) the set of all truth-valuations of the form εt such that
ε is an epistemic valuation with respect to a frame (T,6) ∈ F, t ∈ T
and εt(α) = ε(t, α), for each α. Then CnF,L is just the consequence in L
preserving truth under H(F), the valuations in H(F) being treated as the
admissible valuation for L, cf 2.10.

Cf. 24.5 for the proof of the following

17.4. Adequacy theorem (S. Kripke [1965], A. Grzegorczyk [1964]). The
class EFrame of all epistemic frames provides an adequate semantics for
the intuitionistic propositional logic J (i.e. J is both sound and complete
with the respect to EFrame)

Verify that:

17.5. Lemma. For each class F of epistemic frames CnF,L is a structural con-
sequence.

Proof. Define H(F) as in 17.3 and apply Lemma 16.6 to show that it
is a logical space �

From 17.4 and 17.5 is follows immediately that

17.6. Corollary. For each class F of epistemic frames CnF, is a logic stronger
than J . �

18. Epistemic valuation for L∼
18.1. Extend the language L by adding a new unary connective ∼, called strong

negation. Denote the resulting language by L∼ and by L∼ the set of
formulas of that language.

18.2. Let (T,6) be an epistemic frame. A partial function ε : T × L∼ → {0, 1}
will be referred to as an epistemic valuation for L∼, defined relatively to
(T,6) iff for all α, β, all t ∈ T , it satisfies the following conditions

(0) ε(t, α) = 0 implies ε(t′, α) = 0 for all t′ > t,

(1) ε(t, α) = 1 implies ε(t′, α) = 1 for all t′ > t,

(∧)+ ε(t, α ∧ β) = 1 iff ε(t, α) = ε(t, be) = 1,
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(∧)− ε(t, α∧β) = 0 iff either ε(t, α) = 0, or ε(t, be) = 0 or ε(t, α) = ε(t, β) =
0,

(∨)+ ε(t, α∨β) = 1 iff either ε(t, α) = 1, or ε(t, β) = 1, or ε(t, α) = ε(t, β) =
1,

(∨)− ε(t, α ∧ β) = 0 iff ε(t, α) = ε(t, be) = 0,

(→)+ ε(t, α→ β) = 1 iff for all t′ > t, ε(t′, β) = 1 whenever ε(t′, α) = 1

(→)− ε(t, α→ β) = 0 iff ε(t, α) = 1 and ε(t, β) = 0,

(¬)+ ε(t,¬α) = 1 iff for no t′ > t, ε(t′, α) = 1

(¬)− ε(t,¬α) = 0 iff ε(t, α) = 1

(∼)+ ε(t,∼ α) = 1 iff ε(t, α) = 0

(∼)− ε(t,∼ α) = 0 iff ε(t, α) = 1

Again (cf. 17.2) one has to show that the conditions of 18.2 are consistent
and, again, this can be easily done, incidentally by the same example as
suggested in 17.2, with ∼ being interpreted in the same way as ¬.

Apply an inductive argument in order to show that

18.3. Lemma. Let (T,6) be an epistemic frame, and let ε0 be a partial function
from T × V ar(L∼) such that for all t, t′ ∈ T and all p ∈ V ar(L∼), if
t 6 t′ then both ε0(t, p) = 1 implies ε0(t′, p) = 1 and ε0(t, p) = 0 implies
ε0(t′, p) = 1 and ε0(t, p) = 0 implies ε0(t′, p) = 0.

a. For each such function ε0 there exists an epistemic valuation ε for L
defined relatively to (T,6) such that ε � V ar(L∼) = ε0.

b. If ε1 � V ar(L∼) = ε2 � V ar(L∼), both ε1 and ε2 being epistemic
valuations for L∼ defined relatively to (T,6), then for each α, and
each t ∈ T , ε1(t, α) = 1 iff ε2(t, α) = 1. �

Given any class F of epistemic frames, denote by CnF,L∼ (or just by
CnF) the consequence operation that preserves truth under all epistemic
valuations for L∼ defined relatively to the frames in F (i.e. under all truth-
valuations of the form εt, ε being an epistemic valuation and t a reference
point of the frame in F with respect to which ε is defined, cf. 17.3).

Verify that

18.4. Lemma. For each class F of epistemic frames CnF,L∼ is a structural
consequence.

Proof. Defined H(F) as in 17.3 and apply Lemma 16.6 to show that
it is a logical space. �

The weakest of all logics of the form CnF,; i.e. the logic determined by
all epistemic frames, to be denoted by N . As we shall prove in Section 24,
N is the propositional part of the logic known as the logic with construc-
tive falsity, or D. Nelson’s logic (cf. D. Nelson [1949]). Independently of
D. Nelson similar ideas were put forward by A. A. Markov [1950].
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19. Neighborhood valuations

19.1. Let T be a non-empty set and let N be a function from T into the power
set of the power set of T , i.e. for each T ∈ T , N(t) is a family of subsets
of T .

The pair (T,N) will be referred to as a neighborhood frame. The elements
of T will be referred to as possible worlds or points.

A class F on neighborhood frames will be called a neighborhood seman-
tics.

Before we define the notion of a neighborhood valuation (valuations of
this kind provide interpretations for the modal language L�), let us define
explicitly the notion of classically admissible truth valuation.

19.2. Let L be any language that involves standard connectives ∧, ∨, →, ¬.
A truth valuation v for S will be said to be classically admissible iff v
satisfies the familiar conditions for the connectives of K:

(∧) v(α ∧ β) = 1 iff v(α) = v(β) = 1,
(∨) v(α ∨ β) = 1 iff either v(α) = 1, or v(β) = 1,

(→) v(α→ β) = 1 iff either v(α) = 0, or v(β) = 1,
(¬) v(¬α) = 1 iff v(α) = 0.

The logic determined in L by the set of classically admissible truth
valuation is, of course, K.

19.3. Let (T,N) be a neighborhood frame. A function η : T × L� → {0, 1}
will be said to be a neighborhood valuation defined relatively to the frame
(T,N) iff for all α and all t ∈ T ,

(i) the truth valuation ηt defined by ηt(α) = η(t, α) is classically admis-
sible

(ii) η(t, �α) = 1 iff {t′ ∈ T : η(t′, α) = 1} ∈ N(t).

Verify that

19.4. Lemma. Let (T,N) be a neighborhood frame, and let η0 : T×V ar(L�)→
{0, 1, }. For each such function η0 there exists exactly one neighborhood
valuation η defined relatively to (T,N) such that η � V ar(L�) = η0. �

Given any neighborhood semantics F we define both H(F) and CnF in
the familiar way. H(F) denotes the set of all truth-valuations of the form
ηt, where η is a truth-valuation defined relatively to a frame (T,N) ∈ F,
t ∈ T , and CnF, referred to as the consequence preserving truth under
neighborhood valuations defined with respect to frames in F, is a short-
hand for CnH(F). Informally, H(F) can be viewed as the set of admissible
valuations for L� under the interpretation of that language provided by
frames in F.

Denote by NFrame the class of all neighborhood frames.



51

19.5. Theorem (Segerberg [1971]). The class NFrame of all neighborhood
frames is an adequate semantics for ME . The way in which the theo-
rem can be proved is discussed in Section 27 (cf. 27.3). Apply 17.5 to
verify that

19.6. Lemma. For each class F of neighborhood frames the consequence CnF
(defined in L� is structural. �

19.7. Corollary. For each class F of neighborhood frames the consequence
CnF defined in L� is a logic stronger than ME .

20. Relational valuations

20.1. Let T be a non-empty set, U ⊆ T , and let R be a binary relation defined
on T . The triple (T,R, U) is called a relational frame. As in the case of
neighborhood frames, the elements of T are referred to as possible worlds
or points. The relation R is often called an accessibility relation; if t1Rt2
the world t2 is said to be accessible from t1. The set U is referred to as
the set of non-normal worlds. All elements of T/U are called normal. If
U = ∅, the frame is called normal. Instead of (T,R, ∅) we shall write just
(T,R).

The relation frames as an instrument for semantic analyses of modal
logics were defined by S. A. Kripke [1959], [1959a], [1963].

20.2. Let (T,R, U) be a relational frame. A function % : T × L� → {0, 1} will
be said to be a relational valuation for L� defined relatively to the frame
(T,R) iff for all α and all t ∈ T ,

(i) the truth valuation %t defined by %t(α) = %(t, α) is classically admis-
sible

(ii) %(t,�α) = 1 iff for all normal t′ such that tRt′, %(t′, α) = 1.

20.3. Again, given any relational frame semantics we define CnF to be the truth
preserving consequence with respect to the relational valuations defined
relatively to frames in F.

Let RFrame be the class of all normal relational frames.

20.4. Theorem (S. Kripke [1963]). The class RFrame of all normal relational
frames is an adequate semantics for MK .

For some comments on how to prove the theorem, see Section 27 (in
particular 27.3).

Given any two semantics (they need not be of the same kind) call them
equivalent iff they define exactly the same consequence operation.

20.5. Theorem. For each normal relational frame FR there exists a neighbor-
hood frame FN , such that the two frames are equivalent.
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Proof. Given a normal relational frame (T,R) define the neighborhood
function NR of T by

NR(t) = {T ′ ⊆ T : {t′ : tRt′} ⊆ T ′}

and verify that (T,R) and (T,NR) are equivalent. �

From 20.5 and 19.2 it follows that

20.6. Lemma. For each class F of relational frames, CnF is structural. �

Of course, one can easily prove 20.6 directly.

20.7. Corollary. For each class F of normal relational frames the consequence
CnF defined in L� is a logic stronger than MK .



Chapter 5

Henkin’s Style
Completeness Proofs — the
Scope of the Method

21. Completeness lemma

21.1. Given a consequence operation C and truth-valuational semantics H, it
is usually an easy thing to decide whether C is sound with respect to
H, C 6 CnH , or not. As a rule, the proof of completeness or, perhaps,
incompleteness of C with respect to H, is much more involved.

Now, suppose than C has the least closure base X. Then there exists a
least truth-valuational semantics adequate for C. It is (cf. 16.4)

(1) H(X) = {XX : X ∈ H},

XX being the characteristic function of X. Since for any truth-valuational
semantics H1, H2, H1 ⊆ H2 implies that CnH2 6 CnH1 , if H(X) ⊆ H
then CnH 6 CnH(X) = C, and thus C is complete with respect to H. We
have proved that

21.2. Completeness Lemma. Let C be a consequence operation and let X be
a least closure base for C. Then for each truth-valuational semantics H,
C is complete with respect to H iff H(X) ⊆ H. �

What is usually referred to as Henkin’s style completeness proofs are
proofs based on Lemma 21.2.

21.3. It is obvious that in order for X to be the least closure base for C, X must
involve all theories X of C such that no Y ⊆ ThC/X, X =

⋂
Y, and, of

course, it must involve only such theories. (If S is the set of all formulas,
we put

⋂
∅ = S)
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The theories of the kind we have just defined are called irreducible.
Now, a theory X ∈ ThC is said to be maximal relatively to α iff α /∈ X
and for each β, either C(X, β) = C(X) or α ∈ C(X, β). We shall say that
X ∈ ThC is a relatively maximal theory of C iff it is a maximal relatively
to a formula α.

The set of all relatively maximal theories of C is usually denoted by XC .

Observe that a straightforward argument yields

21.4. Lemma. For each X ∈ ThC , X is relatively maximal iff X is irreducible
and non-trivial.

Hence, we have

21.5. Theorem. Let X be a closure base for C. Then the following conditions
are equivalent:

(i) X is the least closure base for C,
(ii) X is the set of all irreducible and non-trivial theories of C,
(iii) X is the set of all relatively maximal theories of C. �

One may easily verify that the theorem can be supplemented by the
following additional condition,

(iv) X is a minimal closure base for C.

What are the conditions under which C has the least closure base?

22. Consequence with Lindenbaum property

22.1. A consequence C is said to have Lindenbaum property, or just to be a
Lindenbaum consequence, iff for each X ⊆ ThC and for each α /∈ X, there
is Y ∈ ThC maximal relatively to α such that X ⊆ Y .

22.2. Theorem. Assume that C is a consequence or assume that C is a struc-
tural consequence. In both cases the following conditions:

(i) C is finitary.
(ii) The set of all maximal theories of C is a closure base for C.
(iii) C has the Lindenbaum property.
(iv) There exists a least closure base for C.

are related exactly in the way defined by the diagram below, i.e. no arrow
(read ‘implies’) can be added.

(i)

(ii) �
�*

HHj
(iii) - (iv)
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Proof. In order to prove that (i) implies (iii) assume that α ∈ X ∈ ThC

and proceed further as follows.

Step 1. Arrange all formulas of the language of C into a sequence

α1, α2, . . . , αi, . . .

Step 2. Define recursively Xi as follows. Put X0 = X, and for each
i > 1 put

Xi =

{
Xi−1, if α ∈ C(Xi−1, αi)
C(Xi−1, αi), otherwise.

Step 3. From the union
⋃

Xi, and apply the assumption that C is
finitary in order to show that C(

⋃
Xi) =

⋃
Xi, i.e. the union

⋃
Xi is a

theory of C. If so, then it is a maximal theory relatively to α and the
proof of (i)→(iii) is concluded.

The implication from (i) to (iii) is often referred to as Lindenbaum
Lemma (or Theorem). In fact the theorem in the version stated by A. Lin-
denbaum (cf. Tarski [1930]) differs from the one mentioned above in two
respects. First, it applies only to the classical logic K; second, it concerns
extensions to maximal not relatively maximal systems. But already J.  Loś
[1953] (cf. also [1951]) noticed that Lindenbaum theorem can be extended
onto all finitary consequences. The second of the two differences we have
mentioned, between the original and the new version of the theorem is, at
least in the case of K, inessential (cf. Suszko [1961]).

The proof given above is a version of the one given by J.  Loś [1953]. In
A. Tarski [1930] the theorem is published without proof; A. Lindenbaum
did not publish his result.

Perhaps it is worth-while to notice that the Lemma holds true even if
the language of C is not denumerable (apply Zorn’s lemma to prove it in
this more general case).

Let us turn back to the proof of our theorem, though, as far as the
positive part of the theorem is concerned not much can be added. The
implications (ii)→(iii), and (iii)→(iv) are straightforward.

In order to conclude the proof we have to show that no arrow can be
added to the diagram of the theorem. This is a more involved part of the
proof.

(i)6→(ii). The intuitionistic logic J may serve here as a suitable example.
As known, the maximal theories of J are the same as those of K, and the
closure base they form is a closure base for K, not for J .

(ii) 6→(i). In this case  Lω is a good example. Let v be a valuation in
a ω-valued  Lukasiewicz matrix. Then Xv = {α : v(α) = 1} is, as one
may prove, a maximal theory. In order to see this apply McNaughton
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[1951] results to show that for each x ∈ Lω there exists a formula α(p) in
one variable p such that for all y ∈ L, α(p) = 1 iff y = x (pedantically:
v(α(p)) = 1 iff v(p) = x, for all valuations in Lω). For instance: p←→ ¬p
is such a formula for x = 1

2 , ¬p←→ (¬p→ p) is such a formula for x = 1
3 ,

p ←→ (p → ¬p) is such a formula for x = 2
3 , etc. Select any formula

β(p1, . . . , pn) is the variables p1, . . . , pn that is not in Xv. Let v(pi) = xi

and let αi(pi) be a formula such that αi(x) = 1 iff x = xi. All αi(pi) are
in Xv, and of course  Lω(β, α1, . . . , αi) = L, Hence Xv is maximal. Since
the set of all valuations forms an adequate semantics for  Lω, the sets of
the kind Xv form a closure base for  Lω. In order to show this apply
16.4 making use of the fact that to each  Lukasiewicz valuation v there
corresponds in a one-to-one manner the truth-valuation v+ defined by
v+(α) = 1 iff v(α) = 1, and the set of all v+ forms a semantics equivalent
to the original one.

The proof that  Lω is not finitary, was given in R. Wójcicki [1976].

(iii) 6→(i). Once more  Lω will do.

(iii) 6→(ii). The logic J is again useful as a suitable example.

(iv) 6→(iii). At the first glance it seems that if the set of all relatively
maximal theories is a closure base for C, and this is exactly the case when
C has the least closure base, then C must have Lindenbaum property. It
need not be so, because if α /∈ C(X) and C(X) =

⋂
X, X being a family

of relatively maximal theories of C, still it may happen that no Y ∈ X is
maximal relatively to α; all Y ∈ X may happen to be maximal with the
respect to some formulas different from α.

The situation we have described is a very special one and it seems
unlikely that any of the known and studied logics is of the kind for which
we are looking. Thus we must resort to an artificial example, i.e. invented
only for the purpose of the proof.

The language of the logic we are going to define will involve only two
connectives, both of them unary. Let they be ♦ and �. By ♦m we shall
denote m repetitions of ♦. The similar convention applies to �. Further-
more, the following abbreviations will be useful

♦m,nα =df ♦m�n♦α, m, n > 1

�m,nα =df �m♦n�α, m, n > 1

Let us denote the logic to be defined by the set of all sequential rules of
the following form:

�m,nα/�m,nα′ – for all α, α′ such that V ar(α = V ar(α′)

♦m,nα/♦m,nα′ – for all α, α′ such that V ar(α = V ar(α′)

{♦m,np/m > 1}/{♦m′,np}/♦m′np – for all n > 1, m′ > 1
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{♦m,nα : m > 1}/α – for all n > 2 and all α ∈ {♦m,n−1β : m > 1}

�m,np/♦m−i,np – for all m > 2, n > 1, 0 6 i 6 m− 1

�m,np/♦m,n+ip – for all m,n > 1, all i > 0

{♦m,n+1p : i > 1}/�m,n – for all m,n > 1

The thing is definitely for fans of logical puzzle and they will find time
and energy necessary to prove that L is just as we want it to be, i.e. it
has the least closure base but it does not have Lindenbaum property. Of
course, L is structural, it is defined by sequential rules. Hence the example
we have produced (the same remark applies to the examples given earlier)
covers both the case when C is assumed to be a consequence without
specifying whether it is structural or not and the case when C is assumed
to be a structural consequence. �

23. Inferential bases for K, H, Jmin, J, and some
useful theorems

23.1. Given any logic C call it derivational (with the respect to →) iff C has an
inferential base of the form (A,MP), where A is a set of axioms, and MP
is Modus Ponens (p, p → q/q). Observe that this definition is equivalent
to the following one: C is derivational iff (C(∅),MP) is an inferential base
for C. Note also that in view of 10.4 all derivational logic are standard.

All logics we are going to deal with in this section, K in particular, are
derivational.

23.2. An inferential base for K
I. Axioms for implication

A1 ` α→ (βα),

A2 ` (α→ (β → γ))→ ((α→ β)→ (α→ γ)).

II Axioms for conjunction

A3 ` (α ∧ β)→ α,

A4 ` (α ∧ β)→ β,

A5 ` (α→ β)→ ((α→ γ)→ (α→ (β ∧ γ)).

III Axioms for disjunction

A6 ` α→ (α ∨ β),

A7 ` β → (α ∨ β),

A8 ` (α→ γ)→ ((β → γ)→ ((α ∨ β)→ γ)).

IV Axioms for negation
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A9 ` (α→ ¬β)→ (β → ¬α),
A10 ` ¬(α→ α)→ β.

V The Law of Excluded Middle

A11 ` α ∨ ¬α.

VI Modus Ponens

MP α, α→ β ` β.

We have defined the inferential base for K, denote it as B(K), somewhat
implicitly by means of schemata of valid inferences. The definition of B(K)
in the proper form, i.e. as a set of rules is straightforward.

By B(J) we shall denote the inferential base that results from B(K)
by removing A11. The intuitionistic logic J is (by stipulation!) the logic
determined by B(J).

By B(Jmin) we shall denote the inferential base that results from B(J) by
removing A10. The logic determined by B(Jmin) is known as Johansson’s
minimal logic (cf. I. Johansson [1937]).

Given any subset Φ ⊆ {I, II, III, IV } the axioms involved in Φ provide
an axiom base for the fragment of J defined by the connectives appearing
in Φ. Thus, e.g. I is an axiom base for the purely implicational fragment
of the intuitionistic logic, and I∪II∪III for the positive fragment of it.
The latter logic is known as Hilbert’s positive logic (cf. D. Hilbert and
W. Ackerman [1928]).

23.3. Adequacy Theorem. B(K) is an adequate inferential base for K, i.e.
K and the logic ClB(K) determined by B(K) coincide.

For a short proof of this well known theorem, cf. 23.7. We have to
precede it with some preparatory results.

23.4. Theorem. Let C be a derivational logic, and let A1, A2 be (schemata
of) theorems of C. Then

DT. β ∈ C(X, α) iff α→ β ∈ C(X)

Proof. The theorem was proved independently by A. Tarski [1930]
and J. Herbrand [1930]. Below we give an outlined version of the proof
to be found in J.  Loś [1955a]. Prove that A1, A2, and MP yields α→ α.
Then define

Yα = {β : α→ β ∈ C(X)}
and verify that C(X, α) ⊆ Yα. This gives the “if” part of Dt. The “only
if” is obvious. �

The equivalence DT is known sa Deduction Theorem. The following is
worthwhile noticing. Let C be a standard logic for with DT holds true.
Then (cf. R. Suszko [1961]) C is derivational and both A1 and A2 are
(schemata of) theorems of C.
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23.5. Lemma. Let XK be the set of all relatively maximal theories of the logic
determined by B(K). For all α, β and for each X ∈ XK the following
conditions hold true:

(∧) α ∧ β ∈ X iff α, β ∈ X,

(∨) α ∨ β ∈ X iff α ∈ X or β ∈ X,

(→) α→ β ∈ X iff α /∈ X or β ∈ X,

(¬) ¬α ∈ X iff α /∈ X.

Proof. Each X ∈ XK contains all instances of the schemata A1 –
A11 and is closed under MP. Apply axioms for conjunction to get (∧). In
order to get the “if” part of (∨) apply A6 and A7. The argument that
establishes the “only if” part is a bit more involved.

Assume that neither α nor β belongs to X, Since X is relatively maximal,
hence for some γ /∈ X, γ is provable by means of B(K) both from X ∪{α}
and X ∪ {β}. Since the Deduction Theorem (cf. 23.4) holds true for
the logic ClB(K) determined by B(K), we conclude that both α → γ and
β → γ are in X. Now X contains A8 and thus (α ∨ β) → γ ∈ X. Since,
by the assumption we made γ /∈ X, thus α ∨ β /∈ X either. The “only
if” part of (→) results from the fact that X is closed under MP. Before
we prove the remaining part of condition (→) let us note that (¬) follows
from (∨), the fact that X contains all instances of A11, and the fact that
α ∧ ¬α→ β is provable from axioms A1 – A11 by means of MP.

Now observe that if β ∈ X, then α → β ∈ X in virtute of A1, and if
α /∈ X, then by (¬), ¬α ∈ X. To conclude the proof it suffices to show
that all inferences of the form

` ¬α→ (λ→ β)

are provable from axioms A1 – A11 by means of MP. We shall leave this
part of the proof to the reader. �

An inspection of the proof given above reveals that (∨) holds true for
any derivational logic in which A1, A2, and A6 – A8 are valid. Hence we
have the following

23.6. Lemma. Let C be a derivational logic in which all inferences of he form
A1 – A2, A6 – A8 are valid. Them for each relatively maximal theory X
of C and for all α, β

(∨) α ∨ β ∈ X iff α ∈ X or β ∈ X.

�

A theory X that has the property defined by (∨) is called prime, or
finitely irreducible.
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23.7. Proof of 23.3. Apply two-valued truth-tables in order to verify that
all inferences in B(K) are valid. This establishes soundness of B(K), i.e.
the logic ClB(K) determined by B(K) is weaker than K.

In order to show that formalization of K provided by B(K) is com-
plete, i.e. K is weaker than the logic determined by B(K), consider the
set XK of all relatively maximal theories of ClB(K). By Lemma 23.5 the
characteristic functions of theories in XK are easily seen to be classically
admissible (cf. 19.2). Apply completeness Lemma 21.2 in order to con-
clude the proof.�

We shall conclude this section with a few, rather simple observations.

23.8. Lemma. Let C be any logic for which all inferences in B(J) are valid.
Then for each formula α and for each relatively maximal theory X of C
at most one of the formulas α, ¬α is in X.

Proof. We shall leave it to the reader to show that the formula

α→ (¬α→ β)

is provable from axioms A1 – A10 be means of Modus Ponens. Once this
is established the lemma follows immediately. �

Observe that in the case of K, Lemma 23.5 and the fact that the Law
of Excluded Middle A11 is a theorem of K imply that for each α, and for
each relatively maximal theory X of K, at least one of the formulas α, ¬α
is in X. This, of course, yields

23.9. Corollary. All relatively maximal theories of K are maximal.

Proof. Assume that X is relatively maximal. Suppose that α /∈ X.
Hence, ¬α ∈ X. Hence, K(X, α) = L. �

24. An inferential base for N and some adequacy
theorems. The method of canonical frames

24.1. Since the condition imposed on epistemic valuations for the language L
coincide with “the positive part” of those of the conditions 18.2 that con-
cern the standard connectives, thus for each epistemic valuation ε for L∼,
the restriction ε � L is an epistemic valuation for L. On the other hand
the meaning of ∼ defined by conditions (∼)+ and (∼)− of 18.2 is that of
the “classical” negation; ∼ just changes the truth value of he sentence to
which it is applied, of course if the sentence has any truth-value at all, i.e.
under the valuation considered its truth-value is determined.

The first of the two observations allows us to conclude that N is an
extension of J and thus, in particular, all axioms for J are theorems of N ,
while the second suggest a way to extend an inferential base for J to an
inferential base for N .
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24.2. Theorem. Denote by B(N) the inferential base that results by enlarging
B(J) by the following schemata of inferences:

N1. `∼ (α ∧ β)←→ (∼ α∨ ∼ β),

N2. `∼ (α ∨ β)←→ (∼ α∧ ∼ β),

N3. `∼ (α→ β)←→ (α∧ ∼ β),

N4. `∼ ¬α←→ α,

N5. `∼∼ α←→ α.

B(n) in as adequate inferential base for N .

24.3. Proof. (some comments) As always one has to start with proving that
the formalization is sound i.e. CnB(N) 6 N . This part of the proof
amounts to routine verifications, and we shall omit it.

Now, in order to establish completeness with the help of Henkin’s meth-
ods, i.e. with the help of Completeness Lemma 21.2, one has to show that
the characteristic functions of relatively maximal theories of CnB(N) are
admissible valuations for N , i.e. they are functions of the form εt, where ε
in an epistemic valuation for L∼ defined relatively to a frame (T,6), and
t ∈ T . (of course, εt is defined by εt(α) = 1 iff ε(t, α) = 1).

Denote by XN the set of all relatively maximal theories of CnB(N). Let
X ∈ XN and let XX be the characteristic function of X. It is not clear
how to find this particular frame (TX ,6X) with respect to which XX is
to be proved to be an epistemic valuation for L∼. Thus Henkin’s method
does not work in an automatic way, rather involves some guessing.

I am afraid that in the case of N the question has no easy solution and,
in fact, the proof of completeness we are looking for cannot be based on
Completeness Lemma but rather on some modification of it.

When the Completeness Lemma is applied directly to a consequence
C and a set of truth-valuations H allegedly adequate for C, we have to
show that H(XC) ⊆ H, and CnH(XC) 6 C, where H(XC) is the set of
characteristic functions of relatively maximal theories of C. Suppose that,
given any H0 ⊆ H, we succeedin proving that CnH0 6 C. Of course, this
suffices to establish completeness of C relative to H. In general, H(XC) is
the most obvious candidate to play the role of H0, but ant always. This
is not just the case of N .

24.4. Proof continued. In order to show that completeness of B(N) we shall use
the method referred to as the method of canonical frames.

Consider the frame (XN ,⊆), where, as we have already defined, XN is
the set of relatively maximal theories of CnB(N). Just this frame will be
referred to as canonical.
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Now, we shall not be interested in all epistemic valuations in (XN ,⊆),
but in a specific function that will be denoted by vN and defined by

vN (X, α) =

{
1, if α ∈ X,

0, if ∼ α ∈ X,

for all X ∈ XN . We shall verify that vN is an epistemic valuation for L∼.
Suppose that this is already done and assume that for some α and some
X0, α /∈ ClB(N)(X0). Then for some relatively maximal theory X ∈ XN ,
X0 ⊆ X and α /∈ X. Clearly, for all β ∈ X, vN (X, β) = 1 but vN (X, α)
is either undetermined or equal 0. Hence α /∈ N(X0). Thus N 6 ClB(N)

which we need to conclude the proof.

(Observe that the set of truth-valuations vN,X′ , X ∈ XN , defined by
vN,X(α) = 1 iff vN (X, α) = 1 plays just the role of the set H0 from
our comments in 24.3, H being interpreted as the set of all admissible
valuations for N . It is a matter of proof, which we shall not present, to
show that the truth valuations vN,X need not be characteristic functions
of relatively maximal theories of ClB(N).)

It is rather an easy task to verify that vN is an epistemic valuation
indeed, Of course, all X ∈ XN contain all formulas of the form A1 – A1-
as well as all formulas of the form N1 – N5, and they are closed under MP.

Clearly, vN satisfies conditions (0) and (1) of 18.2.

Apply A3, A4, and MP (i.e. apply the fact that X ∈ XN contain all
substitution instances of A3, A4 and they are closed under MP) in order
to show that vN satisfies (∧)+.

The proof that vN satisfies (∧)− requires making use of N1 and Lemma
23.6.

Apply again 23.6 along with A3, A4 in order to establish (∨)+.

Use N2 and Axioms for conjunction in order to get (∨)−.

Since theories in X are closed under MP, vN satisfies (→)+.

Apply Axioms for conjunction and N3 to show that vN satisfies (→)−.

In order to see that vN satisfies (¬)+ make use of Lemma 23.8 and N4.

The fact that vN satisfies (¬)− is provable with the help of N4 and N5.

Conditions (∼)+ and (∼)− follow from N5. �

24.5. Proof of 17.4. (An outline). Verify that B(J) is sound, i.e. J =df

ClB(J) 6 CnEFrame. Consider to epistemic frame (XJ ,⊆). Define the
function vJ : XJ × L→ {0, 1} by

vJ(X, α) =

{
1, if α ∈ X,

0, otherwise,
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and verify that vJ is an epistemic valuation for L defined relatively to
(XJ ,⊆). Assume that for some X0 and some α, α /∈ J(X0) and apply vJ

to show that α /∈ CnEFrame. �

Observe that the truth valuations vJ,X , X ∈ XJ , corresponding to vJ

are just the characteristic functions of relatively maximal theories of J .
Hence, in this particular case, Henkin’s methods works without modifi-
cation, though again the use of it involves constructing of the canonical
frame in a suitable manner.

Incidentally, observe that the assumption we made that epistemic valua-
tions are particular functions has no formal motivation. We might as well
assume that epistemic valuations are just functions, i.e. drop “partial” in
Definition 17.2. However, under the assumption we made each epistemic
valuation for L∼ when restricted to L becomes an epistemic valuation for
L. This fact we shall exploit in the proof of the next theorem.

Let the logics C, C ′ be defined in the languages S, S ′ respectively,
S ′ being an extension of S (i.e. it results from S by adding some new
connectives). If C 6 C ′ � S, i.e. C(X) ⊆ C ′(X) ∩ S, for all X ⊆ S, the
logic C ′ is referred to as na extension of C. It is said to be a conservative
extension iff C = C ′ � S.

24.6. Theorem. N is a conservative extension of J .

Proof. Of course, N is an extension of J ; B(N) results by enlarging
B(J). In order to prove that N is a conservative extension assume that
for some α and some X ⊆ L, α /∈ J(X). Let ε be an epistemic valuation
for L defined relatively to (T,6) that falsifies X ` α. By Lemma 18.3 a
ε � V ar(L∼) can be extended to a valuation εN for L∼. Now εN � L is an
epistemic valuation for L and moreover, by Lemma 17.3, εN � L verifies
exactly the same formulas as ε. Hence εN � L falsifies X ` α. Thus εN

falsifies X ` α too, which yields α /∈ N(X) concluding the proof. �

24.7. It is of some interest that Jmin can be determined by epistemic frames of
a certain modified, more general kind. Call a triple (T,6, U) an epistemic
frame with non-normal points iff (T,6) is an epistemic frame, and U ⊆ T .
The elements of U are referred to as non-normal points. Now, modify
Definition 17.2 of epistemic valuations by restricting all quantifiers for all
t′ that the definition involves to T/U , i.e. replace them by ‘for all t′ ∈
T/U ’. Call the valuations defined in this way normal epistemic valuations.
Jmin is just the truth preserving logic complete with respect to all normal
epistemic valuations (or equivalently, with respect to all epistemic frames
with normal points).

For adequacy proof cf. K. Segerberg [1968].
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25. Canonical frames for modal logics

25.1. The technique of canonical models we have presented in the previous sec-
tion was originally invented for solving the problem of completeness of
some modal logics with respect to suitably selected set of relational frames.
As a matter of fact, the epistemic frames are relational frames of a spe-
cific kind though, of course, the way in which the intuitionistic logic and
some logics related to it (Jmin and N among others) are interpreted via
epistemic frames differs from that in which modal logics are interpreted
in relational frames including those that are epistemic.

Since the modal logics are going to deal with will be of the form M̄ ,
M being a modal system based on K (cf. 14.2), they all are derivational
extensions of K. Now, a great deal of results that are valid for K, are
valid for the derivational extensions of that logic. In particular, of a great
use for us will be the following

25.2. Lemma. Let C be a derivational extension of K. Then

(i) All relatively maximal theories of C are maximal, and

(ii) For all α, β and all relatively maximal theories X of C conditions
(∧), (∨), (→), and (¬) of 23.5 are satisfied.

Proof. Repeat the argument by means of which the corresponding
conditions have been established for K.

25.3 The frame FN
L = (XL, NL) will be said to be the canonical neighborhood

frame for the logic ~ML iff

(i) XL is the set of all relatively maximal (and thus maximal) theories
of ML,

(ii) The neighborhood function NL is defined as follows. For each α we
put

Xα
L = {X ∈ XL : α ∈ X}

and then, for each X ∈ XL, we define

NL(X) = {X : for some α, X = Xα
L ∩ X�α

L }

25.4. The frame FR
L = (XL, RL) will be said to be the canonical relational frame

for ~ML iff

(i) XL is the set of all relatively maximal (and thus maximal) theories
of ~ML,

(ii) For all x, y ∈ XL, XRLY iff, for all α, α ∈ Y whenever �α ∈ X.
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25.5. Before we discuss adequacy of the two definitions with respect to the
purpose the canonical frames are expected to serve, let us define for each
logic ML the following classes of frames

NFrame( ~ML) = {F ∈ NFrame : ~ML 6 CnF}

RFrame( ~ML) = {F ∈ RFrame : ~ML 6 CnF}

Given any class F of frames of the same kind, define ζ(F) to be the set of
all sentences α verified by all neighborhood/relational valuations defined
relative to frames in F. The set ζ(F) is often referred to as the content of
F, and the elements of ζ(F) as tautologies of F. Of course, ζ(F) is merely
another notation for CnF(∅). Define

NFrame(ML) = {F ∈ NFrame : ML ⊆ ζ(F)},

RFrame(ML) = {F ∈ RFrame : ML ⊆ ζ(F)}.

Of course (the proof is straightforward) the following holds true:

25.6. Lemma. For each modal system ML based on classical logic

a. NFrame( ~ML) =NFrame(ML),

b. RFrame( ~ML) =RFrame(ML). �

Incidentally, let us observe that by 20.5, clause b. of 25.6 is a corollary
to a.

Now we are in a position to examine adequacy of Definitions 25.3 and
25.4.

25.7. Fundamental Lemma for Neighborhood Canonical Frames
(Segerberg [1971]). Let ML be a classical modal system based on K and
let H(XL) be a set of all characteristic functions of relatively maximal
theories of ~ML. Then

H(XL) ⊆ H(FN
L ),

FN
L being the neighborhood canonical frame for ML.

Proof. Let ηL be a neighborhood valuation in FN
L such that for each

propositional variable p, ηL(X, p) = 1 iff p ∈ X. Apply induction to prove
that for each α, ηL(X, α) = 1 iff α ∈ X. By Lemma 25.2 the part of the
inductive argument that concerns ∧, ∨, →, and ¬ is straightforward. Let
us consider formulas of the form �α.

Assume that

(1) ηL(X, �α) = 1,

This implies

(2) {X ′ ∈ XL : ηL(X ′, α) = 1} ∈ NL(X)



66 CHAPTER 5. HENKIN’S STYLE COMPLETENESS PROOFS. . .

which by the assumption of the inductive argument, yields, that for some
β ∈ Xα, Xα = Xβ and

(3) �β ∈ X.

By the hypothesis of the induction, Xα = Xβ implies that ηL(X, α) =
ηL(X, β) and hence, we have ηL(X, α←→ β) = 1, i.e. α←→ β ∈ X.

Apply the assumption that ML is classical in order to get �α←→ �β ∈
X, which by (3) yields

(4) �α ∈ X

The argument to the effect that (4) implies (1) is straightforward. �

The reader will easily prove the following.

25.8. Fundamental Lemma for Relational Canonical Frames (Segerberg
[1971]). Let ML be a normal modal system based on K and let H(XL) be
a set of all characteristic functions of relatively maximal theories of ~ML.
Then

H(XL) ⊆ H(FR
L ),

FR
L being the relational canonical frame for ML. �

26. Are all classical modal systems natural? Sys-
tem K4.3W

26.1. From the two lemmas we have stated above and Lemma 25.6 it follows
immediately that

a. If ML is classical and FN
L ∈NFrame(ML) then ~ML = CnFN

L
.

b. If ML is normal and FR
L ∈RFrame(ML) then ~ML = CnFN

L
.

K. Segerberg [1971] suggested to call a classical (normal) system ML

natural when ML = ζ(FN
L ) (ML = ζ(FR

L ), resp.) and asked the question
whether all modal systems are natural.

26.2. The question was answered in negative by R. I. Goldblatt [1976]. The
system he examined was K4.3W , thus MK4.3W under our convention (cf.
9.4). It results from MK by adding as new axioms all formulas of the form

K1. �α→ ��α,

K2. (♦α ∧ ♦β)→ (♦(α ∧ β) ∨ ♦(α ∧ ♦β) ∨ ♦(β ∧ ♦α)),

K3. �(�α→ α)→ �α.

Let us examine the system closer. But before we do that, some auxiliary
notions will be needed.
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26.3. Let F = (T,R) be a relation frame, and let t ∈ T . Denote by Tt the least
subset T ′ of T such that t ∈ T ′ and T ′ is closed under R (i.e. if t1 ∈ T ′ and
t1Rt2, then t2 ∈ T ′). The frame FL = (Tt, R � Tt) is called the subframe
of F generated by t.

If F = (T,N) is a neighborhood frame, the notion of the subframe Ft

generated by t is defined as follows. We define Tt, t ∈ T , to be the least
subset T ′ ⊆ T such that t ∈ T , and for all t′ ∈ T ′,

⋃
N(t′) ⊆ T ′. Then we

put Ft = (Tt, N � Tt).

If for some point t, F = Ft, the frame will be called principal and t will
be called a principal point of F .

Clearly, the following holds true.

26.4. Lemma. Let F be a relational (neighborhood) frame and let T be the set
of points of reference of T . Then,

(i) F and {Ft : t ∈ T} are equivalent, i.e. CnF = Cn{Ft:t∈T}. Moreover

(ii) If F is principal and t is a principal point of F then F and Ft are
equivalent. �

Denote by NFrame∗(ML) the class of all principal neighborhood frames
of ML, and denote by RFrame∗(ML) the set of all principal relational
frames of ML. As an immediate corollary to Lemma 26.4 we have

26.6. Theorem. For each modal system ML the semantics NFrame∗(ML) is
equivalent to NFrame(ML), and the semantics RFrame∗(ML) is equivalent
to RFrame(ML). �

Now, we are in a position to turn back to the question of our concern.
The following two theorems were established by K. Segerberg [1970].

26.6. Theorem. The class RFrame(MK4.3W ) of all principal frames of MK4.3W

consist of all relational frames (T,R) such that

(i) T is finite,

(ii) R is a linear ordering on T . (i.e. R is antireflexive, antisymetric, and
transitive).

26.7. Theorem. MK4.3W = ζ(RFrame(MK4.3W )).

What Theorem 26.7 amounts to is that ~MK4.3W is weakly adequate
with the respect to all finite and linear relational frames (cf. 16.3b).

Suppose that MK4.3W is natural, i.e. ~MK4.3W is weakly adequate with
the respect to the canonical frame. Then, by 26.1b, ~MK4.3W is adequate
with respect to the relational canonical frame, and thus it is adequate
with the respect to the whole class RFrame(MK4.3W ). by 26.5 this implies
that ~MK4.3W is adequate with respect to RFrame( ~MK4.3W ). And this is
exactly what R. I. Goldblatt, [1976] shows not to be true.
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26.8. Theorem. ~MKK4.3W is not adequate with the respect to the class
RFrame(MK4.3W ) of all frames for MK4.3W .

Proof. Verify that each finite subset X ′ of the set X = {♦kp : k ∈ ω}
is satisfied by a relational valuation in a frame of MK4.3W , and hence it
is consistent with respect to ~MK4.3W . Since ~MK4.3W is standard, this
implies the consistency of X with respect to ~MK4.3W .

In turn, verify that there is no principal frame for MK4.3W (all of
them, 26.6, are finite and linear) in which X is satisfied. Thus, by Lemma
26.4, there is no frame for MK4.3W in which X is satisfied. This implies
that X is inconsistent with the respect or the consequence determined
by RFrame(MK4.3W ), and hence this consequence and ~MK4.3W do not
coincide. �

27. The problem of completeness

27.1. It turns out (cf. 26.8) that modal systems need be strongly complete
with respect to the relational frame semantics. Are they always weakly
complete? The question has been answered negative, but before we dwell
on that, let us define the classes of frames for some of the modal systems.
We have to start with some auxiliary definitions (cf. e.g. Segerberg [1976]).

a. Let (T,N) be a neighborhood frame. A reference point t ∈ T will be
said to be normal iff N(t) is a filter (i.e. N9t) 6= ∅ and for all x, y ⊆ T ,
x, y ∈ N(T ) iff x ∩ y ∈ N(t)). If N(t) = ∅ we say that t is singular.
A reference point that is either normal or singular is called regular. The
frame itself is called normal, singular or regular according to whether its
reference points are all normal, all singular, or all regular. Thus both
normal and singular frames are regular.

b. Let (T,R) be a normal relational frame. We shall say that (T,R)
is reflexive, symmetric, transitive or universal (according to whether R is
reflexive, symmetric, transitive or universal).

27.2. As it is known (cf. e.g. Segerberg [1971])

a. NFrame(ME) = the class NFrame of all neighborhood frames.

b. NFrame(MC) = the class of all regular neighborhood frames.

c. NFrame(MK) = the class of all normal neighborhood frames.

d. RFrame(MK) = the class RFrame of all normal relational frames.

e. RFrame(MT ) = the class of all normal reflexive frames.

f. RFrame(MS4) = the class of all normal transitive frames.

g. RFrame(MB) = the class of all normal symmetric frames.

h. RFrame(MS5) = the class of all normal universal frames.
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(Just for an illustration let us prove a. Of course, we have to prove only
that NFrame ⊆ NFrame(ME), or equivalently that ME ⊆ ζ(NFrame).

To begin with observe that if α ∈ Sb(K(∅)) then α ∈ ζ(NFrame)
because all neighborhood valuations are classically admissible. Now α ∈
ME iff α is provable from Sb(K(∅)) by means of Modus Ponens MP and
Replacement Rule RE. But ζ(NFrame) is closed under MP and RE, hence
ME ⊆ ζ(NFrame). �

Since to each relational frame there corresponds a semantically equiv-
alent neighborhood frame each of clauses f., g., f., has its neighborhood
counterpart.

27.3. In view of 25.8 and 25.9 it is enough to verify that for each of the logics
considered above the canonical frame (neighborhood for all of them, rela-
tional for normal) belongs to the class of frames characteristic of a given
logic to obtain

a. The logics ~ME , ~MC , ~MK , ~MT , ~MS4, ~MB , ~MS5 are complete with
the respect to neighborhood frames, and thus NFrame(M) is an adequate
semantics for each of the logic M listed above.

b. Those of the logics listed above that are normal, are complete with
the respect to relational frames, and thus RFrame(M) is an adequate
semantics for each such logic M .

27.4. As we already know there are some modal logic that are not complete with
the respect to relational frames. Of this kind is MK4.3W , the system we
have discussed in the previous section. But the system MK4.3W itself is
determined by relational frames. This gives rise to the following question:
are all normal modal systems (not logic but just systems!) complete with
respect to relational frames?

K. Fine [1974] and S. K. Thomason [1974] presented independently some
examples of normal systems incomplete with respect to relational frames.
Their results concerned relational frames, but they opened way to solve
similar problem for neighborhood frames. M. S. Gerson [1975] showed
that neither K. Fine’s system nor that defined by S. K. Thomason are
complete with respect to neighborhood frames.

From that time many further examples of systems incomplete with
respect to both relational and neighborhood frames were given. A very
simple one, incomplete with respect to relational frames, has been invented
by J. K. van Benthem [1978]. It is the least normal modal system that
contains all formulas of the form

�(�α→ ♦α)→ �(�(�α→ α)→ α,

♦ being defined as usual by ♦α =df ¬�¬α.

27.5. M. S. Gerson [1975a], [1976] and D. Gabbay [1975] gave examples of nor-
mal modal systems that are complete with respect to neighborhood frames
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but they are not complete with respect to relational frames. This proves
that for some neighborhood semantics there does not exists an equivalent
relational semantics.

27.6. Given a normal modal system M define

(1) δRFrame(M) = card{M ′ : RFrame(M ′) = RFrame(M)},

(2) δNFrame(M) = card{M ′ : NFrame(M ′) = NFrame(M)},

(M ′ running over normal modal systems).

δRFrame(M) and δNFrame(M) are called degrees of incompleteness of
the system M with respect to relational frames and neighborhood frames,
respectively. Of course, M is complete with respect to relational (neigh-
borhood) frames if δRFrame(M) = 1 (δNFrame(M) = 1, resp.)

Just substitute ~M for M and ~M ′ for M ′ in (1) and (2) to get the def-
initions of δRFrame( ~M) and δNFrame( ~M): the degree of incompleteness
of the logic ~M with respect to relational frames, and that with respect to
neighborhood frames.

27.7. Quite surprising result was established by W. J. Blok, [1978]. He proved
that for each normal modal system M , either

δRFrame(M) = 1

or
δRFrame(M) = 2ℵ0 .

Is the same true about NFrame(M)? Thus far this question remains
open. W. Dziobak [1978], adopting some ideas of Blok’s paper just men-
tioned, succeeded in showing that if either

�α→ α ∈M

or
�α→ ♦α, �nα→ �n+1α ∈M,

for all α and for some n > 0, and M is normal, then δRFrame(M) = 2ℵ0 .



Chapter 6

Finitary Consequences —
Some Semantic
Equivalences of the
Property

28. Some preparatory results

28.1. Let X be a family of sets of formulas. We say that X is inductive iff for
each upward directed family Y ⊆ X the union

⋃
Y ∈ X. (A family of sets

Y is said to be upward directed iff for all X, Y ∈ Y there is Z ∈ Y such
that X ∪ Y ⊆ Z).

28.2. Let all X1, i ∈ I 6= ∅ be sets of formulas, and let ∇ be a filter on I. Define

α ∈
⋂
∇
{Xi : i ∈ I} iff {i ∈ I : α ∈ Xi} ∈ ∇

The set
⋂
∇{Xi : i ∈ I} (or just

⋂
∇Xi under the abbreviated notation)

will be referred to as the product of Xi reduced modulo ∇; a reduced prod-
uct, if ∇ is fixed. If ∇ is an ultrafilter,

⋂
∇Xi will be called an ultraproduct

of Xi.

Observe that {I} is a filter on I, and
⋂
{I}Xi =

⋂
Xi, hence the notion

of a reduced product provides a generalization of that of an intersection.

A family X of sets of formulas will be said to be closed under reduced
products (ultraproducts) iff for each {Xi : i ∈ I} ⊆ X, and each (ultra)filter
∇ on I,

⋂
∇Xi ∈ X.

28.3. Lemma.
⋂
∇{Xi : i ∈ I} =

⋃
{
⋂
{Xi : i ∈ F} : F ∈ ∇}, for all filters ∇

on I.

71
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Proof. (⊆). Define I(α) = {i ∈ I : α ∈ Xi}. If α ∈
⋂
∇Xi then,

by the definition, I(α) ∈ ∇ and obviously α ∈
⋂
{Xi : i ∈ I(α)}. Hence

α ∈
⋃
{
⋂
{Xi : i ∈ F : F ∈ ∇}.

(⊆). Suppose that α ∈
⋂
{Xi : i ∈ F}, for some F ∈ ∇. Then each Xi,

i ∈ F , contains α and hence F ⊆ I(α). Thus I(α) ∈ ∇, for ∇ is a filter.
This yields α ∈

⋂
∇Xi, concluding the proof. �

28.4. Lemma. Let X0 be a family of sets of formulas. Define X = {
⋂

Y : Y ⊆
X0}. Then

a. If X0 is closed under reduced products, so is X.
b. If X0 is closed under ultraproducts, so is X.

Proof. Assume that X0 is closed under reduced products (ultraprod-
ucts) and consider any family {Xi : i ∈ I} ⊆ X0. Let ∇ be a filter
(ultrafilter) on I. For each i ∈ I define {Xi,j : j ∈ Ji} to be a subfamily
of X0 such that,

(1)
⋂
{Xi,j, : j ∈ Ji} = Xi.

Put J = {(i, j) : i ∈ I, j ∈ Ji} and define the set ∇0 as follows. For each
F ∈ ∇ put

(2) F0 = {(i, j) : i ∈ F, j ∈ Ji},

and then define

(3) ∇0 = {F0 : F ∈ ∇}.

Verify that ∇0 is a filter (ultrafilter) on J and thus

(4)
⋂
∇0
{Xi,j : (i, j) ∈ J} ∈ X0.

Apply Lemma 28.3 in order to get

(5)
⋂
∇0
{Xi,j : (i, j) ∈ J} =

⋃
{
⋂
{Xi,j : (i, j) ∈ F0} : F0 ∈ ∇0}.

But

(6)
⋂
{Xi,j : (i, j) ∈ F0} =

⋂
{Xi : i ∈ F},

which yields

(7)
⋃
{
⋂
{Xi,j : (i, j) ∈ F0} : F0 ∈ ∇0} =

⋃
{
⋂
{Xi : i ∈ F} : F ∈ ∇}.

Apply one more Lemma 28.3, this time to get

(8)
⋂
∇
{Xi : i ∈ I} ∈ X0 ⊆ X

thus concluding the proof. �
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29. Conditions for a consequence to be finitary

29.1. Theorem. Let C be a consequence. The following conditions are equiv-
alent

(i) C is finitary,

(ii) ThC is inductive,

(iii) ThC is closed under ultraproducts,

(iv) There is a closure base X for C closed under ultraproducts,

(v) ThC is closed under reduced products,

(vi) There is a closure base X for C closed under reduced products.

Proof. (i)→(ii). Assume (i) and consider any non-empty upward
directed subset X ⊆ ThC . If α ∈ C(

⋃
X) then, by (i), there exists a finite

subset X0 ⊆
⋃

X such that α ∈ C(X0). Hence there exists a finite subset
X0 ⊆ X such that α ∈ C(

⋃
X0). But X is upward directed, and thus

for some Y ∈ X,
⋃

X0 ⊆ Y . This yields α ∈ C(Y ) = Y ⊆
⋃

X. It
turns out that C(

⋃
X) ⊆

⋃
X, i.e. ThC is inductive.

(ii) → (iii) Assume (ii) and consider any family X = {Xi : i ∈ I} of
theories of C. Let ∇ be an ultrafilter on I. Define

X∗ = {
⋂
{Xi : i ∈ F} : F ∈ ∇}

Of course,
⋂

X∗ ∈ ThC . Moreover, if X =
⋂
{Xi : i ∈ F}, and Y =⋂

{Xi : i ∈ G}, for some F,G ∈ ∇, then X ∪ Y ⊆
⋂
{Xi : i ∈ F ∩G}.

Since F ∩ G ∈ ∇, we conclude that family X∗ is upward directed. Now,
note that by Lemma 28.3,

⋂
∇ X =

⋃
X∗ and, by (ii),

⋃
X∗ ∈ ThC .

(iii) ←→ (iv). The part “if” obvious. The part “only if” by Lemma
28.4.

(iii) → (v). Consider any family X = {Xi : i ∈ I} of theories of C and
any proper filter ∇ on I. Define F∇ to be the set of all ultrafilters ∇′ such
that ∇ ⊆ ∇′. As known, ∇ =

⋂
F∇

Put I(α) = {i ∈ I : α ∈ Xi} and observe that the following
conditions are equivalent

a. α ∈
⋂
∇ X

b. I(α) ∈ ∇
c. I(α) ∈ ∇′, for all ∇′ ∈ F∇,

d. α ∈
⋂
∇, for all ∇′ ∈ F∇

Thus
⋂
∇ X =

⋂
{
⋂

tr′ X : ∇′ ∈ F∇}. By (iii)
⋂
∇′ X ∈ ThC , for all

∇′ ∈ F∇. Since ThC is a closure system, we conclude that
⋂
∇ X ∈ ThC
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If ∇ is not proper then
⋂
∇ X = S, S being the set of all formulas

of the language of C and, of course, S ∈ ThC . Hence for all filter ∇,⋂
∇ X ∈ ThC

(v) ←→ (vi). The part “if” obvious, “only if” by Lemma 28.4.

(v) → (i). Let α /∈ C(X ′), for any finite X ′ ⊆ X. Assume (v). We
have to show that α /∈ C(X).

Let I be the family of all finite subsets of X. For each i ∈ I define
Xi = {j ∈ I : i ⊆ j} and put

∇ = {F ⊆ I : for some i ∈ I, Xi ⊆ F}.

Since Xi ∩ Xj = Xi∪j , ∇ is a filter.

Consider the family X = {C(i) : i ∈ I}. By 28.3 we have,

X ⊆
⋂
∇

X, α /∈
⋂
∇

X.

On the other hand, by (v),
⋂
∇ X ∈ ThC , and hence α /∈ C(X), which

concludes the proof. �

29.2. Given a set {vi : i ∈ I} of truth valuations for a language S, call a
valuation v the direct product of the valuations vi, v = ui vi (or more
pedantically v = u {vi : i ∈ I}) iff for each α

v(α) = 1 iff for all i ∈ I, vi(α) = 1.

Now, let ∇ be a filter on I. We shall say that a valuation v is the
product of vi, i ∈ I, reduced modulo ∇ (a reduced product, if ∇ is fixed),
in symbols v = ut rvi (or v = u∇ {vi : i ∈ I}) iff for each α

v(α) = 1 iff {i ∈ I, vi(α) = 1} ∈ ∇

If ∇ is an ultrafilter, v is called the ultraproduct of vi.

A set of truth-valuations H is said to be closed under reduced products
(ultraproducts) iff for each {vi : i ∈ I} ⊆ H, and for each filter
(ultrafilter) ∇ on I, u∇vi ∈ H.

All these definitions are obvious as well as the following

19.3. Lemma. Let each vi, i ∈ I, be a characteristic function for the
corresponding Xi, i ∈ I. Then

uivi is the characteristic function for
⋂

i Xi, and for each filter ∇ on I,

u∇vi is the characteristic function for
⋂
∇Xi. �

The lemma we have just allows us to translate Theorem 29.1 onto the
language of truth-valuation. In particular we have
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29.4 Corollary For each consequence C, C is finitary iff there exists a set
of truth-valuations H for S such that

(i) C = CnH , and
(ii) H is closed under ultraproducts. �

29.5 Note The notion of a reduced product of truth-valuations was examined
by H.van Fraassen [1973] who, in particular, proved 29.4. The equivalence
of conditions (i) and (ii) of 29.1 is due to J. Schmidt [1952]. The idea to
link Schmidt’s theorem with ultraproducts via the notion of ultraproducts
of sets of formulas, as well as the details of the proof of 29.1, Lemma 28.4
including, are due to M. Maduch.

30. All  Lη, n ∈ ω, are standard: an example of
application of theorem 29.1.

30.1. Given any valuation λ in  Lukasiewicz truth-table algebra define the bi-
nary truth valuation λ+ corresponding to λ in an expected way, i.e. by
λ+(α) = 1 iff λ(α) = 1. Denote by H(Lη) the set of truth valuations
λ+, λ being a valuation in Lη. Of course, for each η = 2, . . . , ω

 Lη = CnH(Lη)

We shall prove that

30.2. Lemma. For each finite n > 2, the set of truth valuations H(Lη) is
closed under ultraproducts.

Proof. Given any family {λi, i ∈ I} of valuations Ln, n finite, and
any ultrafilter ∇ on I, define a function λ : L→ Ln by

(1) λ(α) = x iff {i ∈ I, λi(α) = x} ∈ ∇

In order to verify that λ is well defined, observed that for each α there is
exactly one x ∈ Ln for which the right hand side of (1) is valid.

Indeed, put Ix(α) = {i ∈ I : λi(α) = x}. We have

(2) Ix(α) ∩ Iy(α) = 0,

for all x 6= y. This implies that at most one IX(α) belongs to ∇. At
the same time, though perhaps in a less straightforward way, this implies
that at least one Ix(α) is in ∇. In order to see the latter define

(3) Īx(α) =
⋃
{Iy(α) : y ∈ Ln {x}}

Since is an ultrafilter, for each x either Ix(α) ∈ ∇ or Īx(α) ∈ ∇. Now
suppose that Ix(α) /∈ ∇, for any x ∈ Ln. Then for all x ∈ Ln,
Īx(α) ∈ ∇, and hence, also

(4)
⋂
{Īx(α) : x ∈ Lx} ∈ ∇
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But this is impossible since this intersection is the empty set. The con-
tradiction at which we arrived yields Ix(α) ∈ ∇ for some x.

In order to complete the proof we have to verify that λ is a homo-
morphism from � into Ln, i.e. it is compatible with the operation of
Ln. Consider, for instance, →. Suppose that λ(α → be) = x, i.e.
{i ∈ I : λi(α → β) = x} ∈ ∇. We have to show that

x = min(1, 1− λ(α) + λ(β))

(cf. 9.1 ( L→)).

Suppose that λ(α) = x1, λ(β) = x2. Hence {i : λi(α) = x1}, {i :
λi(β) = x2} ∈ ∇, which yields {i : λi(α) = x1 and i : λi(β) = x2} ∈ ∇.
But

{i : λi(α) = x1 and i : λi(β) = x2} ⊆
{i : 1− λi(α) + λi(β) = 1− x1 + x2},

and hence the latter set is in ∇. This obviously implies that still larger
set {i : min(1, 1 − λi(α) + λi(β)) = min(1, 1 a x1 + x2)} ∈ ∇
{i : min(1, 1 − x1 + x2) = x} ∈ ∇ as desired.

The cases of ∧, ∨, lnot are left to the reader. �

As an immediate corollary to the lemma we have proved we have

30.3. Theorem. All  Lukasiewicz logics  Ln, n finite, are standard. �

Verify that the operation →n in Ln that correspond to the connective
→n (cf. 13.1) has the following property

x →n y = min(1, n− n(x + y))

Use this to show that

30.4. Lemma. For each  Ln, n finite,

α ∈  Ln+1(X, β) iff β →n α ∈  Ln + 1(X).

�

The lemma, and Theorem 30.3 yield

30.5. Theorem. All  Ln, b finite, are derivational.

30.6. Corollary. For each finite n, ( Ln(∅),MP ) is an inferential base for  Ln.



Chapter 7

Logical Matrices–Main
Notions and Completeness
Theorems

31. Matrices and matrix semantics

31.1. A logical matrix for a propositional language S is a couple M = (Å,D)
where Å is an algebra similar to S and D ⊆ A, A being the set of elements
of algebra Å. The elements in D are referred to as the designated elements
of M . If M is a logical matrix, M̄ will denote the set of its designated
elements, i.e. we put M̄ = D, if M = (Å,D).

Observe that we rule out neither that the set of designated elements
D = ∅ nor that D = A. The matrices of the form (Å, ∅) and (Å, A) will
be referred to as trivial. One element trivial matrices of the form (Å, A)
(i.e. trivial matrices of this form such that Å is a one element algebra) will
be denoted by τ (τS if it desirable to indicate the language S explicitly),
while one element trivial matrices of the form (Å, ∅) will be denoted as
τ0 ( or τ0

S , respectively). Of course, all matrices of the form τ for the
same language S are isomorphic, the same remark applies to matrices of
the form τ0. The class of all isomorphic copies of a τ , i.e. the class of all
matrices of the form τ for a fixed language S, will be denoted by I(τ),
similarly I(τ0) denotes the class of isomorphic copies of τ0.

31.2. Let M = (Å,D) be a logical matrix for S. Then, homomorphisms h
from S into Å, h ∈ Hom(S, Å) will be referred to as valuations in M .
Similarly as in the case of truth–valuations, given an inference H ` α and
a valuation (possibly partial) h we shall say that h satisfies (or verifies
) X ` α, if either h(α) ∈ M̄ or h(β) /∈ M̄ for some β ∈ X. If h(α) /∈
M̄ , and h(β) ∈ M̄ for all β ∈ X we shall say that h falsifies X ` α.
The valuation h will be said to satisfy (verify) X, if h(α) ∈ M̄ , for all

77
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α ∈ X, and it will be said to falsify X when h(α) /∈ M̄ , for some α ∈ X.
Accordingly, h verifies (falsifies) α if h(α) ∈ M̄(h(α) /∈ M̄). Occasionally,
if h(α) ∈ M̄(h(α) /∈ M̄) we shall refer to α as true (false) under h. If for
some valuation h all formulas in X are true under h, the set X will be
called satisfiable.

Under the truth condition set out, to each valuation h in M there
corresponds a truth–valuation h+ defined by

h+α = 1 iff h α ∈ M̄.

The set of all truth valuations defined relatively to M will be denoted by
H(M).

31.3. The symbol CnM will denote the strongest consequence preserving truth
under H(M), i.e. it will serve as abbreviation for CnH(M). Of course,

α ∈ CnM (X) iff for all valuations h in M , h α ∈ M̄ , whenever hX ⊆ M̄ .

Classes of similar matrices (i.e. for the same language S ) will be
referred to as (matrix) semantics. Given such a semantics K, we define
H(K) =

⋃
{H(M) : M ∈ K}, and we abbreviate CnH(K) as CnK. One

verifies easily that:

a. For each K, H(K) is a logical space and thus CnK is structural,

b. CnK = inf{CnK : M ∈ K}.

31.4. The following convention will be observed. Whenever we shall use the
symbol CnK (or CnM ) we shall assume that the consequence it denotes
is defined in a denumerable language S corresponding to the matrices in K
(to M) in the sense that all matrices in K (the matrix M) are matrices for
S. All languages we deal with are assumed to be denumerable, if otherwise
is not stated explicitly. This assumption becomes particularly important
now, because consequences defined by the same class K of matrices but in
different languages, say S1, S2, of different cardinality may have different
properties. For instance CnK,S1 may be finitary while CnK,S2 not. Of
course this cannot happen if S1, S2 are of the same cardinality and thus
isomorphic.

31.5. Note. The idea of logical matrices goes back to Ch. Pierce [1885] and
E. Schröder[1891] who were the first to apply truth tables (Werttaffein
in German) in dealing with logical problems. Of course, both Pierce
and Schröder restricted their attention to the classical logic only. In a
rigorous and general way the notion of a logical matrix was defined by
J.  Lukasiewicz and A. Tarski [1930]. The definition given in this Section
is (up to some inessential details) the same as that of  Lukasiewicz and
Tarski.

The foundations of the theory of logical matrices were set in J.  Loś [1949],
and in a series of papers by J. Kalicki [1950], [1950a], [1950b], [1952]. Of
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considerable importance are papers by M. Wajsberg [1935], S. Jaśkowski
[1936], and A. Tarski [1938]. A systematic investigations into the theory
brings a survey paper by R. Suszko [1957] which, in matrices (cf. 32.2), and
more generally, Lindenbaum methods in application to logical matrices.

32. First two completeness theorems

32.1. Given any logic C, denote by Matr(C) the class of all matrices M , such
that C 6 CnM . They will be referred to as matrices of C. Let S be the
language of C. Observe that

a. For each X ⊆ S, (S, C(X)) is a matrix for C, moreover
b. C(∅) = Cn(S,C(∅)).

Indeed, valuations in matrices of the form (S, X), are endomorphisms
of S, i.e. in our terminology substitutions. Now, assume that α ∈ C(X)
and consider any matrix of the form (S, C(Y )). If for some valuation
(substitution) e, eX ⊆ C(Y ), then by structurality of C (C is assumed to
be a logic !) and condition T2 of definition 2.2 of consequence operation
we have eC(X) ⊆ C(eX) ⊆ C(C(Y )) = C(Y ). Hence e α ∈ C(Y ) which
yields α ∈ Cn(S,C(Y )) and proves a.

From a. it follows that C(∅) ⊆ C(S,C(∅)). To have the converse as-
sume that α /∈ C(∅), and verify that under the identity substitution the
assumption yields α /∈ Cn(S,C(∅)).

32.2. Proposition 32.1b is known as Lindenbaum theorem. In honor of him the
matrices of the form (S, C(X)) are called Lindenbaum matrices. Now, we
define

�C= {(S, C(X)) : X ⊆ S},
and we shall call �C Lindenbaum bundle (of matrices). As we shall see,
Lindenbaum matrices are of enormous importance in matrix investiga-
tions.

As an almost immediate corollary to 32.1a we have

32.3. The First Completeness Theorem. Each structural consequence C
is complete with respect to Matr(C), i.e. CnMatr(C) 6 C (and thus it is
adequate as well, i.e. CnMatr(C) = C).
Proof. Let α /∈ C(X). Apply the identity substitution to verify that
α /∈ Cn(S,C(X)). By 32.1a (S, C(X)) ∈Matr(C). �

Observe that the proof of 32.3 establishes not only 32.3 but also

32.4. The Second Completeness Theorem (R. Wȯjcicki [1970]) Each
structural consequence C is complete (and hence adequate) with respect
to Lindenbaum bundle �C . �

As usual, two semantics (of any kind whatsoever) are called equivalent
if they determine the same consequence. Thus by 32.3 and 32.4 we have
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32.5. Corollary. For each structural consequence C, the semantics
Matr(C) and �C are equivalent.

Since C 6 C ′ iff Th′C ⊆ ThC (cf. 4.2) we have

32.6. Corollary. Let C be structural. For each C ′ ∈ [C)0, there exists
K ⊆�C such that C ′ = CnK.

33. Simple matrices and two more completeness
theorems

33.1. We shall apply symbols of the form ≡Θ to denote equivalences, congru-
ences in particular. Instead of a =Θ b we shall rather write a = b(Θ) (a
coincides with b modulo Θ).

Now, given an algebra Å and a congruence ≡Θ on Å,

a. |a|Θ denotes the equivalence class {b : a ≡ b(Θ)} of a,

b. Å/Θ, denotes the quotient of Å by Θ,

c. For each A ⊆ Å, we put A/Θ = {|a|Θ : a ∈ A}.

33.2. Let M = (Å,D) be a logical matrix. A congruence ≡Θ on Å is said to be
a congruence on M (a matrix congruence) iff for each a ∈ D, |a|Θ ⊆ D.

If ≡Θ is a congruence on M , we define

(q) M/Θ = (Å/Θ, D/Θ),

and we shall refer to M/Θ as the quotient of M by Θ.

Observe that definition (q) makes sense when ≡Θ is a congruence on
Å we shall merely, not necessarily on M . If ≡Θ is a congruence on Å
we shall refer to M/Θ as an algebraic quotient of M . It need not be a
matrix quotient; the latter being meant to be the quotient by a matrix
congruence.

The reader will find it very easy to verify that

33.3 Lemma. For each matrix M and for each matrix congruence ≡Θ, M and
M/Θ are equivalent. �

A matrix M is said to be simple, if there is no congruence on M but
identity. Of considerable importance is the following

33.4 Lemma. (i) For each matrix M the relation ≡M̄ defined on the set of ele-
ments of (the algebra of) M by a ≡ b(M̄) iff a ≡ b(Θ) for some congruence
Θ on M , is a congruence on M , and moreover,

(ii) ≡M̄ is the greatest congruence on M , and hence M/M̄ is a simple
matrix.



81

Proof. The proof goes by easy verifications. Make use of the fact that
congruences on any algebra Å form a complete lattice, and moreover for
each set {≡t: t ∈ T} of congruences, the lowest upper bound of that set
is the congruence ≡Θ satisfying the condition: a ≡ b(Θ) iff there is a
finite, possibly empty, sequence a1,. . . ,an of elements of Å, and there are
t1,. . . ,tn ∈ T such that a ≡t1 a1, a1 ≡t2 a2, . . . , an ≡tn+1 b (cf. e.g.
P. Cohn [1965]).

Now, (ii) is an immediate corollary to (i). �

Given any semantics K, by K∗ we shall denote the class {M/M̄ :
M ∈ K}. Still, instead of (Matr(C))∗ we shall prefer to use the symbol
Matr∗(C). Finally, we put: M = M/M̄ .

By 32.3, 32.4 and 33.4 we have the following two theorems.

33.5. The Third Completeness Theorem. Each structural consequence C
is complete (and thus adequate as well) with respect to Matr∗(C).

�

33.6. The Fourth Completeness Theorem. Each structural consequence
C is complete (and thus adequate as well) with respect to �∗

C .
�

Of course, the following counterpart of 32.6 holds true.

33.7. Corollary. Let C be a structural. For each C ′ ∈ [C)0 there exists
K ⊆�∗

C such that C ′ = CnK.

34.  Loś–Suszko’s theorem

34.1. One can prove rather easily that, given any class F of frames, all F in F
being of the same kind, one can combine frames in F into a single frame FF
equivalent to F. Is the same true about matrix semantics? The answer is
‘no’. There are structural consequences that are determined by no single
matrix. The consequences of the form CnM are of special kind then, and
they will be referred to as matrix consequences.  Loś and Suszko’s theorem
states some necessary and sufficient conditions for a consequence to be a
matrix one. But before we present the theorem, let us produce an example
of a consequence which is not a matrix one.

34.2. Let B be the Boolean algebra of the two elements 0 and 1. Since 1 can be
defined as a nullary operation in B we may treat B and the matrix (B, 1)
as identical, still for some reason that will be clear in a moment, we shall
prefer to keep the designated element explicit.

Of course, the logic Cn(B,1) determined by (B, 1) is the familiar classical
two–valued K. But there is one more two valued logic, namely the one
determined by (B, 0). We shall denote the latter by dK and call it dual
with respect to K. Of course, unless the interpretation of 0 and 1 is
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unchanged, dK preserves falsity, not truth, and of course, both K and dK
are matrix consequences.

34.3. Define K̃ = inf(K, dK). Thus (cf.31.3b) K̃ is determined by the class
(B, 1), (B, 0) of our two matrices, and thus it is the strongest logic in
the standard language that preserves both truth and falsity. The rules of
K̃ are the rules that are both rules of K and dK, and the same is true
about theorems witch, incidently, amounts to that K̃(∅) = ∅. Indeed the
theorems of dK are just all inconsistent sentences of K, and vice versa.

34.4. The argument to the effect that K̃ is not a matrix consequence is rather
simple. Suppose that for some matrix M , K̃ = CnM . Let p and q be two
distinct propositional variables. We have

(1) K̃(p ∨ ¬p, q ∧ ¬q) = L

At the same time, for each variable r different both from p and q, we have
r /∈ K̃(p∨¬p) and r /∈ K̃(q∧¬q). Hence for some valuations h1, h2 in M ,
h1(p ∨ ¬p) ∈ M̄ , h2(q ∧ ¬q) ∈ M̄ but neither h1r ∈ M̄ nor h2r ∈ M̄ .

Select any valuation h such that hp = h1p, hq = h2q and, say, hr = h1r
(we may put hr = h2r as well). Of course, h(p ∨ ¬p, q ∧ ¬q) ⊆ M̄ but
hr /∈ M̄ , and thus

(2) r /∈ CnM (p ∨ ¬p, q ∧ ¬q),

which combined with (1), contradicts the assumption that K̃ = CnM ,
concluding the proof.

34.5. The argument we have presented suggests a necessary condition for a logic
C to be a matrix logic

Call C separable iff given any two sets of formulas X, Y of language
of C such that V ar(X) ∩ V ar(Y ) = ∅ (i.e. X and Y have no variable
in common, cf.1.4) and given any variable r /∈ V ar(X ∪ Y ) the following
condition is satisfied

(s) If r ∈ C(X ∪ Y ) then either r ∈ C(X) or r ∈ C(Y ).

(Of course, if V ar(X ∪ Y ) involves all variables, (s) is satisfied vacuously).

34.6. The separability can take the following stronger form. A consequence
C will be said to be absolutely separable iff for each family X of sets of
formulas such that for any two X, Y ∈ X, if X 6= Y then V ar(X) ∩
V ar(Y ) = ∅, and for each propositional variable r /∈ V ar(

⋃
X),

(as) If r ∈ C(
⋃

X) then r ∈ C(X), for some X ∈ X.
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34.7. Of course,

a. Each absolutely separable consequence is separable.
We have also

b. There are separable consequences that are not absolutely separable.

(Let C be a consequence defined, in the language that involves � as the
only connective, by the condition

C(X) =

{
X, if for some substitution e, eX is finite,
the set of all formulas, otherwise.

Verify that C is separable but not absolutely separable.)

34.8. Lemma. If C is standard then C is separable iff C is absolutely separable.

Proof. We have 34.7a. Now assume that C is separable. If C is standard
then the assumption that r ∈ C(

⋃
X) implies that r ∈ C(X1 ∪ . . . ∪Xn)

for some Xi ∈ X, and hence (s) implies (as). �

34.9. Lemma. In order for a C to be a matrix consequence it is necessary that
C be absolutely separable.

Proof. The proof is a modification of the argument presented in 34.4.
Suppose that C is not absolutely separable but still C = CnM for some
matrix M . Let r and X satisfy the assumptions that precede (as), and let
r ∈ C(

⋃
X), though r ∈ C(X), for no X ∈ X. Then, just as in 34.4, one

may find a valuation h that verifies
⋃

X but not r. Hence r /∈ CnM (
⋃

X),
and thus C 6= CnM contrary to the assumption. �

34.10. A consequence C is said to be uniform iff for all X, Y , α,

if

(i) V ar(X, α) ∩ V ar(Y ) = ∅
(ii) C(Y ) 6= S, S being the set of all formulas,

(iii) α ∈ C(X ∪ Y ), then

(iv) α ∈ C(X).

34.11. Verify that,

a. If C is uniform it is separable.

b. There are separable consequences that are not uniform.

c. There are uniform consequences that are not absolutely separable (C
defined in 37.4b is of this kind).

34.12. A consequence that is both uniform and absolutely separable will be called
absolutely uniform.

From 34.8 and 34.11a it follows
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34.13. Lemma. If C is standard then C is uniform iff C is absolutely uniform.

34.14.  Loś–Suszko Theorem. Let C be a logic. Then C is a matrix conse-
quence iff C is absolutely uniform.
(J.  Loś and R. Suszko [1958]) demanded only uniformity of C. Under this
condition, however, the theorem is, in general, false. The present version
of the theorem was given by Wójcicki [1969], see also [1970].
Proof. One verifies easily that if C is a matrix consequence then C
is absolutely uniform. The proof of the converse is much more involved.
Still, its idea is rather simple and we shall present it leaving details to the
reader.

The first step consists in enlarging the set of all variables of the
language S of C, so that it becomes possible to “separate” in the en-
larged language S+ all non–trivial theories of C. What we mean here
is that it becomes possible to assign to each X ∈ ThC a substitution
eX of S+ such that any two different non–trivial theories X, Y ∈ ThC ,
V ar(eX(X)) ∩ V ar(eY (Y )) = ∅.

The consequence C is defined on S. But we already know (cf.14.1) how
to define the natural extension C+ of C onto S+ (we need just to close the
set `C of all inferences of C under the substitutions in S+ and to obtain
in that way an inferential base for C+).

Verify that for each non–trivial X ∈ ThC , C+(eXX) is non–trivial again.
Verify also that the assumption that C is absolutely separable implies that
C+ is absolutely separable. Hence

C+(
⋃
{eXX : X ∈ ThC , X 6= S) 6= S+

Denote this theory by 4 and verify that

C = Cn(S+,4).

�

By 34.13 and 34.14 we have

34.15. Corollary. Let C be a standard logic. Then C is a matrix consequence
iff C is uniform.

35. A few comments on  Loś–Suszko theorem

35.1. Of logics we have defined thus far only well determined  Lukasiewicz logics
ζ(Lη), Johansson’s minimal logic Jmin, and, of course, K̃ are not matrix
ones. They are not uniform.

It may be of some interest that some logics are “hereditarily” matrix
in the sense that they themselves, and all their strengthenings are matrix
logics. Intuitionistic logic J is of this kind. Let us outline a proof of this
claim.
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35.2. Lemma. Let C be a logic in L. If for each X such that C(X) = L there
is a substitution e such that eX ⊆ C(∅) then C is absolutely uniform and
thus a matrix consequence.

Proof. Straightforward. �

35.3. The logic J has the following property. If, for any substitution e,

(1) ep ∈ J(∅) ∪ {β : J(β) = L}, for all p,

then

(2) e α ∈ J(∅) ∪ {β : J(β) = L}, for all α.

This property is quite common, not universal though. For instance
 Lukasiewicz logics of neither kind share it. What will be of importance
for our argument is that this property is shared by K.

In virtue of Glivienko’s theorem (cf. Glivienko [1929]) J has the following
property. For all α

(3) J(α) = L iff K(α) = L

(or equivalently ¬α ∈ J(∅) iff ¬α ∈ K(∅)).
Now, (3) implies that for each X

(4) J(X) = L iff K(X) = L.

The “if”, part of (4) is obvious. In order to prove the converse that
K(X) = L iff ¬(p→ p) ∈ K(X) which yields ¬(p→ p) ∈ K(β1 ∧ . . .∧βn)
for some β1, . . . , βn ∈ X. But then ¬(β1 ∧ . . . ∧ βn) ∈ K(∅) ∩ J(∅) and
thus J(X) = L.

Let J(X) = L. Consider any substitution e that has both the property
(1) and sends X into K(∅). Such a substitution can be defined in the way
we have described in 8.6. Then, eX ⊆ J(∅) for (1) implies (2), and we
have (4). In view of Lemma 35.2 this proves that J is absolutely uniform
and thus matrix consequence.

Suppose that J 6 J+, J+ being structural and non–trivial, then, from
(4) it follows that

(5) J+(X) = L iff K(X) = L.

The part of the proof which now follows presupposes some results that
will be obtain later.

Let K be a matrix semantics adequate for J+, i.e. J+ = CnK. Form the
direct product u K of all elements of K and apply (5) and Lemma 41.5 to
obtain J+ = CnK = CnuK. �
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35.4. Very interesting but technically difficult are investigations into the cardi-
nality of matrices adequate for a given logic. That a matrix consequence
need not have a denumerable matrix adequate for it, was showed for the
first time by R. Suszko who proved that all matrices adequate for SCI are
not denumerable. (SCI stands for Sentential Calculus with Identity, that
is a logic that results from K by adding identity = as a new connective.
p = q reads the proposition p is identical with q. For more details, cf.
R. Suszko [1973] and [1973a]).

A. Wroński [1974] succeeded to prove that J has no denumerable ma-
trix. His papers opened a series of results of similar kind. In particular,
A. Wroński and E. Graczyńska [1974] examined some of intermediary log-
ics (i.e. axiomatic strengthenings if J). Some fragments of J were exam-
ined again by A. Wroński and then by W. Dziobiak. The latter author
extended his investigations onto relevant logics making use of some re-
lations between J and CB , CR, CT , CE , CEM established by R. Meyer
[1973]. Again it has turned out that the fragments examined have no de-
numerable matrices adequate for them. It should be said that uniformity
of CE , CR and some other relevant logics was established by L. L. Maksi-
mova [1976].

36. Ramified matrices and ramified logics

36.1. From the philosophical standpoint, logics that are not uniform can be
viewed as logics that preserve more than one logical value. For instance
K̃ preserves both truth and falsity, and well determined  Lukasiewicz logics−−−→
ζ(Lη) preserve “degrees of truth”. This remark suggests to generalize the
notion of a logical matrix in the following manner.

Let Å be an algebra similar to a propositional language S and let
{Dt : t ∈ T} be a family of subsets of A. Then, the structure

(1) M = (Å, {Dt : t ∈ T})

will be referred to as a generalized logical matrix (cf. R. Wójcicki [1970])
or as a ramified matrix. The cardinality of T will be called the degree of
ramification of M .

The consequence operation CnM determined by M as well as the
set ζ(M) of all sentences valid in M are defined in an expected manner:

(2) α ∈ CnM (X) iff for all t ∈ T, α ∈ Cn
(Å,Dt)

(X)

and

(3) α ∈ ζ(M) iff α ∈
⋂
{ζ(Å,Dt) : t ∈ T}.

Thus, each ramified matrix of the form (1) is semantically equivalent to
the boundle of matrices

(2) BM = {(Å,Dt) : t ∈ T},
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and thus, the notion of a ramified matrix is perfectly dispensable. All
the same it is convenient in some applications. In particular, referential
matrices we are going to discuss in Chapters XI, XII will be defined as
ramified matrices of certain particular kind.

If ξ is the least of all cardinals for which there exists a ξ–ramified
matrix M for a logic C (a matrix the degree of ramification of which is
ξ), the logic C will be said to be ξ–ramified. Thus, matrix consequences
are just 1–ramified. The degree of ramification of K̃ is, of course, 2.Jmin

is 2–ramified, also. The latter result was established by J. Hawranek, cf.
J. Hawranek and J. Zygmunt [1981].



88 CHAPTER 7. LOGICAL MATRICES–MAIN NOTIONS AND. . .



Chapter 8

Matrix Vrs Algebraic
Semantics

37. Implicative logics

37.1. The notion of an implicative logic due to H. Rasiowa. The definition given
below differs only inessentially from that one can find in H. Rasiowa [1974].

A logic C is said to be implicative iff in terms of the connectives of the
language of C one may define a binary connective → such that:

(i) α→ α ∈ C(∅), for all formulas α

(ii) The following are rules of C :

(MP) p,p→ q/q, (Modus Ponens)
(PR) p/p→ p, (Prefixing)
(TR) p→ q, q → r/p→ r, (Transitivity)

(RP)α p→ q, q → p/α(p/r)→ α(q/r). (Replacement)

(The last one of the rules is given in the form of a schema. For each α, we
obtain another sequential rule. Now, α (q/p) is a substitution instance of
α that results by replacing all occurrences of p by q, cf.1.4).

37.2. Theorem. Let C be an implicative logic. Then all matrices M ∈
Matr∗(C) are of the form (A, 1A), 1A being an element of A such that
for all a ∈ A

1A = a → a.

Proof. Let M = (A, D). With the help of definition 37.1, verify
that the relation ≡I defined on A by a ≡ b(I) iff a → b, b → a ∈ D is a
congruence on M . Assume, that for some congruence ≡Θ on M , a ≡ b(Θ).
Since a → a ∈ D, as it is implied by condition (i) of 37.1, then a → b,

89
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b → a ∈ D, and hence a ≡ b(I). But this means that ≡I is the same as
≡M .

Now, suppose that a, b ∈ D. Then, in order for PR to be valid in M we
must have a → b, b → a ∈ D. And this gives a ≡M b, and implies that
D/M is a singleton. Of course, it is of the form a→ a, for any a ∈ A since,
by condition (i) of 37.1, all a → a are designated elements of matrices of
C. �

37.3. If C is an implicative logic and (A, 1A) is a simple matrix of C the alge-
bra A will be referred to as C–algebra (or algebra of C) (cf. H. Rasiowa
[1974] and the class of all such algebras will be denoted by Alg∗(C). More
generally, given any logic (implicative or not), Alg∗(C) will denote the set
of all algebras A such that for some element d of A, (A, d) is a simple
matrix of C. If, moreover, (A, d) ∈�∗

C , the algebra A will be referred to
as a Lindenbaum algebra.

We shall often take advantage of the fact that 1A is definable in an
uniform way in all C–algebras of an implicative C, and we shall identify
C–algebras with simple matrices of C. Thus, e.g. we shall write CnA
instead of Cn(A,1A). By a valuation in A we shall mean a valuation in
(A, 1A), etc.

Incidentally, we have already applied this convention in the case of
 Lukasiewicz truth–table algebras (cf. 9.1).  Lukasiewicz logics  Lη, η =
3, 4, . . . , ω are implicative with respect to → (verify that → satisfies con-
ditions of definition 37.1) and each of  Lukasiewicz truth–table algebras Lη

is easily seen to be an  Ln–algebra. In connection with this remark let us
notice the following. All Ln are simple algebras, i.e. the only congruence
relation they admit is identity. In general, however, in order for an algebra
A to be a C–algebra for an implicative C it is not necessary that A be
simple, though of course it is necessary that the matrix (A, 1A) be simple.
For instance 4–element Boolean algebra is a simple matrix for K but not
a simple algebra, though, of course, it is a K–algebra.

Verify the following.

37.4. Lemma. Let C be an implicative logic defined in S. Then an algebra A
is a C–algebra iff

(i) A is similar to S,

(ii) a→ a = b→ b, for all a, b ∈ A,

(iii) (A, a→ a) is a matrix of C,

(iv) If a→ b = b→ a = a→ a, then a = b, for all a, b ∈ A.

Proof. Repeat the argument applied in the proof of 37.2 in order
to show that ≡I defined as in that proof, but with respect to (A, a → a)
coincides with ≡(A, a→a). Then, observe that by (iv) the latter congruence
is identity. Hence (A, a→ a) is simple. �
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To conclude our brief survey of the most general properties of implica-
tive logics and their algebras let us observe that by 33.5 and 37.2 we
immediately obtain.

37.5. Corollary. Each implicative logic C is complete (and thus adequate as
well) with respect to Alg∗(C).

38. More on algebraic semantics

38.1 We shall say that a logic C is l–algebraic iff there exists a class A of
matrices of C such that:

(i) All matrices in A are of the form (A, d), (pedantically, (A, {d}) where
d is an element of A. The matrices of this form will be called singular
and the classes of singular matrics will be referred to as an algebraic
semantic.

(ii) C is complete with respect to A.

The class of logics that have an adequate algebraic semantics is much
larger then that of implicative logics.

Preparatory to the theorem we are going to state let us define a few
notions.

38.2. a. A logic C will be said to be implicitly implicative iff there is an
implicative logic C+ being a conservative extension of C (i.e. the
language S of C is a sublanguage of the language S+ of C+ and
C = C+ � S, cf. 24.5).

b. A consequence C is said to be pseudo–axiomatic (cf. J.  Loś and
R. Suszko [1958] iff C(∅) 6=

⋂
{C(X) : X 6= ∅}.

c. Let C be a consequence. Formulas α, β will be said to be congruent
modulo C restricted to X, α ≡ β(C�X), iff for all variables p and all
formulas ϕ,

C(X, α, ϕ (α / p)) = C(X, β, ϕ (β, / p)).

38.3. Let C be a consequence in S. Then, as one easily verifies,

a. for each X ⊆ S, ≡(C�X) is a congruence on S.
Moreover,

b. ≡(C�X) is congruence on S such that for each α ∈ C(X), |α|(C�X) ⊆
C(X), and hence it is a congruence on matrix (S, C(X)).

c. If (S, C(X)) is non–trivial, so is the quotient (S, C(X))/(C � X).

Observe also the following
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38.4. Lemma. Let C be a logic. The following two conditions are equivalent:

(i) C is not pseudo–axiomatic, i.e. C(∅) =
⋂
{C(X) : X 6= ∅}.

(ii) C is complete with respect to the set �0
C of all non–trivial Linden-

baum matrices of C.

Proof. (i) → (ii). Suppose that α /∈ C(X) for some X 6= ∅. Then, of
course, α /∈ Cn�0

C
(X) since α /∈ Cn(S,C(X))(X). The identity valuation

in the matrix (S, C(X)) falsifies X ` α. The case left to deal with is
α /∈ C(∅)). But C is not pseudo–axiomatic, hence α /∈ C(X) for some
non–empty X which implies that α /∈ Cn(S,C(X))(∅) concluding this part
of the proof.

(ii) → (i). Suppose that C is pseudo–axiomatic. Then, for some α /∈
C(X), α ∈ C(X) for all X 6= ∅. Hence α ∈ Cn(S,C(X))(∅) for all X 6= ∅,
i.e. α ∈ Cn�0

C
(∅), which contradicts (ii). �

38.5. Theorem. Let C be a logic that is not pseudo–axiomatic. Then the
following conditions are equivalent:

(i) C is l–algebraic.

(ii) C is implicitly implicative.

(iii) All non–trivial simple matrices of C are singular.

(iv) For all α, the rule

p, q, α (p / r) / α (q / r)

is a rule of C.

(v) For all X, all α, β, C(X, α) = C(X, β) implies α = β(C � X).

Proof. The case of C being inconsistent is trivial. Assume then that
it is not.

(i) → (ii). Let A be an adequate algebraic semantics for C. Given
a matrix M = (A, d) in A define a matrix M I for the language S of C
enlarged by a new connective → (any new binary connective, if S already
involves→ ) by enlarging the set of operations of M with a new operation
→ (any new binary operation, if M already involves→) defined as follows

a → b =

{
b, if a 6= b,

d, if a = b.

Verify that the consequence CnMI is implicational. Note also that, for all
X ⊆ S, α ∈ S,

(2) α ∈ CnMI (X) iff α ∈ CnM (X).

Indeed, if X, α are as assumed than in order to establish whether α ∈
CnMI (X) or not, we make use only of the ’old’ part M of M I .
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Define AI = {M I : M ∈ A}. The consequence CnAI is implicational,
since all CnMI are implicational (cf. 37.5). It is a conservative extension
of CnAI � S, since all CnMI , M I ∈ AI are conservative extensions of
CnMI � S. But, at the same time

(3) CnAI � S = CnA = C,

and hence C is implicitly implicational.

(ii)→ (iii). Let M = (A, D) be a non–trivial simple matrix of C. Select
any d D and define a new operation → on A by the conditions (1) stated
already above. Denote by M I the matrix that results by extending A by
the new operation →.

Let CI be the weakest implicative extension of C. Since C is assumed to
be implicitly implicative, it is conservative. Verify that M I ∈ Matr(CI).
Hence M I/M̄ I ∈ Matr∗(CI). But, of course, ≡MI restricted to M is a
congruence on M , and M has no congruences but identity. Thus ≡MI

must be identity as well; the set of elements of M I is exactly the same as
that of M . If so, then

Matr∗(C) ⊆ Matr∗(CI) � S

which implies (iii).

(iii) → (iv). Obvious.

(iv) → (v). Assume that C(X, α) = C(X, β). Then C(X, α,
ϕ(α/p)) = C(X, α, β, ϕ(α/p)). Apply the rule defined in (iv) to get
ϕ(β/p) ∈ C(X, α, β, ϕ(α/p)), and thus to get

C(X, α, ϕ(β / p)) = C(X, β, ϕ(β / p)) ⊆ C(X, α, ϕ(α / p))

By the symmetry of the assumptions with respect to α and β the converse
is valid sa well.

(v) → (i). Consider any non–trivial Lindenbaum matrix (S, C(X)).
Under the assumption, if α, β ∈ C(X) then α ≡ β(C � X). Since (cf.38.3)
≡C�X is a congruence on (S, C(X)), the quotient of (S, C(X)) by ≡(C�X)

is a matrix for C, non–trivial since (S, C(X)) is assumed to be non–trivial.
Moreover, it is a singular matrix, which by 38.4 and the assumptions of
the theorem yields (i), concluding the proof. �

39. Properly l–algebraic logics

39.1. Let C be a logic in S and let A be an algebra similar to S. We shall say
that a set D ⊆ S is a C–filter on A, in symbols D ∈ FC(A), iff (A, D)
is a C–matrix. The notion of C–filter thus defined is a straightforward
generalization of that of a deductive filter, cf. H. Rasiowa [1974].



94 CHAPTER 8. MATRIX VRS ALGEBRAIC SEMANTICS

Let M = (A, D) be a C–matrix. Given any two elements a, b of M
define

a 6 C b iff for each ∇ ∈ FC , b ∈ ∇ whenever a ∈ ∇.

Of course, 6C is a quasi–ordering and hence ≡C defined on elements of
M by

a ≡ b(C) iff a 6 C b and b 6 C a

is an equivalence. In general, however, ≡C is not a congruence.

39.2. We shall say that C is properly l–algebraic iff it is algebraic and for each
simple non–trivial C–matrix M there exists exactly one element d of M
such that for all elements a of Ma 6C d. The element d will be usually
denoted as 1C .

Of course, the following holds true:

39.3. Theorem.

a. Let C be properly l–algebraic and let M = (A, d) be a simple matrix
for C. Then d = 1C . Moreover

b. If C(∅) 6= ∅, then 1C = hα for each α in C(∅) and each valuation h
in M .

Proof. Straightforward.

39.4. K and J are obvious examples of logic that are properly l–algebraic. The
class Alg∗(K) is the variety of all Boolean algebras. Alg∗(J) is the variety
of all Heyting (or pseudo–Boolean) algebras. For the proof, cf. H. Ra-
siowa [1974]. As a matter of fact it is not very difficult. It consist in
verifying that if A is a J–algebra (and hence a K–algebra as well) then
the ordering on A defined by a 6 b iff a → b ∈ 1C is a lattice ordering
and the lattice it determines is distributive. To establish this one has to
make use, in an rather obvious manner, of axioms A1–A8 (cf. 23.2) (they
have to be satisfied in A, in (A, 1C) more accurately, under all valua-
tions). Now if A ∈ Alg∗(J) we have to verify that →, ¬ are the relative
pseudo–complement and complement operations respectively in the lattice
determined by 6, and if A ∈ Alg∗(K), ¬ is the complement operation,
and → is defined in the familiar manner.

39.5. The logic K � {∧,∨} = J � {∧,∨} is an example of a logic that is properly
l–algebraic and, at the same time, purely inferential,
K � {∧,∨}(∅) = ∅. The class Alg∗(K � {∧,∨}) consists of all distributive
lattices.

The logic K̃ we have defined in section 34 (cf. 34.3) may serve as an
example of a logic that is l–algebraic but not properly l–algebraic. Cu-
riously enough, though not surprisingly, the class Alg∗(K̃) = Alg∗(K) =
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Alg∗(dK), i.e. it is the variety of all Boolean algebras. But of course, at
the same time we have

Matr∗(K̃) = Matr∗(K) ∪ Matr∗(dK) ∪ I(τ0)

and
Matr∗(K) ∩ Matr∗(dK) = I(τ)

Why is it obvious? Because 1 C 6= 1 dC .

The class of logics that are not implicative at all is quite large (of
course, we have in mind logics that are known and studied). For instance,
relevant logics CE , CR, CRM , da Costa paraconsistent logics Cn, Suszko’s
SCI, various modal logics,  Lukasiewicz’s well–determined logics

−−−→
ζ(Lη), all

of them belong to this category.

40. A bit of philosophy

40.1. Consider the following interpretation of classical logic K. Let A be an
atomic σ–complete Boolean algebra. Any such an algebra can be viewed
as an algebra of events, to each event a ∈ A being assigned a real number
x ∈ [0, 1] called the probability of a, P (a). The function P satisfies familiar
Kolmogorov’s axioms.

Given any atom a, call the prime filter∇a determined by a an elementary
experiment. The event a can be viewed as the outcome of the experiment
(the answer ’yes’ to the question of whether a will take place). The events
b in ∇a are all determined by a, i.e. they take place if a does. Now, each
proper filter∇ in A can be viewed as an experiment though not necessarily
elementary one.

Now, given any space of events A and any experiment ∇, and given any
sentence α in L, we shall say that α is true under a valuation h in A (a
homomorphism h ∈ Hom(L,A)) and under the experiment ∇ iff hα ∈ ∇.
Of course, another experiment ∇′ can falsify α under the same valuation
h, i.e. hα /∈ ∇′. There is no surprise in that, for the events have been
assumed to be probabilistic. A “good” logic is the logic that preserves
truth relative to any space of events and relative to any experiment. And
this good logic is K again. For each Boolean algebra A and for each
filter ∇, (A,∇)/∇ is a simple Boolean matrix (A/∇, 1K). Since ≡∇ is a
congruence on (A,∇) the matrix (A,∇) and its quotient are equivalent.

40.2. While Boolean algebras provide an adequate mathematical interpretation
of the structure of “classical” events, the interpretation does not provide
an adequate account of quantum events. Some of quantum quantities are
complementary which amounts to that some events that are classically
possible, from the point of view of Quantum Mechanics just do not exist
or, some experts would subscribe rather to this standpoint, they do but
they are not experimentally accessible.
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If from the two standpoints we take the former one, the structure of
quantum events becomes that of a Boolean algebra from which some ele-
ments were removed, and thus it is not a Boolean algebra any longer. On
the ground of some physical considerations it is claimed that the structure
of quantum events is that of an orto–lattice, or perhaps an ortolattice that
satisfies some additional conditions.

If we take the second standpoint, the structure of quantum events
is that of a Boolean algebra with some elements undefined. A rigorous
account of this, rather special situation, was given in terms of Partial
Boolean Algebras by S. Kochen and E.P. Specker [1965] and [1965a]. Cu-
riously enough, Quantum Logic in the sense of Kochen and Specker is not
a logic at all from our point of view. The consequence operation they de-
fine is not structural. Roughly speaking non–structurality of Kochen and
Specker quantum consequence is caused by the assumption that propo-
sitional variables represent only elementary events and thus they do not
refer to event (or propositions) to which compound sentences refer.

40.3. An algebra A = (A,∧,∨,¬, 1) is said to be an ortolattice iff it is a lattice
with 1 being the greatest element and ¬ being an unary operation such
that:

(i) ¬a ∨ ¬b = (a ∧ b),
(ii) ¬¬a = a,
(iii) a ∨ ¬a = 1,

for all a, b ∈ A. The class of all ortolattices is usually denoted by OL.

Now CnOL defined in S � {∧,∨,¬}, each A ∈ OL being treated as a
matrix with 1 being the designated element is called the minimal quantum
logic. A logic C is said to be a quantum logic iff

CnOL 6 C 6 K

As it can be proved for each such a logic C there exists K ⊆ OL such that
C = CnK.

40.1. In view of remarks we made in subsections 40.1 and 40.2 one may doubt
whether quantum logics, minimal quantum logic in particular, were de-
fine in an adequate manner. More appropriate seems to be the following
approach.

Define MOL to be the class of all matrices of the form (A. ∇) where A
is an ortolattice and ∇ is a filter on A. Define the minimal quantum logic
as CnMOL and call a logic C a quantum logic if

CnMOL 6 C 6 K.

CnOL need not be an implicative logic and thus it need not coincide
with CnMOL.
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We leave open the question how the two classes of logics we defined
are related to each other. Our intention was to make a certain philosoph-
ical point rather then to contribute to any technical problem concerning
quantum logics.

40.5. Note. As the class OL, being a variety, is closed under S and P , we
easily obtain, applying Theorem 44.7, that for each C satisfying (1) there
exists K ⊆ OL such that C = CnK.

Similarly the class MOL is closed under S and P . Hence, again by
Theorem 44.7, for each C satisfying (2) there is a class K ⊆MOL strongly
adequate for C.

I own these two remarks to J. Czelakowski.



98 CHAPTER 8. MATRIX VRS ALGEBRAIC SEMANTICS



Chapter 9

The Class Matr(C)

41. Some operations on matrices

41.1. Matrices are relational structures (models) of a special kind and all oper-
ations on relational structures are applicable to matrices. In particular

a. Let M = (Å, D), N = (B, E). If B is a subalgebra of Å and
E = D ∩ B, N is said to be a submatrix of M .

b. Let Mt = (Åt, Dt), t ∈ T be similar–matrices. The direct product
utMt(u{Mt : t ∈ T}, pedantically) of the matrices Mt is the matrix
(Å, D) such that Å is the direct product utÅt of the algebras Åt,
and D is the Cartesian product utDt of the sets Dt.

c. The notion of homomorphism of matrices should be applied with
some care, since it can be defined in at least two different ways.
The one which will be of particular importance for us is that which
is sometimes (cf. e.g. A.I. Malcev [1970]) referred to as strong
homomorphism, we shall call it also matrix homomorphism. Let
M = (Å, D), N = (B, E) be matrices. A homomorphism h from
Å into B is said to be a homomorphism from M into N iff hD ⊆ E.
Now h is said to be a strong (or matrix) homomorphism if moreover
←−
hE = D.

41.2. Observe that congruences on matrices correspond to matrix homomor-
phisms in the familiar way, i.e. if ≡Θ is congruence on M than the map-
ping a → |a|Θ from M onto M/Θ is a matrix homomorphism called the
canonical homomorphism from M onto the quotient M/Θ. On the other
hand, if h is a matrix homomorphism from M into N then ≡h defined by
a ≡ b(h) iff h(a) ≡ h(b) is a congruence on M . It is referred to as the
kernal of h. Of course M/h = h(M), i.e. the quotient of M by ≡h is
isomorphic with the image of M by h. h(M) will be referred to as a ho-
momorphic copy of M . As usual, one–to–one homomorphism are referred
to as embedings and one–to–one and onto as isomorphisms.

99
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41.3. The following notation will be applied. Given any class of similar matrices
K,

S(K) – is the class of all isomorphic copies of all submatrices of matrices
in K.

P (K) – is the class of all direct products of all subfamilies of K, the empty
family including. We define u∅ to be the trivial one element matrix
τ similar to matrices in K.

HS(K) – is the class of all homomorphic copies, under matrix homomor-
phisms, of matrices in K.

←−
HS(K) – is the class of all such matrices M that for some matrix homo-

morphism h, h(M) is in K, i.e. homomorphic counterimages, under
matrix homomorphisms, of matrices in K.

41.4. Theorem. For each logic C, the class Matr(C) is closed under the
operations S, P , HS ,

←−
HS .

Proof. The proof requires only easy and obvious verifications. In the
case of the operation P of forming direct products the following lemma is
helpful. �

41.5. Lemma. Let Mi, i ∈ I be a logical matrices for S and let M = uiMi.
Then, for each set of formulas X

CnM (X) =

{⋂
CnMi(X), if X is satisfiable in all Mi,

S, otherwise.

Proof. Assume that all Mi are of the form (Åi, Di). For each valuation
h in uiMi and for each i ∈ I, define the mapping hi : S → Åi, by

(1) hiα = (h α)i,

(h α)i being the projection of hα onto the i–th coordinate, and verify
that hi is a homomorphism from S into Åi, thus a valuation in Mi. The
valuation h will be referred to as the direct product of the valuations hi.

Observe that for each α

(2) h α ∈ D iff hi α ∈ Di, for all i ∈ I,

which, of course, implies

(3)
⋂
i

CnMi(X) ⊆ CnM (X)
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The converse of (3) need not hold true however. For suppose that
α ∈ CnMi(X) and at the same time for some j, X is not satisfiable in Mj ,
i.e. there is no valuation hj in Mj such that hj(X) ⊆ Dj . Then, clearly,
X is not satisfiable in M either, and we have CnM (X) = S. But this is
precisely when (3) cannot be reversed. �

Of course, we have also the following

41.6. Lemma. For each semantics K,K,HS(K) and vekHS(K) are equivalent.
�

42. Reduced products of matrices

42.1. Let M = (Å,D) be the direct product of matrices Mi = (Åi, Di), i ∈ I,
and let ∇ be a filter on I. Then, which is a standard, very well know
procedure, we define on Å the congruence ≡∇ by

a ≡ b(∇) iff {i : ai = bi} ∈ ∇

The matrix (M/∇, D/∇) is denoted by u∇Mi (utr{Mi : i ∈ I}, pedanti-
cally) and is called the product of Mi reduced modulo∇ (a reduced product).
If ∇ is an ultrafilter, uiMi is referred to as an ultraproduct.

Observe that, in general, the congruence ≡∇ is not a congruence on M
but merely on Å, and hence u∇Mi need not be equivalent to uiMi (cf.
42.4).

42.2. The following notation will be applied. Let K be a class of similar matrices,
then

PR(K) – is the class of all isomorphic copies of reduced products of non–
empty subfamilies of K

PU (K) – is the class of all isomorphic copies of ultraproducts of non–empty
subfamilies of K.

Now, in some parte of further discussion we shall need the notion of
σ–reduced products, i.e. products reduced modulo a σ–filter. A filter
is said to be a σ–filter iff it is closed under countable intersections.
Thus, we need one symbol more:

Pσ−R(K) – is the class of all isomorphic copies of σ–reduced products of sub-
families of K.

42.3. Let Mi = (Åi, Di), i ∈ I be matrices for S and let each hi, i ∈ I be a
valuation in Mi. Given any filter ∇ on I define the mapping u∇hi from
S into u∇Mi by

(u∇hi)( α ) = |(uhi)( α )|∇
and verify that
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a. h is a valuation in u∇Mi iff it is of the form u∇hi. (u∇hi will be
referred to as the product of hi reduced modulo ∇).

b. Let M = (A, D) = u∇Mi, h = u∇hi. Then, for each α, hα ∈ D iff
{i : hiα = 1} ∈ ∇, or equivalently

c. h+α = 1 iff {i : h+
i α = 1} ∈ ∇ (h+ and h+

i being the truth–valuations
determined by h and hi, respectively).

42.4. Lemma. Let Mi, i ∈ I be similar matrices and let ∇ be a filter on I.
Put M = u∇Mi. Then, for each finite X,

CnM (X) =
⋂
{
⋃
{CnMi

(X) : i ∈ F} : F ∈ ∇}.

Proof. ( ⊆ ). Assume that α /∈ CnM (X), X being finite. Hence, for
some valuation h in M , hX ⊆ M̄ , and hα /∈ M̄ . Let h = u∇hi (cf. 42.3).
Then both {i : hi(X) ⊆ M̄i} ∈ ∇, and {i : hi(α) /∈ M̄i} ∈ ∇, which
implies that the intersection, denote it by F , is in ∇, too. But for each
i ∈ F, hiX ⊆ M̄i, hiα /∈ M̄i, hence for this particular F ∈ ∇ we have
α /∈

⋃
{CnMi

(X) : i ∈ F}, which concludes this part of the proof.

( ⊆ ). Assume that for some F ∈ ∇, α ∈ CnMi(X), for no i ∈ F . Select
any valuations hi, i ∈ I such that, for all i ∈ F , hi(X) ⊆ M̄i, hiα /∈ M̄i,
and let h = u∇hi. Then of course, h(X) ⊆ M̄ , hα /∈ M̄ . �

By Theorem 41.4 and Lemma 42.4 we obtain

42.5. Theorem. For each standard C, the class Matr(C) is closed under
S, P, HS ,

←−
HS , PR, PU . �

From 42.5 it follows immediately that for each standard C,
Matr(C) is quasivariety, i.e. a class of structures definable by quasi–
identies. We shall return to this point later.

43. Czelakowski’s theorems

43.1. Theorem (J. Czelakowski [1979]). Let C be a standard consequence,
and let C = CnK, for some matrix semantics K. Then

Matr(C) =
←−
HSHSSPR(K).

The proof of this theorem will be given in the next section.

43.2. In fact, 43.1 is a corollary to a more general result established in J. Czelakowski
[1980]. In the complete form his result is the following.

Let C be a structural consequence defined on a language S on whose
cardinality no restrictions are imposed. Let m be a regular infinite cardinal
such that:

(i) m 6 card(S)+ (i.e. the least cardinal greater than that of S ).
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(ii) If α ∈ C(X) than there is X ′ ⊆ X of the cardinality less than m,
such that α ∈ C(X ′).

If this assumptions are satisfied then for each class K of matrices such
that C = CnK,

Matr(C) =
←−
HSHSSPm−R(K),

where Pm−−R(K) is the class of all isomorphic copies of products of non–
empty subfamilies of K reduced modulo filters closed under intersections
of cardinality 6 m.

From this theorem it follows not only 43.1 but also

43.3. Theorem. (J. Czelakowski [1979]). Let C be a structural consequence
in S (S being, as usual, assumed to be denumerable). And let for some
matrix semantics K, C = CnK. Then

Matr(C) =
←−
HSHSSPσ−R(K)

We shall (cf. the next section) comment on the proof of this theorem
rather than provide it in all details.

44. The proof of Czelakowski’s theorems

44.1. Lemma (Czelakowski [1980]). Let K be a set of matrices for S, and let
C = CnK. Then

�∗
C ⊆ HSSP (K)

Proof. Given any theory X = C(X) 6= S, select matrices Mi ∈ K,
i ∈ I and select valuations hi, i ∈ I for S in Mi so that

X =
⋂
{
←−
h i(Mi) : i ∈ I}.

The assumptions of the theorem guarantee that there are such Mi and hi.
Of course, i 6= j need not imply Mi 6= Mj , and Mi = Mj need not imply
hi = hj .

Let MX be the direct product of all Mi, i ∈ I, and let hX be the direct
product of hi, i ∈ I, hence, (hXα)i = hiα, for all α (cf. the proof of 41.5).
Observe that hX(S) is a subalgebra of MX and denote by NX the matrix
MX restricted to hX(S), i.e.

NX = (hX(S), M̄X ∩ hX(S)).

Of course, NX ∈ SP (K) for each non–trivial theory X of C.

Let LX = (S, C(X)). Verify that for all α1, α2, β if hX(α1) = hX(α2),
then α1 ≡ β(LX) iff α2 ≡ β(LX). Then define

hXα = hXβ(ΘX) iff α ≡ β(LX),
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and verify that ≡ΘX
is a congruence on NX .

In turn, define f : NX/ΘX → L∗X by

f(|hXα|ΘX
) = |α|LX

,

and verify that f is isomorphism and hence

NX/ΘX = L∗X .

Since NX/ΘX ∈ HSSP (K), then also L∗X ∈ HSSP (K).

If C(X) = S, LX is a one element trivial matrix, and hence, it is
isomorphic with the direct product of the empty set (cf. 41.3).

44.2. Lemma. Let M ∈Matr(C) and let the cardinality of M (i.e. of the set
of elements of M) be 6 ℵ0. Then M ∈

←−
H (�C).

Proof. Let Å be the algebra of M and let S be the language of C.
Since S is free in the class of all similar algebras and the cardinality of
Å is not greater than that of S, there is a homomorphism h from S onto
Å. Let Xh =

←−
h (M̄). Since M ∈ Matr(C),

←−
h (M̄) ∈ ThC , and thus,

(S, Xh) ∈�C .

Let ≡Thh
be the kernal of h. Then (S, Xh)/Θh

∼= M and since ≡Thh
is

a subcongruence of ≡(S,Xh), there is a matrix homomorphism g such that
g(M) = (S, Xh)∗. Hence M ∈

←−
H (�∗

C). �

The two lemmas that follow are purely model–theoretic, they hold true
not only for matrices but for algebraic structures of any kind. We shall
leave them without proof.

44.3. Lemma. Let Sω(M) be the set of all submatrices generated by finite
subsets of the set of elements of M . Then M ∈ SPU (Sω(M)) and in
particular M ∈ SPR(Sω(M)).

44.4. Lemma. For each class of similar matrices K, the class
←−
HSHSSPR(K) is

closed under all operations in terms of which it has been defined.

44.5. We are now in a position to prove Theorem 43.1. To begin with observe
that by 42.5, K ⊆Matr(C) implies that

←−
HSHSSPR(K) ⊆ Matr(C).

Now, let M ∈Matr(C). All matrices in Sω(M), i.e. all matrices gener-
ated by finite subsets of the set of elements of M are of cardinality 6 ℵ0,
which yields Sω(M) ⊆

←−
HS(�∗). Since �∗

C⊆ HSSP (K), by the assump-
tion of the theorem and by 44.2 we obtain Sω(M) ⊆

←−
HSHSSP (K) ⊆

←−
HSHSSPR(K). But M ∈ SPRSω(M) (cf. 44.3) which yields M ∈
SPR
←−
HSHSSPR(K). Apply 30.5 in order to get M ∈

←−
H¬SHSSPR(K).

�
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44.6. The proof of Czelakowski’s theorem in its complete form, cf. 43.2, does not
involves any essentially new kind of argument. In all places when reduced
products are applied, one has to use m–reduced product ( σ–reduced prod-
ucts in particular, when the language is kept denumerable), m–being the
cardinal satisfying conditions (i) and (ii) of 43.2. Of course, it means that
the lemmas on which the proof of 43.1 is based and which concern reduced
products should be replaced by more general counterparts.

Observe that Lemma 44.4 implies the following

44.7. Corollary. (P. Wojtylak [1979]). Let C = CnK. Then for each C ′ ∈
[C)0 C ′ CnK′ for some K ⊆ SP (K).

Proof. Since �∗
C∈ HSSP (K) then �C is semantically equivalent to

some K0 ⊆ SP (K). Now �C′⊆�C and by Completeness Theorem 32.4,
cf. also 32.6, the Corollary follows. �
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Chapter 10

The Class Matr∗(C) – More
On Standard Logics

45. Some more conditions for a logic to be stan-
dard

45.1. Theorem. The following conditions are equivalent

(i) C is standard,

(ii) Matr(C) is closed under ultraproducts,

(iii) There is a matrix semantics K adequate for C closed under ultra-
products.

Proof. (i) → (ii). Select any family Mi, i ∈ I, of C–matrices. Let ∇
be an ultrafilter on I. Put M = u∇Mi. Assume that α ∈ C(X) for some
finite X. We have to show that α ∈ CnM (X). Select any valuation h in M .
Let h = u∇hi (cf. 42.3a), and suppose that h(X) ⊆ M̄ but hα /∈ M̄ . Since
X is finite this implies. {i : hi(X) ⊆ M̄i} ∈ ∇ and {i : hα /∈ M̄i} ∈ ∇.
Hence, the intersection of the two sets is in ∇ and thus it is not empty.
This implies that for some i, hi(X) ⊆ M̄i and hiα /∈ M̄i contradicting the
assumptions and concluding the argument

(ii) → (iii). Obvious.

(iii) → (i). If K is closed under ultraproducts, so is the class of all valuations in
K and hence (cf. 42.3c) the class of truth–valuations H(K) as well.
Apply (29.4) in order to conclude the proof. �

45.2. Theorem. Let C = CnK for some finite class K of finite matrices. Then
C is standard.

107
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Proof. Given any finite class M of finite algebraic structures, the class
I(M) of all isomorphic copies of members of M is closed under ultraprod-
ucts. Hence under the assumptions of the theorem, I(K) is closed under
ultraproducts, and since the semantics K and I(K) are equivalent then,
by 45.1, the theorem follows. �

(One can show that I(K) is closed under ultraproducts by the following
argument. Let K = {M1, . . . ,Mk} and let all Ni, i ∈ I, be in I(K).
Assume that ∇ is an ultrafilter on I. Define IK = {i ∈ I : Ni = MK}.
Verify that for some k0, 1 6 k0 6 k, Ik0 ∈ ∇ and define ∇k0 = {F ∩ Ik0 :
F ∈ ∇}. Now ∇k0 is easily seen to be an ultrafilter on Ik0 . Verify that
N = u∇{Ni : i ∈ I} is isomorphic to N0 = u∇k0{Ni : i ∈ Ik0} and then
verify that N0 = is isomorphic to Mk0 .) �

In J.  Loś and R. Suszko [1958] it was proved (by a topological argument)
that for each finite matrix M , CnM is finite. Now, of course, 45.2 is a
rather straightforward corollary to  Loś–Suszko’s theorem. By 31.3 CnK =
inf{CnM : M ∈ K}. Apply 5.4 to see that if all CnM are finitary and K
is finite, CnK must be finitary.

46. Some corollaries to theorem 43.1

46.1. Let KS be the class of all matrices for S. Define SPCI to be the first order
propositional language corresponding to K with identity symbol = (i.e.
structures in K are models for the language SPCI) such that:

(1) The propositional variables of S are the individual variables of SPCI .

(2) The connectives of S are the symbols for operations of SPCI .

(3) D is the unary predicate symbol of IPCI , to be interpreted in each
M ∈ K as M̄ .

Observe that, under the assumptions made, the set S of all formulas of
the language S coincides with the set of all terms of SPCI . Note also that
KS is the class of all models for SPCI .

46.2. By an identity in SPCI (for all notions defined in this and the next sections,
cf. Malcev [1966] we shall mean the universal closure of an atomic formula
of the language, i.e. any formula of the form

(1) ∀p1 . . . ∀ pn(α = β)

or of the form

(2) ∀ p1 . . . ∀ pn D(α)

α, β being terms of SPCI (formulas of S), and p1, . . . , pn being all variables
appearing in α and β.
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Now, by a quasi–identity we shall mean any sentence of SPCI of the
form

(3) ∀ p1 . . . ∀ pn((σ1 ∧ . . . ∧ σn) → σ),

where σ1, . . . , σn, σ are atomic formulas of SPCI , i.e. formulas of the form
α = β, or D(α), and p1, . . . , pn are all variables they involve.

46.3. Given any set χ of sentence of SPCI denote by K(χ) the class of models
for χ.

a. A class of matrices K for S is said to be a variety iff K = K(χ) for a
set of identities χ.

b. K is said to be quasi–variety iff K = K(χ) for some set χ of quasi–
identities.

As we have already mentioned, the notion we have defined in 46.2 and
the present section are due to Malcev, more exactly they are adaptations
of the notions defined by Malcev for algebraic structures of any kind to log-
ical matrices. Of course, all of them are generalizations of corresponding
notions applicable to algebras.

Denote by q(K) the least quasi–variety that includes K. Let us state,
without proof, in the form restricted to matrices the following well known
theorem of model–theory (universal algebra).

46.4. Lemma. Let K be a class of similar matrices. The following conditions
are equivalent

(i) K = q(K), i.e. K is a quasi–variety.

(ii) SPR(K) ⊆ K ∪ I(τ).

(iii) SPPu(K) ⊆ K.

(The equivalence of (i) and (ii) was established by Malcev [1966], for the
proof of the equivalence (ii) and (iii) cf. e.g. Grätzer and Lakser [1973].)

Observe that 46.4 applied to 43.1 yields.

46.5. Corollary. For each standard logic C, the class Matr(C) is a quasi–
variety. �

Of course we have also,

46.6. Corollary. If C is standard and C = CnK then Matr(C) =
←−
HSHSq(K).

Proof. The least quasi–variety that includes K is SPR(K). Apply 43.1.
�
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47. Matr∗(C) for equivalential logics

47.1. In general, the class Matr∗(C) need be closed neither under the operation
S of forming submatrices nor under the operation PR of forming reduced
products. Suppose it is, and suppose that C = CnK∗ , all M ∈ K∗ being
simple. Assume also that C is standard. We have

(1) Matr(C) =
←−
HSHSSPR(K∗),

but under the assumption we made all matrices in SPR(K∗) are simple
and hence (1) yields

(2) Matr(C) =
←−
HSSPR(K∗)

(homomorphisms applied to simple matrices are embeddings). Clearly, (2)
implies

(3) Matr∗(C) = SPR(K∗)

The usefulness of the observation we made depends on whether the
class of logics C such that Matr∗(C) is closed under S and PR contains
sufficiently many logics of considerable significance. It does. In fact, it
covers nearly all known and studied logics, cf. 47.7.

47.2. Let E be a set of formulas in two variables p, q (i.e. V ar(E) = {p, q}) of
a language S. Given any α, β, define

(1) E( α , β ) = eE,

for any substitution e such that ep = α, eq = β. Similarly, given a matrix
M for S and any two elements a, b of M define

(2) E( a , b ) = hE,

for any valuation h in M such that hp = a, hq = b.

47.3. A logic C is said to be equivalential (cf. T. Prucnal and A. Wroński [1974])
iff there exists a set E(p, q) in two variables p, q such that for all α, β, γ
the following conditions are satisfied:

(E1) E(α, α) ⊆ C(∅),
(E2) E(β, α) ⊆ C(E(α, β)),

(E3) E(α, γ) ⊆ C(E(α, β) ∪ E(β, γ)),

(E4) β ⊆ C(E(α, β), α),

(E5) For each n–ary connective § of language of C and for all α1, . . . , αn,
β1, . . . , βn,
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E(§(α1, . . . , αn), §(β1, . . . , βn)) ⊆ C(E(α1, β1) ∪ . . . ∪E(αn, βn)).

If, moreover, E is finite C will be said to be finitely equivalential.

If C is equivalential, we shall denote by EC the largest of all sets E that
satisfy conditions (E1)–(E5). Any union of sets that satisfy (E1)–(E5) is
again a set that satisfies those conditions. Hence EC is the union of all
such sets.

Observe that conditions (E1)–(E5) amount to that certain sequential
rules are valid for C. For instance (E2) is equivalent to that all rules of
the form

E(p, q)/γ,

where γ ∈ E(q, p) are valid for C. Since the rules of C are rules of all
strengthenings of C we arrive at

47.4. Lemma.

a. Let C be an equivalential logic. Then for each C ′ > C, C ′ is also
equivalential. Moreover

b. If C is finitely equivalential so are all C ′ > C. �

47.5. Let M be a logical matrix for S. The congruence ≡M will be said to be
polynomial ( finitely polynomial) iff there is a set (a finite set resp.) of
formulas E in two variables p, q such that:

(1) a ≡ b(M) iff E(a, b) ⊆ M̄,

for all elements a, b of M .

Now, if such a set exists then, clearly, among all E that satisfy (1) there
exists the largest one (the union of all E in two variables p, q, for which
(1) holds true). We shall denote it by EM .

47.6. Lemma.

a. ≡M is (finitely) polynomial iff CnM is (finitely) equivalential. More-
over

b. If ≡M is polynomial EM ≡ ECnM
.

Proof. The proof requires some obvious verifications only. �

Now, we are in a position to turn back to the problem raised in 47.1.

47.7. Lemma. (J. Czelakowski [1980]). If C is standard and finitely equivalen-
tial then Matr∗(C) is closed under S and PR.

Proof. (S). Let M ∈Matr∗(C). Then for all a, b ∈M ,

(1) a ≡ b(M) iff a = b
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and, on the other hand, by 47.5

(2) a ≡ b(M) iff EC(a, b) ⊆ M̄.

Assume that N is a submatrix of M . Then N Matr(C), and hence, by
47.4,

(3) a ≡ b(N) iff EC(a, b) ⊆ N̄

which combined with (1) and (2) yields

(4) a ≡ b(N) iff a = b,

i.e. N is simple.

(PR) Let Mi, i ∈ I, be all in Matr∗(C) then

(5) a ≡ b(Mi) iff a = b,

(6) a ≡ b(Mi) iff EC(a, b) ⊆ M̄i.

Let ∇ be a filter on I, and let M = u∇Mi. By Lemma 42.4, and the
assumptions of the theorem, M ∈Matr(C). Thus for any ā, b̄ ∈ uiMi,

(7) |ā|∇ = |b̄|∇ (M) iff EC(|ā|∇, |b̄|∇) ⊆ M̄.

Now, C is finitely equivalential, hence for some finite subset E ⊆ EC we
have

(8) EC(|ā|∇, |b̄|∇) ⊆ M̄ iff E(|ā|∇, |b̄|∇) ⊆ M̄.

and, of course also,

(9) EC(a, b) ⊆ M̄i iff E(a, b) ⊆ Mi.

In turn,

(10) E(|ā|∇, |b̄|∇) ⊆ M iff {i : E(ai, bi) ⊆ Mi} ∈ ∇,

which by (5), (6), (7), (9) implies

(11) |ā|∇ ≡ |b̄|∇ (M) iff |ā|∇ = |b̄|∇.

�



113

47.8. Theorem (J. Czelakowski [1980]). Let C be standard and finitely equiv-
alential, then for each K, such that C = CnK,

Matr∗(C) = SPR(K∗) = SPPu(K∗).

Proof. cf. 47.1. Apply Lemma 47.7 and 46.4. �

The vast majority of all logics which are subject to investigation are
finitely equivalential. In particular, all implicative logics are in that cate-
gory. Thus the scope of Theorem 47.8 is very large indeed.

Observe, that if K is a finite class of finite matrices then Pu(K) = I(K)
(cf. 45.2). Hence, by 46.3, 46.5, and 47.8 we obtain

47.9. Theorem. Let C = CnK, K being a finite set of finite matrices then

a. Matr(C) =
←−
HSHSSP (K).

Moreover, if K = K∗, i.e. all matrices in K are simple and C is finitely
equivalential then

b. Matr∗(C) = SP (K). �

The logics that are determined by finite sets of finite matrices will be
referred to as strongly finite. We shall study them closer in Chapter XII.

48. Subdirectly irreducible matrices

48.1. The notion of a subdirectly irreducible matrix plays in the investigations
concerning logical consequences a role of importance comparable to that
played by subdirectly irreducible algebras in the theory of abstract alge-
bras.

Although the notion of a subdirectly irreducible matrix can be defined
for all matrices, it is convenient to restrict it to simple matrices only. Let
M = (Å,D) and all Mi = (Åi, Di), i ⊆ I be simple C–matrices.

a. We say that M is a subdirect product of the matrices Mi, i ∈ I iff
there exists an embedding f of M onto uiMi such that for each i ∈ I,
{ai : a ∈ f(A)} = Ai, Åi being the algebra of Mi. As usual, ai is the
projection of the element a onto the coordinate.

b. Let K be a class of matrices, all matrices in K being simple. We say
that M is subdirectly irreducible in K iff for each family Mi, i ∈ I
of matrices from K, if M is a subdirect product of Mi and f is the
embedding of M into uiMi satisfying the condition stated in the
definition of a subdirect product then for some i, πi(f(M)) ∼= Mi,
i.e. the projection of f(M) onto the i–th coordinate is isomorphic
with Mi.
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48.2. A C–filter D on Å will be said to be proper iff D 6= A. D will be said to
be irreducible iff

D 6=
⋂
{D+ ∈ FC(Å) : D ⊆ D+ and D 6= D+},

48.3. Lemma. Let C be standard and let D be a C–filter on Å. Then D is
the intersection of all irreducible C–filters on Å that include D.

Proof. If D is not proper then D is irreducible itself. If D is proper
then select any a ∈ D and consider any chain D of proper C–filters D′

such that D ⊆ D′ and a /∈ D′. Observe, that
⋃

D is C–filter. Indeed, let
α ∈ C(X), for some finite X, and let for some homomorphism from the
language of C into Å, hX ⊆

⋃
D. Then, since X is finite, and D is a chain,

hX ⊆ D′ for some D′ ∈ D. But then hα ⊆
⋃

D. Apply Zorn’s lemma to
conclude that for each a /∈ D there exists a maximal C–filter D+

a in the
class of all C-afilter D′ such that D ⊆ D′ and a /∈ D′. Of course, D+ is
irreducible, and of course D =

⋂
{D+

a : a ∈ D}. �

48.4. Lemma. Let M = (Å,D) be a simple C–matrix. Then the following
conditions are equivalent:

(i) M is subdirectly irreducible in Matr∗(C).

(ii) D is C–irreducible.

Proof. (i)→(ii). Assume that D is not C-airreducible. Then D =⋂
{Di : i ∈ I}, where Di, i ∈ I are all C–filters on Å such that D ⊆ Di

and D 6= Di. Put Mi = (Å,Di), for all i ∈ I, and define f : M → uMi by

(f) (f(a))i = a,

for all elements a of M . Verify that f is an embedding. In turn, define
f ′ : uiMi → uiMi/M̄i by

(f ′(ā))i = |āi|M̄i
,

and verify that f ′ is a matrix homomorphism. Thus

f ′ � f : M → ui Mi/M̄i

is a matrix homomorphism, too. But M is simple and hence f ′ � f is
one–to–one.

Now, observe that for each i and each element a of M(f ′(f(a)))i =
|a|M̄i

. But D is a proper subset of Di and hence for some element a ∈
D, (f ′(f(a)))i /∈ Mi/M̄i. Consequently for no i ∈ I, πi � f ′ � f (πi being,
as usual, the projection on the coordinate i) is a isomorphism between M
and Mi/M̄i. All Mi, and thus all Mi/M̄i as well are in Matr∗(C), which
implies that M is not subdirectly irreducible.
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(ii) → (i). Assume that M is not subdirectly irreducible in
Matr∗(C), and let Mi ∈ Matr(C), and let f : M → uiMi satisfy condi-
tions (f). Put

D+
i = {a ∈ A : (f(a))i ∈ M̄i}, i ∈ I.

Since {ai : a ∈ f(A)} = {aia ∈ uiAi}, Åi being the algebra of Mi,
the matrix (Å,D+

i ) ∼= πi(uiMi) = Mi and hence, D+
i ∈ FC(Å). Since f

is an embedding, we have D =
⋂

i D+
i . But M is a simple matrix and,

moreover, for no i, πi � f is an isomorphism. Hence D 6= D+
i for any i,

which implies that D is not irreducible. �

48.5. Subdirect representation theorem. Let C be standard. Then each
simple C–matrix is isomorphic to a subdirect product of a family of ma-
trices subdirectly irreducible in Matr∗(C).

Proof. Let M = (Å,D) be a simple C–matrix. Since C is assumed to
be standard than by Lemma 48.3, D =

⋂
{Di : i ∈ I} where all Di, i ∈ I

are irreducible filters such that D ⊆ Di. Put Mi = (Å,Di), i ∈ I and
define f : M → uiMi by

(f(a))i = a,

for all a ∈ A. Verify that f is an embedding and that πi(f(A)) = A. Now,
define f ′ : uiMi → uiMi/M̄i by

(f ′(ā))i = |āi|Mi

and verify that f ′ is a matrix homomorphism “onto”. Since M is simple
then f ′ � f is an embedding of M into Mi/M̄i. One verifies easily that
the fact that Di is irreducible in Å implies that Di/M̄i is irreducible in
Å/M̄i. Apply Lemma 48.4 to conclude the proof. �
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Chapter 11

Referential Matrices Vrs
Frames

52. K–standard referential matrices

52.1. A logic C will be said to be a referential extension of K iff it is selfex-
tensional and includes K as its fragment, i.e. C � L = K. For instance,
all well–determined classical modal logics based on K are of this kind (cf.
52.3).

A referential matrix (R) for a referential extension C of K will be said to
be K–standard iff all truth–valuations in H(R) are classically admissible.

Verify that if (R) is K–standard then

(DT ) β → α ∈ CnR(X) iff α ∈ CnR(X, β),

i.e. Cn(R) satisfies Deduction Theorem.

52.2. Theorem. Let a standard logic C be a referential extension of K. The
following conditions are equivalent

(i) The set XC of all relatively maximal theories of C is a closure base
for C.

(ii) C is complete with respect to K–standard referential matrices.

Proof. (i) → (ii). Assume (i). By Lemma 51.2, C is derivational and
by Lemma 25.2, the canonical matrix (RXC) of C is K–standard, which
implies (ii).

(ii) → (i). Let R be a set of referential matrices such that C = CnR.
Form G R, and consider all theories of C of form

←−
h t(1), t ∈ TGR. For

each such a theory X and for each α, either α or ¬α ∈ X. Hence X is

117
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relatively maximal, and since H(G R) determines C, so does the set of
relatively maximal theories. �

From 52.2 it follows immediately that each referential well–determined
logic based on K is complete with respect to K–standard referential ma-
trices. The following theorem tells us more on how well–determined logics
are related to referential semantics.

52.3. Theorem. Let ~M be a well determined logic based on K. The following
conditions are equivalent.

(i) ~M is a classical modal logic,

(ii) ~M is complete with respect to referential matrices,

(iii) ~M is complete with respect to K–standard referential matrices.

Proof. We have to prove only the equivalence of (i) and (ii). As-
sume (i). In order to show that ~M is referential we shall show that it
is selfextensional. The argument to this effect is inductive. Assume that
~M(α) = ~M(β), and observe that

(1) ~M(γ(α/p) = ~M(γ(β/p))

is satisfied, if γ is a propositional variable. We have to prove that the set
Xγ of all γ’s that satisfy (1) is closed under the connectives of L�. Since
K is an implicative logic and M inherits all rules of K, certainly Xγ is
closed under standard connectives. Suppose that for some ϕ, ϕ ∈ Xγ . We
have to prove that �ϕ ∈ Xγ . Since the Deduction Theorem is valid for ~M
(cf. 52.1) the assumption that ϕ ∈ Xγ implies that

ϕ(α/p)←→ ϕ(β/p) ∈ ~M(∅),

and this, be RE implies

�ϕ(α/p)←→ �ϕ(β/p) ∈ ~M(∅),

or equivalently,
~M(�ϕ(α/p)) = ~M(�ϕ(β/p)).

In order to complete our remarks on relations between classical modal
logics and referential matrices observe that 50.6 yields.

52.4. Corollary. Let C be a well–determined classical logic based on K.
Then the canonical referential matrix (RRMThC

) is adequate for C. �
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53. Referential matrices vs neighborhood frames

53.1. Theorem. Each neighborhood frame F = (T,N) is semantically equiv-
alent to the referential matrix (RF ) defined as follows

(i) TRF = T,

(ii) RF is full,

(iii) RF is K–standard,

(iv) For each element r ∈ R and for each t ∈ T ,

�r(t) = 1 iff {t′ : r(t′) = 1} ∈ N(t).

Proof. Assume that η is a neighborhood valuation determined by F .
Since RF is full there is a valuation h in (RF ) such that

(1) (hp)t = η(t, p),

for all variables p. But RF is K–standard and ηt is classically admissible
for all t ∈ T , and this allows us to conclude that the set of all formulas α
for which (hα)t = η(t, α) is closed under standard connectives. We have
to show that it is closed under �.

Assume that η(t,�α) = 1. Hence {t′ : η(t′, α) = 1} ∈ N(t). This, under
the assumption of the recursive argument, yields {t′ : (hα)t′ = 1} ∈ N(t).
Assume that (h�α)t = 1 and just reverse the argument to get η(t,�α) =
1.

What we have established is H(F) ⊆ H(RF ). But, of course, to
each valuation h in (R) there is a neighborhood valuation η such that (1)
is satisfied, and hence (1) establishes one–to–one correspondence between
valuations defined with respect to F and those inRF and we have H(F) =
H(RF ). �

Observe that conditions (ii) and (iii) imply that RF is a complete
atomic Boolean algebra (RF is isomorphic to the algebra of all subsets
of T ), and hence the theorem is “referential” counterpart of M. Gerson
theorem [1974] which says that a Boolean frame (= a modal algebra) is
isomorphic to a neighborhood frame iff it is atomic and complete.

53.2. Let R be a referential algebra such that for all r1, r2 and for each t ∈ T

{t′ ∈ T : r1(t′) = 1} = {t′ ∈ T : r2(t′) = 1}

iff
�r1(t) = �r2(t).

If this condition is satisfied we shall call R a neighborhood (referential)
algebra and (R) a neighborhood (referential) matrix.
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Given any such algebra R we define NR to be a mapping from TR into
the power set of the power set of TR such that

(NR) {t′ ∈ T : r1(t′) = 1} ∈ NR(t) iff �r(t) = 1

and call it the neighborhood function of R.

With the help of this definition we can extend the notions defined in 26.1a
for neighborhood frames onto referential matrices. Thus, for instance,
t ∈ TR will be said to be normal iff NR(t) is a filter. The notions of a
singular/regular point of R, a normal/singular/regular referential algebra
(matrix) are to be defined by simulating the corresponding definitions for
frames. Of course, all these notion are applicable only to neighborhood
matrices.

53.3. In order to pursue the analogy between referential matrices and frames and
on the other hand, in order to bring to light some essential differences, let
us introduce the following notation.

a. Given any logic C, we shall denote by RMatr(C) the class of all
referential matrices for C, see also 50.1.

b. If moreover the language of C is an extension of L, we shall denote
by RKMatr(C) the class of K–standard referential matrices for C.

c. If M is a modal system based on K we define RMatr(M) and
RKMatr(M) to be the class of all referential matrices and, corre-
spondingly, the class of all K–standard referential matrices R such
that M ⊆ ξ(R).

53.4. The reader will easily verify that for each modal system M based
on K

(+) RKMatr(M) = RKMatr( ~M),

which corresponds to 25.6b. We also have

a. RKMatr(ME) =the class of all referential K–standard matrices for
L�.

b. RKMatr(MC) =the class of all regular referential K–standard ma-
trices for L�.

c. RKMatr(MK) =the class of all normal referential K–standard ma-
trices for L�.

The results correspond to 27.2a, b, c. Of course, in view of 52.3 the
identities a, b, and c imply corresponding completeness theorems.
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54. Referential matrices vrs relational frames

54.1. The relation between normal relational frames and referential matrices
is rather obvious. We already know that each relational frame (T,R) is
equivalent to the neighborhood one (T,NR); for the definition of NR, cf.
20.5. Thus, in view of 53.1, a normal relational frame is equivalent to a
referential matrix.

Let us then examine how referential matrices are related to relational
frames in general sense, i.e. not necessarily normal. Hence again, as it was
established by K. Segerberg [1971], for each relational frame there exists
an equivalent neighborhood frame. We shall adopt Segerberg’s argument
for our purpose.

To begin with, let us define a referential matrix (R) to be augmented iff
it is full, regular, and for each normal t ∈ T⋂

NR(t) ∈ NR(t).

54.2. Theorem. A relational frame F = (T,R, Q) is semantically equivalent
to each referential matrix (R) that satisfies the following conditions

(i) TR = T,

(ii) R is augmented,

(iii) R is K–standard,

(iv) Q is the set of singular elements of R,

(v) If t is normal in R then tRt′ iff t′ ∈
⋂

NR(t).

Proof. Assume that η is a neighborhood valuation determined by F ,
and observe that for each such valuation there exists a valuation h in RF
(RF is augmented and thus full) such that

(1) η(t, p) = hp)t,

for all variables p and all t ∈ T . And vice versa, for each valuation h in
RF there exists neighborhood valuation η such that (1) is satisfied. As in
the proof of 53.1, we shall show that (1) yields

(2) η(t, α) = (hα)t.

Of course, as it follows from (iii) and the properties of neighborhood
valuations, the set of those α’s for which (2) holds true is closed under
standard connectives. Let us assume that (2) is valid for α, and all t. We
have to prove that

(3) η(t, �α) = (h�α)t,
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We have

(4) η(t,�α) = 1 iff t /∈ Q and for all t′, if tRt′ then η(t′, α) = 1

and, taking into account (iv),

(5) (h�α)t = 1 iff t /∈ Q and {t′ : (hα)t′ = 1} = NR(t).

Let us compare the two conditions. If t ∈ Q then we have immediately
(h�α)t 6= 1 and η(t,�α) 6= 1, and thus the case we have to consider is
t /∈ Q. Assume η(t, �α) = 1. If so, then by (v) {t′ : tRt′} =

⋂
NR(t).

But for each t′ ∈ {t′ : tRt′} we have ηt′ α = ht, α = 1, and hence the
set {t′ : (hα)t′ = 1} is a superset of

⋂
NR(t). R is regular and thus

{t′ : (hα)t′ = 1} ∈ NR(t), and we again have ht�α = 1.

Assume (h�α)t = 1. (The case t ∈ Q is obvious, then assume that
t /∈ Q). Consider any t′ such that tRt′. By (v) this implies t′ =

⋂
NR(t)

and consequently t′ ∈ {t′ : (hα)t′ = 1}. Since (hα)t′ = η(t′, α) we obtain
η(t′, α) = 1. This holds true for all t′ such that tRt′, hence η(t,�α) = 1,
and the proof of a. is concluded. �

From theorem 54.2 it follows immediately that for each relational frame,
a normal relational frame in particular, there is a referential matrix se-
mantically equivalent to it. This, of course, makes it possible to extend
completeness results established for relational frames to referential matri-
ces.

55. Comparing the relative strength of different
semantics

55.1. Denote by MN the class of well–determined normal modal logics based on
K. We already know that:

a. Each system M ∈MN that is complete with respect to the relational
frames is complete with respects to the neighborhood frames. But not
vice versa (cf. 20.5 and 26.5) in symbols, MN : RFrame ⇀ NFrame.

b. Each system M ∈MN that is complete with respect to neighborhood
frames is complete with respect to K–standard referential matrices
but not vice versa (cf. 53.1, 52.3, and 26.4). In symbols, MN :
NFrame ⇀ RKMatr.

c. All system M ∈ MN are complete with respect to K–standard ref-
erential matrices, and hence K–standard referential matrix seman-
tics is (with respect to MN ) equivalent to referential matrix se-
mantics and furthermore matrix semantics (cf. 52.3). In symbols,
MN : RKMatr 
 RMatr 
 Matr.
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Combining a., b., c. in a single diagram we obtain

MN : RFrame ⇀ NFrame ⇀ RKMatr 
 RMatr 
 Matr

55.2. a. Each logic ~M ∈ MN that is complete with respect to RFrame is
complete with respect to NFrame. In symbols, MN : RFrame ⇀
NFrame

b. By 26.7 and 52.3 we have MN : NFrame ⇀ RKMatr

c. And from 52.3 it follows that MN : RKMatr 
 RMatr 
 Matr.

Gathering a., b., c. in a single diagram we obtain

MN : RFrame ⇀ NFrame ⇀ RKMatr 
 RMatr 
 Matr

It goes without saying that if we consider another class of logics, the
picture could be different. For instance let M be the class of all modal
systems based on K. Then

M : RFrame ⇀ NFrame ⇀ RKMatr ⇀ RMatr ⇀ Matr

55.3. Now, what is the corresponding picture for J and its structural strength-
enings i.e. for [J)0.

To begin with, observe that for each epistemic frame F = (T,6) there
exists a referential matrix RF semantically equivalent to F . We form RF
as follows.

(i) We take {0, 1}T to be the set of elements of RF . And then

(ii) we define the operations ∧, ∨, →, ¬ on {0, 1}T in an expected way
(f, g ∈ {0, 1}T ):

(1) (f ∧ g)t = 1 iff ft = 1, and gt = 1,
(2) (f ∨ g)t = 1 iff either ft = 1 or gt = 1 or ft = gt = 1.
(3) (f → g)t iff for all t′ > t, gt = 1 whenever ft′ = 1,
(4) (¬f)t = 1 iff ft′ = 1 for no t′ > t.

Since, as we easily verify H(F) = H(RF ), we obtain

55.4. Theorem. Each epistemic frame F is semantically equivalent to the
referential matrix RF defined by conditions (i), (ii) of 55.3. �

55.5. Denote by PBA the class of all pseudoboolean algebras, and recall that
EFrame is the class if all epistemic frames.

From 55.4 it follows immediately that referential semantics in application
to [J)0 is at least as strong as epistemic. But, it follows from Lemma 51.2
that all intermediate “logics” J+(∅), J+ ∈ [J)0 are complete with respect
to referential matrices. Indeed, for each such J+, J+(∅) =

−−−−−→
(J+(∅))(∅) and
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of course
−−−→
J+(∅) satisfies condition (ii) of Lemma 51.1 and thus is referen-

tial. On the other hand, as it has been established by Shehtman [1977]
only some of intermediate logics are complete with respect to epistemic
frames. This given us J)0: EFrame ⇀ RMatr.

To examine how referential matrices and PBA are related observe that
each referential J–matrix (R) is equivalent to the bundle (R, Dt), t ∈ T .
The latter is equivalent to the class of simple matrices (R, Dt)|Dt, t ∈ T ,
and simple matrices for J are all of the form (Å, 1J) where Å is a PBA.
Hence R|Dt, t ∈ T are PBA. To combine them into a single pseudo–
Boolean algebra equivalent to (R) we have just to form the direct product
u{R|Dt : t ∈ T}. In 35.3 we have already argued that in the case of PBA
for each K ⊆ PBA, K and the direct product uK are equivalent. Since,
as we have established in the previous paragraph, all J+(∅), J+ ∈ [J)0
are complete with respect to RMatr, we arrive at [J)0 : RMatr 
 PBA.
Obviously, we have also [J)0 : PBA 
 Matr.

Combining what we have established together we obtain

a. [J)0 : EFrame ⇀ RMatr 
 PBA 
 Matr

We also have

b. [J)0 : EFrame ⇀ RMatr ⇀ PBA 
 Matr.

We need to show only that 
 between RMatr and PBA cannot be
reversed i.e. PBA–semantics is properly stronger than referential. For
this purpose, consider J+R, where R is any standard rule that preserves
J(∅) but is not a rule of J . Some examples of such rules were given in 9.3.
Suppose that J+R is referential. Then, by Lemma 51.1, RDT holds for
J+R. But J+R is standard and J(∅) = J+R(∅) and if RDT were valid for
J+R indeed, we would obtain J = J+R which cannot be true. Hence J+R

is not referential.

On the other hand, all strengthenings of J , J+R in particular, are
implicative (the strengthenings of an implicative logics are implicative)
and hence J+R is complete with respect to PBA, which concludes our
argument.
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Referential Matrices Some
General Results

49. Referential algebras

49.1. Let T be a non–empty set of points of reference (whatever they may be:
time instances, space coordinates, states of affair, possible worlds). If all
elements of an algebra R are functions of the form r : T → {0, 1}, i.e.
R ⊆ {0, 1}T , the algebra R will be called a referential algebra on T . Now,
if such an algebra R is given, we define for each t ∈ T

(1) Dt = {r ∈ R : r(t) = 1},

and we put

(2) R̄ = {Dt : t ∈ T}.

The couple

(3) (R, R̄)

is a ramified matrix. It will be referred to as a referential matrix on T .

49.2. Observe, that each referential algebra R determines uniquely the referen-
tial matrix (R, R̄). Therefore, in what follows, we shall denote the matrix
(R, R̄) as (R) or, if it desirable to point out the set of reference points
explicitly, as (R)T . Moreover, if R is a class of referential algebras, we put
(R) = {(R) : R ∈ R}. The classes of similar referential matrices will be
referred to as referential semantics.

If R = {0, 1}T , i.e. R includes all functions r : T → {0, 1}, the algebra
R and the corresponding matrix (R) will be called full.

Let (R)T be a matrix for S. Given any valuation h of S in (R)T put

htα = (h α)t,

125
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for all t ∈ T . The mapping ht is a truth–valuation, i.e. ht : S → {0, 1}.
It will be referred to as the projection of h onto the coordinate t.

49.3. Since for each formula γ, htγ = 1 iff hγ ∈ Dt, we have the following
equivalence:

(r) α ∈ Cn(R)T
(X) iff for all valuations h in (R)T , and for all t ∈ T ,

htα = 1 whenever htβ = 1, for all βt ∈ X.

In view of (r), we can rule out the sets Dt from technical considerations
concerning logics of the form Cn(R). Of some importance also seems to
be the fact that (r) tells us what kind of logics are ones of the form Cn(R):
the consequence Cn(R) is the strongest logic that preserves truth at each
reference point t ∈ T .

Before we provide a syntactical characteristic of referential logics (cf.
next section), let us examine referential matrices in more detail.

49.4. Observe, that given any class (R) = {(Ri) : i ∈ I} of referential matrices
of the same similarity type, one may easily form a single referential algebra
R such that (R) and (R) are semantically equivalent, i.e.

Cn(R) = Cn(R).

The algebra R can be formed as follows. Let Ti be the set of reference
points of Ri. We may assume that Ti are pairwise disjoint; if necessary re-
place some Ri by isomorphic copies in order to assure that the assumption
made holds true. Now define

(1) T =
⋃
{Ti : i ∈ I}

(2) R = {r ∈ {0, 1}T : r � Ti ∈ Ri, for all i ∈ I}.

Since for each t ∈ T there exists exactly one i ∈ I such that t ∈ Ti, for
each n–ary operation § of the algebrasRi, we may define the corresponding
operation § on R as follows

(3) (§R(r1, . . . , rn))t = (§Ri
(r1 � Ti, . . . , rn � Ti))t, t ∈ Ti.

Denote the operation that applied to R produces R, by G, i.e. we put

R = G R.

We shall call it the operation of pasting referential algebras.

To have G defined for all classes of similar referential algebras put G ∅ = τ .
One easily verifies that (G R) has the property we wanted it to have.
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49.5. Lemma. For each class R of similar referential matrices

Cn(R) = Cn(GR).

�

49.6. If R =G {Ri : I ∈ I}, the algebras Ri will be referred to as fragments
of R. In a fully general way the notion of a fragment can be defined as
follows

Given any referential algebras RT ,RS we say that RS is the S–fragment
of RT iff RS = RT � S, more specifically, iff

(i) RT and RS are similar,

(ii) S ⊆ T,

(iii) r′ ∈ RS iff r′ = r � S, for some r ∈ RT ,

(iv) For each n–ary operation § of the two algebras and for all
r1, . . . , rn ∈ RT ,

§R(r1, . . . , rn) � S = §R(r1 � S, . . . , rn � S).

49.7. Observe that a fragmentRS ofRT is not a subalgebra of the latter algebra
but rather a quotient of the latter. Indeed, given any S ⊆ T define the
relation ≡S on R as follows

r1 = r2(S) iff r1(t) = r2(t), for allt ∈ S

Verify the following

a. ≡S is a congruence on RT iff there is an S–fragment RS of RT .
Moreover

b. If ≡S is a congruence on RT then the S–fragment RT � S of RT and
the quotient RT /S are isomorphic.

49.8. Notice, that if ≡S is a congruence of RT it need not imply that ≡S is
a congruence on matrices (RT , Dt). Still for each logic C the class of
all referential C–matrices, RMatr(C), is easily seen to be closed under
congruence of the form ≡S . We have

a. For each referential algebraR and for each fragmentR′ ofR, Cn(R) 6
Cn(R′). Observe also that

b. Assume that Si ⊆ T for all i ∈ I,
⋃

i Si = T , and for each Si, there
exists Si–fragment of the referential algebra RT . Then (RT ) and
({RT � Si : i ∈ I}) are semantically equivalent.

(In order to show b. form R′T = (G {RT � Si : i ∈ I}) and verify that
(RT ) and (R′T ) are semantically equivalent).
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50. Selfextensional logics

50.1. The objective of this section is to define in syntactical terms the class
of logics that are complete with respect to referential semantics, i.e. the
class of logics C such that C = CnRMatr(C), RMatr(C) being the class of
all referential C–matrices. Given any congruence C on S we define a
congruence ≡C on S by

α ≡ β(C) iff C(γ(α/p)) = C(γ(β/p)),

for all variables p and formulas γ. One easily verifies (cf. comments to
the proof of 33.4) that

50.2. Lemma. For each consequence C defined on S, ≡C is the greatest of all
congruences ≡Θ defined on S such that α ≡ β(Θ) implies C(α) = C(β).�

50.3. A logic C will be said to be selfextensional iff for all α, β, C(α) = C(β)
implies α ≡ β(C).

With this definition we have

50.4. Theorem (R. Wójcicki [1979]). A propositional logic C is complete with
respect to referential matrices iff it is selfextensional.

Proof. (→) Assume that C = Cn(R), T being the set of reference points
of R. Suppose that for some α, β, C(α) = C(β). Hence htα = htβ for all
valuations h in R and for all t ∈ T . Clearly, this yields

(1) h(γ(α/p)) = h(γ(β/p))

for all valuations h, all γ and all p. Now (1) implies α ≡ β(C), and we
conclude that C is selfextensional.

(←−) Select T to be a closure base of C. For instance, put T = ThC .
Now, for each formula α define αT to be the function from T into {0, 1}
such that

(2) αT (X) = 1 iff α ∈ X.

Put

(3) R = {αT : α ∈ S}

S being the language of C. In turn, for each n–ary connective § of S define
the operation §R by

(4) §R(αT
1 , . . . , αT

n ) = (§(α1, . . . , αn))T ,

for all α1, . . . , αn. Of course, we have to verify that (4) does not lead to
contradiction, i.e. §R is well–defined. In order to be so, we put have

(5) (§(α1, . . . , αn))T = (§(β1, . . . , βn))T ,
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whenever

(6) αT
i = βT

i , for all i = 1, . . . , n.

Let us verify that (6) implies (5). Since T is assumed to be a closure
base for C, (6) is equivalent to

(7) C(αi) = C(βi), i = 1, . . . , n

which implies

(8) αi ≡ βi(C), i = 1, . . . , n

and hence,

(9) §(α1, . . . , αn) ≡ §(β1, . . . , βn)(C).

Once more exploit the fact that T is a closure base for C, this time in
order to get (5) from (9).

The set R supplied with the operations §R corresponding to the connec-
tives of S, forms the referential algebraR. We shall show that C = Cn(R).

Select any formula α and any set of formulas X and assume that

(10) α ∈ C(X)

Let h be a valuation in (R). For each propositional variable p, there exists
a formula αp such that

(11) hp = αT
p .

Define a substitution eh in S by

(12) ehp = αp.

Since C is structural, we have

(13) ehα ∈ C(ehX).

Now, observe that for each β,

(14) hβ = (ehβ)T .

Indeed, by (11) and (12) the identity (14) is valid at least when β is a
propositional variable. This allows us to apply a recurrsive argument.
Assume that (14) is valid for β = βi, for i = 1, . . . , n and consider any
formula of the form §(β1, . . . , βn), § being an n-ary connective of S. We
have h§(β1, . . . , βn) = §R(hβ1, . . . , hβn) = §R((ehβ1)T , . . . , (ehβn)T ) =
(§(ehβ1, . . . , ehβn))T = (eh§(β1, . . . , βn))T which establishes (14).
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Suppose that for some Y ∈ T,

(15) (hβ)Y = 1 for all β ∈ X.

By (3) and (14) we obtain ehβ ∈ Y for all β ∈ X which, by (13) and the
assumption that T is a closure base for C, yields

(16) ehα ∈ Y.

Apply (3) and (14) once again to obtain

(17) (hα)Y = 1

Thus (15) implies (17) which by 50.3 (r) gives

(18) α ∈ Cn(R)(X).

Now, suppose that (10) is not true, i.e. α /∈ C(X). Then α /∈ Y , for
some Y ∈ T such that X ⊆ Y . Define h to be the valuation in (R) such
that

(19) hp = pT ,

for all variables p. This, by the same argument that leads from (11) to
(13), implies that

(20) hβ = βT ,

for all β, and hence (hγ)Y = 1 for all γ ∈ X, and (hα)Y = 0. This yields
α /∈ Cn(R)(X), concluding the proof. � A logic C that is
complete with respect to referential matrice, i.e. it is selfextensional, will
be occaxionally refer to as referential.

50.5. Given any closure base X for a logic C denote by (RX) the referential
matrix determined by X. The matrices of this form will be referred to
as canonical. Observe that, in general, there is more than one canonical
matrix for C.

The proof of 50.4 is, at the same time, a proof of

50.6. Theorem. Let C be a self–extensional logic and let X be a closure base
for C. Then the canonical referential matrix (RX) is adequate for C. �

51. An useful lemma

51.1. Define C to be quasi–implicative iff C satisfies all conditions by means of
which an implicational logic has been defined (cf. 37.1) with the exception
that Replacement Rule is not demanded to be a rule of C, but merely a
permissible rule of C, i.e. a rule that preserves C(∅).

Explicitly: C is quasi–implicative (with respect to →) iff
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(i) α→ α ∈ C(∅),
(ii) MP , PR, TR are rules of C,

(iii) For each α, (RP )α preserves C(∅).

51.2. Lemma. Let C be a logical such that J � {∧,→} 6 C � {∧,→}. Then
the following two conditions are equivalent

(i) C is selfextensional,

(ii) C is quasi–implicative with respect to →, and for all α and for all
finite sets of formulas Xf ,

(RDT ) β ∈ C(Xf , α) iff α → β ∈ C(Xf )

(we shall refer to RDT as the Restricted Deduction Theorem).

Proof. (i) → (ii). Assume (i), an suppose that β ∈ C(Xf , α), for some
finite Xf . Let γ be a conjunction of the elements of Xf , if Xf 6= ∅, or else
let γ = α→ α. We have

(1) C(γ ∧ α ∧ β) = C(γ ∧ α)

Make use of selfextensionality of C to get

(2) C((γ ∧ α)→ (γ ∧ α)) = C((γ ∧ α)→ (γ ∧ α ∧ β)),

with yields

(3) (γ ∧ α)→ (γ ∧ α ∧ β) ∈ C(∅).

Now observe that we have

(4) (γ ∧ α)→ (γ ∧ α ∧ β) → (γ → (α→ β)) ∈ J(∅).

Since J � {∧,→} 6 C � {∧,→}, (3), (4) and MP yield

(5) γ → (α→ β) ∈ C(∅).

or equivalently

(6) α→ β ∈ C(Xf ).

Apply MP to get β ∈ C(Xf , α) from (6). Thus RDT holds true for C.

The only thing we have to prove in order to show that C is quasi–
implicative is that for all α of the language of C, (RP )α is a permissible
rule of C. Since J � {∧,→} 6 C � {∧,→} all the remaining rules that a
quasi–implicative logic is postulated to satisfy (cf. 51.1) are rules of C.
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Select any α, and assume that (β1 ←→ β2) ∈ C(∅), for some formu-
las β1, β2. Obviously, we have C(β1) = C(β2). This yields C(α(β1/p)) =
C(α(β2/p)). But RDT holds true for C and we have α(β1/p))→ α(β2/p) ∈
C(∅) as required.

(ii) → (i). This part of the proof is straightforward. Let C(α) = C(β).
Then α ←→ β ∈ C(∅) by RDT and by (RP )γ we have γ(α/p) ←→
γ(β/p) ∈ C(∅), i.e. C(γ(α/p)) = C(γ(β/p)). �

The assumption of the lemma is too strong. Only some of the theorems
of J � {∧,→} are needed to carry out the proof. Of course, one can easily
trace them down and formulate the Lemma in an adequate manner.

51.3. From the lemma we have proved it follows e.g. that Jmin, H, J , numerous
strengthenings of those logics, K, numerous modal logics are selfexten-
sional. Thus, no doubt, the class of selfextensional logics is very large.

 Lukasiewicz’s truth preserving logics  Lη, the logic with constructive
falsity N are, but many others, not selfextensional. Observe, that both
 Ln, n–finite, and N are implicative and at the same time they involve
implicity the connective ⇒ with respect to which RDT (even DT ) holds
true; ⇒ is definable within those logics. The connective ⇒ differs from
this with respect to which the logics in question are implicative, and hence
they do not satisfy the condition (ii) of 51.2.
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Logics Strongly Finite

56. A syntactical test for strong finiteness

56.1. A logic C is said to be strongly finite iff C = CnK for some finite class
of finite matrices. The notion is an inferential counterpart of a tabular
logic. We say that C is tabular iff C(∅) = ξ(M) for some finite matrix
M ∈ Matr(C). Often the condition for M to be a C–matrix is dropped
out, and the definition becomes less restrictive. It is perhaps worth–while
noticing that if C(∅) = ξ(K) for some finite class of finite C–matrices, then
there is a single finite C–matrix that establishes tabularity of C. E.g. the
product uK of all matrices of K is such a matrix. In the case of strongly
finite logic quite often K cannot be replaced by a single matrix.

56.2. We shall need some auxiliary notion and symbols

a. Given any language S and given any cardinal number ξ, we shall
denote by S(ξ) the language whose all propositional variables are pζ ,
ζ 6 ξ, and whose connectives are exactly such as those of S. S(ξ)
will denote the set of all formulas of S(ξ).

b. Now, given the languages S and S(ξ) and given any structural con-
sequence C on S we define a consequence C(ξ) on S by

α ∈ C(ξ)(X) iff for all e ∈ Hom(S,S(ξ)), eα ∈ C(eX),

for all α ∈ S, and all X ⊆ S.

56.3. The reader should find it easily to verify that

a. If card(S) 6 ξ than C(ξ) = C

b. C(1) > C(2) > . . . > C

c. If ξ 6 card(S) then C 6 C(ξ).

133
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56.4. Theorem. (R. Wójcicki [1973]). Let C be a logic defined in S. C is
strongly finite iff there exists k ∈ ω such that for all X and all α the
following two conditions are satisfied

(i) C = C(k),

(ii) The set S(k)|C of all equivalence classes |α|C , α ∈ S(k) is finite. (For
the definition of ≡C see 50.1).

Proof. (→) Assume that C = CnK, where K = {M1, . . . ,Mn} all Mi

being finite. Let mi be the cardinality of Mi. Put m = max(m1, . . . ,mn).
Since C is structural, certainly we have, for all k

(1) Iff α ∈ C(X) then for each e ∈ Hom(S,S(k)), eα ∈ C(eX)

We have to prove the converse. Assume that α /∈ C(X). This gives
α /∈ CnMi(X) for some Mi (cf.31.3b). Select a valuation h in Mi such
that hX ⊆ M̄i, hα /∈ Mi. But, of course, for some r 6 m,h(V ar(S)) ⊆
{a1, . . . , ar}, aj being all elements of Mi. Define a substitution eh in S by

(2) ehp = pi,

whenever hp = ai, and select valuation h′ in Mi such that

(3) h′ehp = hp.

Obviously, h′ehX ⊆ M̄i, h′ehα /∈ barMi, and we arrive at ehα /∈ C(ehX).
The argument shows that if we put k = m, the converse of (1) will hold
true.

In order to complete the proof we have to show that there are finitely
many equivalence classes |α|C , α ∈ S(k). Define a relation ≡(K) on for-
mulas of S by

α ≡ β(K) iff for all Mi ∈ K and all valuations h in Mi, h α = h β.

Verify that ≡(K) is a congruence, and by Lemma 50.2 ≡(K)⊆≡C . Since,
what is obvious, there are finitely many equivalence classes of ≡(K) on
S(k) the quotient S(k)|C is finite, too.

(←−). Assume (i) and (ii) and consider the quotient matrices

(S(k), C(X) ∧ S(k))/C, X ⊆ S

For each X ⊆ S, denote the corresponding matrix of those defined above
by MX,∅. As an immediate corollary to Lemma 56.5, we are going to state
below, we obtain C = Cn{MX,∅:X⊆S}. Now, in virtue of (i) and (ii) each
MX,∅ is finite and so is the set of all MX,∅. �
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56.5. Lemma. Assume (i) and (ii) of 56.4, and for each X, Y ⊆ S(k), define
the quotient matrix

MX,Y = (S(k), (C(X ∪ Sb(Y )) ∩ S(k)))|C

Then, the following two conditions are equivalent

(i) eα ∈ C(X ∧ Sb(Y )), for all e ∈ Hom(S,S(k))

(ii) α ∈ CnMX,Y
(X).

Proof. (i) → (ii). Assume (i), and assume that for some MZ,Y and
some valuation h in that matrix, h(X) ⊆ M̄Z,Y . Select any substitution
eh ∈ Hom(S,S(k)) such that

(1) |ehp|C = hp,

for all variables p of S. Of course, (1) implies

(2) |ehβ|C = hβ,

for all β ∈ S. The assumption h(X) ⊆ M̄Z,Y yields

(3) ehX ⊆ C(Z ∪ Sb(Y )) ∩ S(k)

Now (3) and (i) imply

(3) eh α ∈ C(Z ∪ Sb(Y )) ∩ S(k),

and thus hα ∈ M̄Z,Y , which gives (ii).

(ii) → (i). Assume that (i) is false. Let e ∈ Hom(S,S(k)) such that (4)
is not true. Define a valuation he in MX,Y by the condition

(5) hep = |ep|C ,

for each variable p. This yields heβ = |eβ|C , for every formula β ∈ S.
Hence heX ⊆ M̄X,Y , heα /∈ M̄X,Y and we arrive at not (ii). �

57. The lattices of strengthenings of a strongly
finite consequences

57.1. Theorem. (R. Wójcicki [1974]). Let C be SF . Then (a) the number of
all structural axiomatic strengthenings of C, and hence the number of all
invariant theories of C, is finite. Moreover (b) each such strengthening is
SF .

Proof. (b) Let C0 = C+Sb(X), for some set of formulas X. To begin
with, we shall show that C0 is SF . Since C0 is structural (cf. 7.7 and
10.4), we have C0 6 C

(k)
0 . Assume that α /∈ C0(Y ) = C(Y ∪ Sb(X)). Let
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C = CnK, K is being a finite set of finite matrices. Let M ∈ K, and let h
be a valuation in M such that

(1) h(Y ∪ Sb(X)) ⊆ M̄

and

(2) h α /∈ M̄.

For each element a of M such that
←−
h (a) ∪ V ar(S) 6= ∅ select pa such

that hpa = a, and define a substitution e by the condition

(3) ep = pa iff hp = hpa.

Clearly we have eep = ep and thus, eeβ = eβ, for all β.

Suppose that eα ∈ C(eX ∪ Sb(Y )). This yields eeα = eα ∈ C(eeX ∪
eSb(Y )) = C(eX ∪ eSb(Y )). Making use of the valuation h, we immedi-
ately see that this is impossible. Hence

(4) eα /∈ C(eX ∪ Sb(Y )).

Let {a1, . . . , am} be all elements of M . Select any isomorphic substi-
tution i such that ipaj = pj , j = 1, . . . ,m. Since i is an isomorphism, we
have iSb(Y ) = Sb(Y ) and, at the same time

(5) ie α /∈ C(ieX ∪ Sb(Y ) = C0(ieX)).

Now, observe that i � e ∈ Hom(S,S(k)) where k is the number under
which C satisfies (i) and (ii) of 56.4. Thus succeeded to show (i) of 56.4.

In order to establish (ii) observe that ≡C⊆≡C0 , and since S(k)|C is
finite so is S(k)|C0.

(a) In order to establish (a) observe that by, 56.4 and Lemma 56.5,
C+Sb(Y ) = Cn{MX,Y :X⊆S}, and {MX,Y : X ⊆ S} ⊆ {MX,∅ : X ⊆ S}.
Now, since {MX,∅ : X ⊆ S} is a finite set, the number of strengthenings
of C of the form C+Sb(Y ) is finite. �

We say that a logic C ′ is finitely based relative to C, iff for some finite
set Q of standard rules C ′ = C+Q (i.e. C ′ is the strengthening of C by
means of Q, cf. 7.7).

The next step in our investigations into the properties of the set of
strengthenings of a SF consequence will consist in proving.

57.2. Theorem. Let C be SF . Then (a) the lattice ([C)0,6) is both atomic
and coatomic. (b) It contains finitely many atoms and finitely many
coatoms. Moreover (c) each atom is finitely based relative to C, and
each coatom is SF .
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Proof. Assume that k is the least number under which C satisfies (i)
and (ii) of 56.4. Define

(1) C = {C+X/α : X ∪ {α} ⊆ S(k) and α ∈ C(X)}

Since S(k)|(C � S(k)) is finite, and α ≡ β(C) implies C(α) = C(β), we
conclude that each C ′ ∈ C is of the form C+X/α, where X is finite and
X ∪ {α} ⊆ S(k). Hence C is finite and each C ′ in C is finitely based
relatively to C.

Let C1, . . . , Cn be all minimal elements of (C,6). Since C is finite,
n 6= 0. Observe, that each Ci, i = 1, . . . , n is an atom in ([C)0,6). For, if
C < C+ 6 Ci, C+ ∈ [C)0, then, by (ii) of 56.4, we have eα /∈ C(eX) and
eα ∈ C+(eX) for some X and α. Hence C+ ∈ C which yields C+ = Ci.
But C+ have been an arbitrary element of ([C)o,6) and thus we have
showed not only that Ci are atoms in ([C)0,6) but also that the lattice is
atomic.

Let X be the set of all consistent and invariant theories of C. By
57.1(a) we know that X is finite. Let X1, . . . , Xn be all maximal elements
in (X,⊆). Put Ci = C+Xi

. Each Ci is structural and C 6 Ci. Hence
Ci ∈ {C+ ∈ [C)0 : C+(∅) = Xi}, i = 1, . . . , n. Put C+

i = sup{C+ ∈ [C)0 :
C+(∅) = Xi}. Since Xi is maximal in (X,⊆), C+

i is a coatom in ([C)0,6).
Consider any C ′ ∈ [C)0. We have C ′(∅) ⊆ Xi for some i = 1, . . . , n. Put
C ′

i = C+Xi
. Since C 6 C ′

i and C ′
i(∅) = Xi, hence C ′

i 6 C+
i , and hence

([C),6) is coatomic.

Since C+
i (∅) 6= S then α ∈ C+

i (∅) for some α. Hence eα /∈ C+
i (∅) for

some e ∈ Hom(S,S(k)), where k is the least number such that V ar(α) ⊆
{p1, . . . , pk}. Hence, α /∈ C

+(k)
i (∅), and because C+

i 6 C
+(k)
i , we have

C+
i = C

+(k)
i . Moreover, C is SF and C 6 C+

i hence S(k)|C+
i is finite and

by 56.4 we conclude that C+
i is SF . �

(The theorem covers results established partially by W. Dziobiak [1980],
and partially by R. Wójcicki [1979]).

58. Hereditary properties

58.1. A property of a logic C will be called hereditary iff it is shared by all
C ′ ∈ [C)0. Thus, in particular C will be said to be hereditarily finitary,
hereditarily SF , hereditarily finitely approximable (cf. below) iff all their
structural strengthenings are finitary, SF , finitely approximable, respec-
tively.

The notion of finite approximability have not been defined thus far. C
is said to be finitely approximable iff C = CnK for some set K (finite or
not) of finite matrices.

Before we start examining hereditary properties mentioned above, we
state some lemmas.
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58.2. Lemma. Let C be a structural consequence operation. For each k > 1,
the following conditions are equivalent

(i) C = C(k),

(ii) There is a set of matrices K such that C = CnK and each M ∈ K is
generated by a set of elements of cardinality 6 k.

Proof. (i) → (ii). Put K = {(S(k), C(X) ∩ S(k)) : X ⊆ L}.
(ii) → (i). We have C 6 C(k) for all k > 1. Let α /∈ C(X) for some X

and α. Under the assumption C = CnK we have h(X) ⊆ M̄ and hα /∈ M̄ ,
for some M ∈ K. Since M is generated by some of its k elements we have
h(eX) ⊆ M̄ and h(eα) /∈ M̄ for suitably defined e ∈ Hom(S,S(k)), which
gives α /∈ C(k)(X). �

58.3. Lemma. (W. Dziobiak [1979a], W. Sachwanowicz, unpublished). Let C ′

be SF and C ∈ [C ′)0. Then the following two conditions are equivalent

(i) C is finitely approximable,

(ii) C = inf{C(k) : k > 1}.

Proof. (i) → (ii). Assume (i). Let C = CnK, all M ∈ K being finite.
Assume that α /∈ C(X). Then α /∈ CnM (X) for some M ∈ K. M is finite
and by Lemma 58.2 we have CnM = Cn

(n)
M , where n is the cardinality of

M , which yields C(n) 6 CnM . Hence, α /∈ inf{C(k) : k > 1}(X), and we
obtain C > inf{C(k) : k > 1}. Of course the converse is true as well, and
(ii) is established.

(ii) → (i). It will be enough to prove that each C(k) is SF . By the
assumption C ′ is SF . Hence, by 56.4, each algebra S(k)C ′ is finite. From
this and the fact that C ′ 6 C(k) we conclude that S(k)|C(k) is finite for
all k > 1. But C(k) = (C(k))(k) and by 56.3 we conclude that each C(k) is
SF .

Let us remind that a lattice (A,6) is said to satisfy descending chain
condition, DCC, iff there is no sequence ai, i ∈ ω, of elements of A such
that ai > ai+1, for all i ∈ ω. (A,6) satisfies ascending chain condition
ACC iff there is no sequence ai, i ∈ ω, of elements of A such that ai < ai+1,
for all i ∈ ω.

58.4. Theorem. (W. Dziobak[1980]). Let C be SF . The following conditions
are equivalent

(i) C is hereditarily SF ,

(ii) ([C)0,6) satisfies DDC.

Proof. Assume that C = CnK, K being finite set of finite matrices.
(i) → (ii). Assume (i) and suppose that there is a descending chain C1 >
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C2 > . . . of Ci ∈ [C)0. By 44.7, for each Ci there exists Ki ⊆ SP (K) such
that Ci = CnKi . Put C+ = inf{Ci : i > 1} = CnS

{Ki:i>1}. From (i)
it follows that there is a finite set K+ of finite matrices such that C+ =
CnK+ . Let M ∈ K+. M is finite and C+ > CnM . By 47.9a we obtain,
M ∈

←−
HSHSSP (

⋃
Ki : i > 1). Hence, for some matrix homomorphisms

f , h and some matrices Nj

⋃
{Ki : i > 1}, j ∈ J we have

M
onto−−→

f
M ′ onto←−−

h
M” ∈ S(u{Nj : j ∈ J}).

Because K is finite and so are all matrices in K, M including, the set J
and both M ′ and M ′′ are finite, and hence Ci 6 CnM , for some i. K+ is
finite, and thus we have Ci 6 CnK+ for some i. Since C+ = CnK+ then
C+ > Ci, for some i and hence, beginning from some i, Ci = Ci+k, for all
k > 0.

(ii) → (i). Suppose that for some C0 ∈ [C), C0 is not SF . Since C
is SF then S(k)|C is finite for all k > 1, cf. 56.4. Hence, for no k > 1,
C0 6 C

(k)
0 . Each C

(k)
0 is SF and C

(n)
0 6 C

(k)
0 when n > k (cf. 56.3b). By

the definition of C
(k)
0 we have C0(X) = inf{C(k)

0 : k > 1}(X) for all finite
X. All this implies that for each n there is k > n such that C

(k)
0 6 C

(n)
0 ,

and this implies non–(ii). �

58.5. We shall say that a matrix M is critical iff

CM 6= inf{CnM+ : M+ is a finite proper submatrix of M}

(W. Dziobak who defined this notion (cf. [1980]) and showed its usefulness
in logical analyses, mentioned the notion of s–critical algebra (cf. S. Oates
McDonald, M.R. Vangham–Lee [1978]) as the source of his inspiration).

58.6. Lemma. Let K be a set of similar non–trivial matrices. Then

CnK = inf{CnM : M is critical and M ∈ S(K)}.

Proof. Obviously, we have 6. Now, in order to prove the > part of
the lemma, assume that α /∈ CnK(X) and α ∈ CnM (X) for all critical
matrices M ∈ S(K). Under the assumptions made, α /∈ CnN (X) for
some N in K which is not critical. But if N has no finite and proper
submatrices then N is critical (inf∅ = Cn∅) contrary to the assumption
and hence N must have finite and proper submatrices and hence critical.
Among them there must be N+ such that α /∈ CnN+(X) which again
renders contradiction. �

Let K and K+ be sets of similar matrices. We shall say that K+ is locally
closed in K iff for all M ∈ SP (K), if all finitely generated submatrices of
M are in K+, then M is in K+.

58.7 Theorem. (W. Dziobiak[1980]). Let K be a finite set of finite matrices.
Then the following conditions are equivalent:
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(i) CnK is hereditarily SF ,

(ii) CnK is hereditarily finitely approximable,

(iii) There is no infinite critical matrix in SP (K)

(iv) SP (K) ∩Matr(C) is locally closed in K, for all C > CnK.

Proof. (i) → (ii). Let C ∈ [CnK)0. Then (cf. the part (ii)–(i) of the
proof of 58.3) C(X) = inf{C(k) : k > 1}(X), for all finite X and thus (i)
implies (ii).

(ii) → (iii). Suppose that M is an infinite critical matrix in SP (K).
Under the assumptions imposed on K all finitely generated matrics in
SP (K) are finite. On the other hand, M is infinite and critical. This
yields that

CnM 6 inf{CnM+ : M+ is finitely generated submatrix of M}

does not hold. Observe that Cn
(k)
M = infCnN ; N is a k–generated sub-

matrix of M , for all k > 1. Hence, by Lemma 58.3, CnM is not finitely
approximable.

(iii)→ (iv). Assume (iii). Let C ∈ [CnK)0 and let M /∈ SP (K). Assume
that all finitely generated submatrices of M belong to SP (K)∩Matr(C).
If M is finite then, of course, M ∈ SP (K)∩Matr(C), itself. Suppose that
M is not finite. In that case M ∈ SP (K) ∩Matr(C) again, for otherwise
M would be an infinite critical matrix, contrary to (iii).

(iv) → (i). Let C ∈ [CnK)0 and let Q be the set of all standard
rules of C. We have CnK 6 ClQ 6 C. Hence, SP (K) ∩ Matr(C) ⊆
SP (K)∩Matr(ClQ) and in view of 44.7 it is enough to show the converse
inclusion, since then we shall shaw that C = ClQ and thus we shall prove
that C is finitary (cf. 10.4).

Let N ∈ SP (K)∩Matr(ClQ) be a finitely generated matrix and suppose
that N /∈ SP (K) ∩Matr(C). Then, for some X and some α, α ∈ C(X)
and α /∈ CnN (X). Assume that N is generated by k elements, then we
have eα /∈ CnN (eX) for some e ∈ Hom(S,S(k)), S being the language of
C. Observe that the rule X/α is CnK–equivalent to some standard rule,
i.e. there is a finite set Y and a formula β such that

CnK(+X/α) = CnK(+Y/β).

Now, the fact that eα ∈ C(eX), and the fact that C is structural imply
Y/β ∈ Q, which yield α ∈ CnN (Y ). But this contradicts the assumption
we made. Hence, all finitely generated matrices in SP (K) ∩Matr(ClQ)
are in SP (K)∩Matr(ClQ) which, by (iv), implies that all matrices of the
former set are in the latter, exactly what we have had to prove. �
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59. Degree of maximality

59.1. The cardinality of the class of all invariant systems of a given logic C
has been called the degree of completeness of C. (cf.  Lukasiewicz and
A. Tarski [1930]). For example the degree of completeness of 3–valued
 Lukasiewicz logic  L3 is 3; all its invariant systems are:  L3(∅), K(∅), L (cf.
M. Wajsberg, 1930).

From the inferential point of view, the degree of completeness of C
is the cardinality of all axiomatic strengthenings of C in [C)0. The car-
dinality of [C)0, i.e. the cardinality of all structural strengthening of C
has been called (cf. R. Wójcicki [1974a]) the degree of maximality of C,
and denote by dm(C). Of course, the degree of completeness and that of
maximality need not coincide. For instance, dm( L3) = 4. The following
logics:  L3,  L3(+(p∨¬p)→(p∧¬p)/q), K, Cn∅ are all structural logics stronger
than  L3. The result was established mainly by syntactical methods in
R. Wójcicki [1974]. A semantic approach to the problem of the degree of
maximality of various logics, SF in the first place, was open by G. Mali-
nowski’s paper in which the result concerning  L3 was extended on  L4 and
all  Ln with n prime. But only W. Dziobiak result that we are going to
present in this Section put the investigations into proper perspective.

59.2. Recall, that an element a of a lattice (A,6) is called compact, cf. e.g.
G.G. Grätzer [1978] if a 6 sup B, B ⊆ A implies that for some finite
Bf ⊆ B, a ∈ sup Bf . The following theorems of lattice theory are known.

a. The following two conditions are equivalent

(i) All elements of a lattice (A,6) are compact,
(ii) (A,6) satisfies ACC.

(cf. 58.3 for the definition of ACC).

b. Let (A,6) be a poset. All chains in (A,6) are finite iff (A,6) satisfies
both ACC and DCC.
(Cf. P. Crawley, R.P. Dilworth [1973], for the proofs of the theorems).

59.3. Theorem. W. Dziobiak [1980]). Let K be a finite set of finite matrices
of the same similarily type. Then the following conditions are equivalent:

(i) There is finitely many non–isomorphic critical matrices in SP (K) and
all of them are finite.

(ii) card{CnM : M ∈ SP (K) and M is finite }∼= < ℵ0.

(iii) dm(CnK) < ℵ0.

(iv) All structural strengthenings of CnK are finitely based relative to
CnK and SF .

(v) The lattice ([CnK)0,6) satisfies both ACC and DCC.

(vi) All chains in ([CnK)0,6) are finite.
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Proof. (i) → (ii). By Lemma 58.6.

(ii) → (iii). Assume (ii). Let C ∈ [CnK)0. In order to prove (iii) it is
enough to show that there is a finite set K+ ⊆ SP (K) such that C = CnK+ .
By 44.7 we have C = CnK, for some K′ = {Mt : t ∈ T} ⊆ SP (K). Denote
by Kn

t , n > 0, t ∈ T , the set of all submatrices of Mt generated by sets of
the cardinality 6 n. Verify, that all matrices in Kn

t must be finite, because
K is a finite set of finite matrices. We shall show that

(1) CnMt
= inf{CnKn

t
: n > 0},

which, when established, yields (iii).

The part 6 of (1) is obvious. Then, assume that α /∈ CnMt(X) for some
X and α. Let Xf be a finite subset of X. Of course, α /∈ CnMt(Xf ).
Hence, for some valuation h in Mt, hX ⊆ M̄t and hα /∈ M̄t. Let
{p1, . . . , pm} = V ar(X, α) and let M be the submatrix of Mt gener-
ated by hp1, . . . , hpm. We have α /∈ CnM (Xf ) and M ∈ Kn

t . Hence
α ∈ inf{CnKn

t
: n > 0}(Xf ) for no Xf ⊆ X. From (ii) it follows

that inf{CnKn
t

: n > 0} is SF and thus finitary (cf. 45.2). Hence
α /∈ inf{CnKn

t
: n > 0}(X), and we have got (1).

(iii) → (iv). Since dm(CnK) < ℵ then ([CnK)0,6) satisfies DCC.
Hence, by 58.4 and 57.2, from (iii) we arrive at (iv).

(iv) → (v). By 58.4 and 59.2a.

(v) ←→ (vi). By 59.2b.

(vi) → (i). Assume (vi) and non–(i). Put

(2) Q = {CnK+ : K+ ⊆ SP (K) and SP (K+)

has infinitely many non–isomorphic critical matrices}.
By the assumption CnK ∈ Q. Condition (v), 59.2b and Zorn’s lemma
imply that (Q,6) has some maximal element. Let C be one of them and
let C = CnK+ where K+ is the class that by (2) definesC as an element of
Q. Hence, SP (K+) has infinitely many critical matrices. By (v) and 58.4
we conclude that C is SF . From this, by 57.2, we conclude that ([C)0,6)
is atomic and has finitely many atoms. Let they be C1, ..., Ck.

Now, we shall prove that the class {M ∈ SP (K+) : M is critical and
C = CnM} has infinitely many non–isomorphic critical matrices. We
shall show this if we show that the set {M ∈ SP (K+) : C 6= CnM and
M is critical } has finitely many non–isomorphic critical matrices because
there are infinitely many of them in SP (K+). Suppose that the set is
not finite modulo isomorphism. Then, for some i0, 1 6 i0 6 k, the class
K = {M ∈ SP (K+) : Ci0 6 CnMandM is critical} has infinitely many
non–isomorphic critical matrices. This yields Ci0 6 CnK, which implies
that C is not maximal in (Q,6), contrary to the assumption.
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Let Mi, i ∈ I be the family of all non–isomorphic critical matrices
in SP (K+) that determine a consequence coinciding with C. We know
already that I is infinite. Divide I into two parts:

(1) I1 = {i ∈ I : M1has no proper submatrix}
(2) I2 = I \ I1,

If i ∈ I1, Mi is 1–generated. But K is a finite set of finite matrices
and hence I1 is finite. Suppose then that i ∈ I2. Mi is critical, hence
Cj 6 inf{CN : N is a finite and proper submatrix ofMi} for some atom
Cj . Let n be the least natural number for which 56.4 holds true when this
theorem, it follows that Cj = C+X/α for some finite set X and some α such
that X ∪ {α} ⊆ S(n). This yields α ∈ CnN (X) for all finite and proper
submatrices N of Mi, and α /∈ CnMi

(X). Thus Mi must be generated by
a set of cardinality 6 n, which implies that I2 is finite. Hence, I is finite.
Contradiction. Now, that the critical matrices in SP (K) are finite follows
from (vi), 58.4 and 58.7. �

60. Some applications of Theorem 59.3

60.1 A class of algebras A is said to be product representable iff there is a finite
set A′ ⊆ A of finite algebras such that each algebra in A is isomorphic with
a direct product of some algebras from A′. A matrix M for a language
S is said to be ϕ-definable iff (a) ϕ is a formula of SPCI (cf.46.1) of the
form α(p) = β(p), where α, β are formulas of S in one variable p, and (b)
M̄ = {a : ϕ(a)}. Observe that ϕ is an open positive Horn’s formula.

From 59.3 it follows

COROLLARY. Let K be a finite class of finite matrices and let the
variety v(AK) generated by the set AK of all algebras of the matrices in
K be product representable. Then, if for some ϕ, all matrices in K are
ϕ–definable then dm(CnK) 6 ℵ0.

Proof. Assume that all matrices in K are ϕ–definable. Since ϕ is an
open positive Horn’s formula then (cf. A. I. Malcev [1970]) all matrices
in SP (K) are also ϕ–definable. Now let AK be product representable by
A0 ⊆ AK. Select any matrix M ∈ SP (K). Let M = (Å,D). We have
Å ∼= Å1× . . .× Ån for some Å1, . . . , Ån ∈ A0. Let f be the isomorphism
between Å and the product of Åi. But then f is an isomorphism between
M and (Å1 × . . .× Ån, f(D)). Since ϕ is a positive Horn’s formula than

(Å1 × . . .× Ån, f(D)) ∼= ((Å1, (f(D))1)× . . .× ((Ån, (f(D))n)).

Hence, the consequence operation defined by the right hand product of
matrices coincides with CnM . This, the finiteness of the set A, and Lemma
41.5 imply that condition (ii) of 59.3 is satisfied. �
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60.2 For each n ∈ Å,  Lukasiewicz truth–table algebra Ln generates the variety
v(Ln) which is product representable. This claim is neither obvious nor
even easy to prove, still the theorem is of rather algebraic than logical
kind and we shall leave it without proof.

Now, in each Ln the designated element 1 is ϕ–definable by p = p→ p.
The identity is satisfied only by 1.

As an immediate corollary to these two observations we have

a. (R. Wójcicki [1974]) For each finite n, dm(Ln) < ℵ0 This result can
be improved as follows

b. (G. Malinowski [1977]) For all logics of the form Cn(Ln,D) where n
is finite, D ⊆ Ln and D ∩ {0, 1} 6= ∅, dm(Cn(Ln,D)) is finite.

With the help of McNaughton [1951] criterion one may verify that each
matrix of the form described above is ϕ–definable.



Chapter 14

Finite Formalizations And
Decidability

61. Two algebraic lattices

61.1. A lattice (A,6) is said to be algebraic iff it is complete and for each a ∈ A
there is a set B of compact elements of A such that a ∈ sup B. (cf. e.g.
G. Grätzer [1978]).

61.2 Theorem. Let C be a finitary consequence operation defined in S.
Then

a. (ThC ,⊆) is a complete lattice

b. For each X ∈ ThC , X is compact iff X is finitely axiomatizable with
respect to C, i.e. X = C(Xf ) for some finite Xf ⊆ X.

c. There are denumerably many compact elements in (ThC ,⊆)

d. The lattice (ThC ,⊆) is algebraic.

Proof. The proof is easy. Still, let us present it in an outline. (a)
Let X ⊆ ThC . Then infX = bigcapX and sup X = C(

⋃
X). (b) if X =

C({a1, ..., an}) and X = sup X, X ⊆ ThC , then X = sup{X1, ..., Xn},
ai ∈ Xi ∈ X. This gives the “only if” part of (b). To have the “if” part
suppose that X is not finitely axiomatizable. Let X = {ai : i ∈ ω}. Define
Xn = {ai : i = 0, .., n}. X = sup{C(Xi) : i ∈ ω} but X 6= sup X for no
finite X ⊆ {C(Xi) : i ∈ ω}. Hence, X is not compact. Both (c) and (d)
are obvious, when (a) and (b) are proved. �

61.3. Theorem. Let C0 be the class of all standard logics in S. Then

a. (C0,6f ) is a complete lattice,

b. For each C ∈ C0, C is compact iff C is finitely based
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c. There are denumerably many compact elements in (C0,6f ),

d. The lattice (C0,6f ) is algebraic.

Proof. Modify in a suitable way the proof of 61.2. �

62. Finitely axiomatizable theories and finitely
based logics

62.1. Of two theorems we state below the first one belongs to the lattice theory,
the second one is a kind of representation theorem.

a. Let (A,6) be an algebraic lattice. If there are denumerably many
compact elements in A then for each aA, the following conditions are
equivalent:

(i) a is not compact,
(ii) There is an infinite sequence a0, a1, . . . of elements of A such that

ai < ai+1 for all i and a = sup{ai : i ∈ ω}.

b. Each algebraic lattice is isomorphic to a lattice of the form (ThC ,⊆)
where C is a finitary consequence.

Of the two theorems stated above the first one is provable by a
rather easy argument, and the second one is a variant of a purely
lattice theoretic representation theorem. Namely the following is
known to be true (cf. e.g. G. Grätzer [1978]):

c. A lattice (A,6) is algebraic iff it is isomorphic to the lattice of all
ideals of a join–semilattice with the least element.

From 61.2, and 62.1 a it follows

62.2. Corollary (A. Tarski [1930a]). Let C be a finitary consequence and let
X ∈ ThC . Then the following two conditions are equivalent:

(i) X is finitely axiomatizable.

(ii) There is no sequence X0, X1, . . . , Xi, . . . of theories of C such that
for each i ∈ ω, Xi is a proper subset of Xi+1, and

X = C(
⋃

Xi).

�

Observe that on the ground of 62.1b, theorem 62.1a and corollary 62.2
are equivalent. 62.1a is simple a lattice counterpart of logical theorem
62.2. Thus, the following can be considered as a corollary to 62.1a as well
as a corollary to 62.2 (cf. S. Bloom [1975]).
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62.3. Corollary. Let C be a standard logic. Then C is finitely based iff there
is no sequence C0, C1, . . . of standard logics such that for each i ∈ ω, Ci

is properly weaker than Ci+1 and C = sup{Ci : i ∈ ω}.

The two corollaries are syntactical but we have, of course, the following
(cf. S. Bloom [1975]).

62.4. Theorem. A logic C defined in S is finitely based iff the class Matr(C)
is finitely axiomatizable by quasi–identities in SPCI .

Proof. A standard rule α1, . . . , αn/β is valid in C iff the universal closure
of

(D(α1)× . . .×D(αn))→ D(β)

is valid in Matr(C) (for the definition of SPCI cf. 46.1 – 46.3). �

Since there are some criteria of definability of models in sentences
of particular kind, Theorem 62.4 may happen to be helpful in deciding
whether a particular logic is finitely based or not.

There is no counterpart of 62.4 for the notion of axiomatizability relative
to C. Even if we assume that C is structural (which is necessary for C to
be determined by a class of matrices) and even if we restrict ourselves to
invariant sets (again in order to deal with sets determined by matrices)
there is no obvious way in which a suitable counterpart of 62.4 can be
defined.

63. Axiomatizable theories and parafinitely based
logics

63.1. A set of formulas X will be said to be axiomatizable iff X = C(∅) for some
finitely based structural consequence C. Since there are denumerably
many finitely based logics, there are denumerably many axiomatizable
theories. On the other hand there are 2ℵ0 invariant sets of formulas in all
languages that involve a n–ary connective n > 2 or involve at least two
unary connectives, hence some invariant sets of formulas in such languages
are not axiomatizable.

There are not too many results concerning axiomatizable theories avail-
able, though the notion seems to be of some importance. Of some impor-
tance is also the following notion.

A logic C will be said to be para–finitely based iff there is an inferential
base for C of the form C(∅), Q), C(∅) is axiomatizable and Q is a finite set
of standard rules of inference. Again, by comparing the cardinality of the
set of all standard consequences in a given language with that of para–
finitely based (of course, all para–finitely based consequences are standard)
we conclude that some standard consequences are not para–finitely based.
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63.2. All finitely based logics are para–finitely based. This is obvious. The
converse does not hold true. We shall show this. To see this consider the
following example.

Let K0 be the natural extension of K into L�. Define Kn, n > 0 to be
the least modal logic based on K such that Kn(∅) is closed under all rules
of the form

α/�α

where α ∈ Kn−1.

Verify that no formula of the form �α ∈ K0(∅) and verify by induction
that no formula of the form �nα ∈ Kn(∅). Hence, we have

K0 < K1 < K2 < . . . ,

i.e. Ki form an infinite sequence of consequences increasing in strength.

Now define Kω to be the least modal logic based on K such that Kω(∅)
is closed under Necessitation Rule p/�p. We verify easily that

Kω = sup{Ki : i ∈ ω}

and thus, in virtue of 62.3, Kω is not finitely based; on the other hand
(Kω(∅),MP ) is an inferential base for Kω, Kω(∅) = K0(+p/�p)(∅) and
thus is axiomatizable and we conclude that Kω is para–finitely based.

63.3. The example discussed above is artificial. But the argument we have
presented can easily be transformed into an argument showing that quite
many modal logics are para–finitely based though they are not finitely
based. For instance the following holds true:

a. None of the following logics: ME , MC , MK , MT , B is finitely based

b. All logics mentioned above are para–finitely based.

64. A generalized version of Herrop’s theorem
and some problems concerning decidability

64.1. A logic C is said to be decidable iff there is an effective procedure that
enables us, given any formula α, to decide in a finite number of steps
whether α ∈ C(∅) or α /∈ C(∅). Actually, this is not the logic but the set
of its theorems that is decidable or not.

We say that C has finite modal property, f. m. p. , iff there exists
a class K ⊆ Matr(C) of finite matrices such that C(∅) = xi(K). The
notion of f. m. p. was defined by Harrop, who applied it to establish a
certain criterion of decidability. The theorem we state below is a rather
far going generalization of Harrop’s result, though the proof of it is merely
an obvious modification of Harrop’s argument.
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64.2. Theorem. Each logic C that is both para-afinitely based (finitely based
in particular) and has finite model property is decidable.

Proof. Let C(∅) = C ′(∅) where C ′ is finitely based, and let Q be a
finitely inferential base of C ′. Since proofs are finite sequents of formulas,
there are denumerably many of proofs. Let

π1, π2, . . . , πi, . . .

be all proofs by means of Q from the empty set of premises. Of course,
α ∈ C(∅) iff for some πi, α is the conclusion of the proof.

Now let,
M1,M2, . . . ,Mi, . . .

be all (up to isomorphisms) finite matrices of C. Since, by the assumption
of the theorem, C has finite model property, α /∈ C(∅) iff α /∈ CnMi

(∅) =
ζ(Mi), for some Mi. Obviously, for each Mi, ζ(Mi) is decidable.

Given any α, start with π1 and verify whether α is the conclusion
of π1. If not verify whether α ∈ ζ(M1). If it is, verify whether α is the
conclusion of π2. If it is not, verify whether α ∈ ζ(M2), etc. By continuing
this procedure, one will find in a finite number of steps either a proof πi

of α or a matrix Mi that shows that α /∈ C(∅). �

64.3. We are not going to examine the notion of finite model property in any
systematic way. The only thing we want to do is to discuss briefly how
the very well known technique of filtration applies to referential matrices.

Suppose that a selfextensional logic C is adequate with respect to a class
K of referential matrices, i.e. C = CnK. Now suppose that α /∈ C(∅).
Then, for some R ∈ K, α /∈ Cn(R)(∅). Let p1, . . . , pn be all propositional
variables appearing in α, and let h be a valuation in (R) that falsifies α,
i.e. htα = 0 for some t ∈ TR.

What we want to get is to have a procedure of transforming matrices
K in a set K′ of finite C–matrices such that C = CnK′ . Observe, that
a referential matrix is infinite only if the set of its reference points is
infinite. Would it be possible to restrict the set TR of the reference points
of R to a finite set in such a way that the resulting matrix suits our
purposes? There is no general procedure that can be applied to form
such a restriction. Still, for some logics and some classes of referential
matrices such a procedure is available. It is the filtration method invented
by J.C.A. McKinsey [1941], and then developed by E.J. Lemmon and
D. Scott [1966]. Cf. also K. Segerberg [1968].

Denote by Subf(α) the set of subformulas of α. Now, let ≡α be the
relation defined on TR by

t1 ≡ t2(α) iff for all β ∈ Subf(α), (hβ)t1 = (hβ)t2

h being the valuation falsifying α in R.
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One easily verifies that ≡α is an equivalence relation. Moreover, TR|α
is finite. Well, what we have to do now is to consider the quotient set
R|α just to realize that in general ≡ α is not a congruence and thus,
though there exists the set R|α, there need not be the quotient algebra of
the form R|α. And this is the very moment at which we cannot go any
further without specifying both the logic we want to deal with and the
class K that determines it.

Assume that C = ~ME and K is the class of all K–standard referential
matrices. In that case ≡ α is a congruence on the standard part of R. Let
Rα be the algebra such that

(i) R|α is the set of elements of

(ii) Rα � {∧,∨,→,¬} = (R � {∧,∨,→,¬})|α
(iii) For each r ∈ Rα and each t ∈ TR|α, (�r)t = 1 iff {t′ ∈ TR|α : r(t′ =

1} ∈ Nα(t), where Nα is defined by the following condition. For all
t ∈ T

{|t′|α : t′ ∈ TR|α and (hβ)t′ = 1} ∈ Nα(t) iff �β ∈ Subf(α),

and (h�β)t = 1 for all t ∈ t}.

Obviously, Rα is a K–standard referential matrix, Rα is finite, and it
is an easy exercise to verify, that any valuation hα in Rα such that

hα pi = |ri|α , i = 1, . . . , n

falsifies α. In fact, (hαβ)t = (hβ)t for all t ∈ t, and all β ∈ Subf(α). To
establish this apply an inductive argument.

Let Kα = {Rα : α /∈ ME}. Since ME is complete with respect to the
class of all neighborhood matrices, cf. 26.2 and 26.3, and all matrices in
Kα are neighborhood matrices, hence ME ⊆ ζ(Kα). We have constructed
thematrices so that we have the converse, and we have proved that ME

has f. m. p.

64.4. The case of E is the simplest one because the only thing we have to take
care of when defining Rα (just this matrix is called the filtration of R
through α) is that Rα is a neighborhood matrix. If a modal system is
determined by referential matrices of certain specific kind (say, normal, as
it is the case of MK) then we should be sure that all filtration should be
again of this kind.

Though it cannot be done mechanically, the filtration method can be
applied (not always successfully !) to all logics that have referential se-
mantics. The method was designated for frames of various kind, but of
course, it can always be adopted to referential matrices that correspond to
a given class of frames, e.g. relational K–standard matrices correspond-
ing to relational frames or epistemic matrices corresponding to epistemic
frames.
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65. Finite approximability and finite model prop-
erty

65.1. Recall, that a logic C is said to be finitely approximable iff C = CnK for
some class K of finite matrices. Of course, finite approximability implies
f.m.p., and of course, there is no reason to expect the converse to hold
true. It does not.

Curiously enough, finite approximability is a property not too common
among well–known logics with an outstanding exception of K, of course.
A partial explanation of this phenomenon is suggested by the following
example. Let

X = {(pi ←→ pj) → p0 : i 6= j, i, j > 0}.

We have p0 /∈ J(X) which can be proved quite easily, for instance, by
defining either an epistemic frame or a pseudo–boolean algebra in which
X ` p0 is not satisfied. Such a frame (or algebra) must be infinite however,
since otherwise the valuations defined with respect to it would assign dif-
ferent values only to finitely many different variables. And this is exactly
why J is not finitely approximable. For any class K of finite J–matrices
p0 ∈ CnK(X).

Already this example suggest that finite approximability is not a prop-
erty easy to find among the logics that are not strongly finite. The ar-
gument we have produced in order to show that J is not finitely approx-
imable, applies to rather large number of logics (of course, those which
are not SF ).

The following theorem sheds some more light on the problem.

65.2. Theorem. (W. Dziobiak [1981]). Let C be either an intermediate (i.e. a
well determined logic stronger than J) or a well determined normal modal
logic based on K. Then the following conditions are equivalent

(i) C is tabular,

(ii) C is strongly finite,

(iii) C is finitely approximable.

We shall omit the proof of this theorem. The part of it concerning inter-
mediate logics was established by A. Wroński (unpublished).
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Chapter 15

Comparing Different Logics
Via Definability Relation

66. Definitional extensions

66.1. A logic C ′ is said to be a definitional extension of C iff

(i) The language S ′ of C ′ results from that of S by adding some new
connectives §1, . . . , §n,S ′ = (S, §1, . . . , §n)

(ii) C ′ is a conservative extension of C, i. e. C ′ � S = C.

(iii) Let §i be an ri–ary connective. For each new connective §i, i =
1, . . . , n, there exists a formula ϕi and there are propositional vari-
ables p1, . . . , pri

such that for all α1, . . . , αri

(Di) §i(α1, . . . , αri) = ϕi(α1/p1, . . . , αri/pri)(C
′)

(For the definition of congruence ≡C′ cf. 50.1)

66.2. If C ′ is a definitional extension of C for which conditions (i) — (iii) are
satisfied, then C ′ will be referred to as the definitional extension of C
determined by condition (Di) or, alternatively, as the definitional extension
if C determined by conventions

(D∗
i ) §i(α1, . . . , αri

) =df ϕi(α1/p1, . . . , αri
/pri

).

The following remark is in order here. Under definitions (D∗
i ), §i(α1, . . . , αr)

serve as abbreviations for ϕi(α1/p1, . . . , αri
/pri

). For instance, the famil-
iar conventions

α ←→ β =df (α → β) ∧ (β → α),

153
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defines α←→ β as an abbreviation for (α→ β) ∧ (β → α) and

♦α =df ¬�¬α

defines ♦α as an abbreviation for ¬�¬α, Thus (D∗
i ) introduce §1, . . . , §n

merely as certain auxiliary symbols whose role is similar to that of paren-
theses; though convenient they dispensable. By introducing new symbols
via conventions (D∗

i ) we do not change the algebra of formulas and thus,
under the definition of a propositional language to which we subscribe,
we do not change the language. The language S and the language S ′
extended by auxiliary symbols §1, . . . , §n whose syntactical role is defined
by conventions (D∗

i ), are exactly the same languages.

This is not quite the case covered by definition 66.1. Under this def-
inition, the definitional extension C ′ of C is defined in the language in
which §1, . . . , §n are “fully–fledged” connectives and thus the language
S ′ = (S, §1, . . . , §n) differs from S. Still, as one can easily verify, we have

66.3. Theorem. Let C ′ be a logic defined in a language (S, §1, . . . , §n) and let
C ′ be a definitional extension of C = C ′ � S, determined by conditions
(Di), i = 1, . . . , n. Then, for each X ⊆ S′

C ′(X) = C(X),

under the assumption that C applied to X via conventions (D∗
i ). �

Just in view of this theorem the definitional extension determined by
(Di) can be viewed as the extension corresponding to conventions (D∗

i ).

66.4. The following should be made clear. While each definitional extension
can be viewed as a definitional extension determined by some definitional
conventions of the form (D∗

i ), the conventions of the form (D∗
i ) need not

define any definitional extension. This, perhaps somewhat surprising ob-
servation, explains as follows. No restriction has been imposed on variables
that may appear in the formulas ϕi. Suppose that a formula ϕi involves
a variable p different from all variables p1, . . . , pri . For instance, let §i be
nullary connective, say T , and let ϕi = p→ p. Now the convention

(T ) T =df p → p,

is perfectly acceptable in any propositional language that involves→. The
only somewhat peculiar thing about it is that it assigns a distinguished
role to the variable p; under this convention T and p → p are the same
formulas, but T and q → q, q being different from p, are not!

Let (T ) be a notational convention accepted for a language S, let C be
a logic in that language. Now, consider the language of the form (S, T ),
i. e. an extension of S with a new connective (not merely a new auxiliary
symbol) T and ask whather there is a definitional extension C ′ of C such
that
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T ≡ p → p(C ′)

holds true.

As we shall show below, (cf. 65.5), α ≡ β(C ′) implies eα ≡ eβ(C ′) for
all substitution e. Hence, we have to have

T ≡ α → α (C ′)

for all formulas α of (S, T ). But this requirement implies that we must
have as well

α → α ≡ β → β (C)

for all α, β of the language S. The latter condition is a condition that
concerns the logic C, and in general (i.e. for some C) need not be true.

66.5 Lemma. Let α ≡ β(C). Then, for each substitution e (in the language
of C), eα ≡ eβ(C).

Proof. Recall that α ≡ β(C) iff for any formula γ and for any variable
p, C(γ(α/p)) = C(γ(β/p)).

Let e be a substitution and let γ be a formula such that V ar(γ) =
p1, . . . , pn. Let q1, . . . , qn be some variables that occur neither in α nor in
β. Put γ+ = γ(q1/p1, . . . , qn/pn) and define the new substitution e+ as
follows :

e+(p) =

{
pi, when p = qi

e(p), otherwise.

Observe that e+(γ+(α/qi)) = γ(eα/qi) and e+(γ+(β/qi)) = γ(eβ/qi).
Since α ≡ β(C), C(γ+(α/p)) = C(γ+(β/p)). By structurality of C we ob-
tain C(e+γ(α/p)) = C(e+γ(β/p)) which yields C(γ(eα/p)) = C(γ(eβ/p)).

The observation we made in 66.4 can be easily transformed into the
proof of the following

66.6 Theorem. Let S, S ′ = (S, §1, . . . , §n), and ϕ1, . . . , ϕn be as in 66.1. In
order for a definitional extension C ′ of C determined by conditions (Di)
(or equivalently by conventions (D∗

i )) to exist it is necessary and sufficient
that for each ϕi and for each substitution e such that epk

= pk for all pi,
k = 1, . . . , ri,

ϕi = e ϕi (C)

. �
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66.7 Let Ψ be all connectives of a language S and let C be a logic defined in S.
We say that a connective § ∈ Ψ is definable in C in terms of connectives
Ψ′ ∈ Ψ iff C � Ψ′ ∪ {§} is a definitional extension of C � Ψ′.

Just, for an illustration, let us mention the following well known facts

a. Let § ∈ {∧,∨,→}. Each of the connectives §′ ∈ {∧,∨,→}/{§} is
definable in K in terms of {§,¬},

b. None of the connectives of L is definable in J in term of the remaining
ones.

66.8 Apart from definability in the sense defined above, the following “weaker”
notion of definability is of some importance. Let us discuss the matter in
somewhat loose manner.

Let C ′ be a logic defined in a language S ′ = (S, §1, . . . , §n). If each
theorem α′ ∈ C ′(∅) can be translated (in the sense that is obvious enough
to be safely left undefined) with the help of conventions of the form (D∗

i )
onto a theorem α ∈ C(∅), the connectives §1, . . . , §n are said to be definable
with respect to C ′(∅) in terms of the connectives of S or, alternatively, they
will be said to be weakly definable in C ′ in terms of the connectives of S.

Of course, definability implies weak definability but not vice versa.
Thus, for instance, proposition a. of 66.7 implies

a’. Let § ∈ {∧,∨,→}. Each of the connectives §′ ∈ {∧,∨,→}/§ is defin-
able with respect to K(∅) in terms of {§,¬}.

Now, the following holds true

b’. None of the connectives of L is definable with respect to J(∅) in terms
of remaining ones.

Still, it is proposition b of 66.7 that is derivable from b’, not b’ from b.

67. Definability

67.1. A logic C will be said to be definable in a logic C ′ iff there exists a defini-
tional extension C ′′ of C ′ such that C coincides (up to isomorphism) with
a fragment of C ′′.

67.2. For an illustration consider the following example. Given nay finitely
many valued  Lukasiewicz logic  Ln denote by  L∗n the definitional extension
of  Ln determined by conditions

(⇒) α⇒ β = α→n−1 β( L∗n)

(=p) =p α ≡ α⇒ ¬(α→ α)( L∗n)
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(cf. 13.1 for the definition of →n−1). For each n > 3,  L∗n{∧,∨,⇒, =p}
coincides, up to isomorphism, with K. Thus K is definable in each  Ln,
n finite > 3. For the details of the proof, cf. M. Tokarz [1971]. See
M. Tokarz and R. Wójcicki [1971]).

67.3. The result we have just mentioned seems to be of considerable philosophi-
cal interest. Each  Ln, n > 3 is essentially weaker than K. But it turns out
that nevertheless “the expressive power” of  Lukasiewicz calculi is greater
than that of K. Whatever can be said in terms of connectives of K, it
can be said in terms of connectives of any  Ln, n > 3. Incidentally, K is
not definable in  Lω. This, rather sophisticated result, was established by
P. Wojtylak [1979b]

67.4. To have one more example of definability of a calculus in another one,
verify that the connective ¬ of N is definable in N in terms of → and ∼
by

(¬) ¬α =df α → ∼ (α → α)

On the other hand, N is a conservative extension of J , hence J is definable
in N � {∧,∨,→,∼}.

67.5. Let us examine briefly how J and K are related to each other. As known,
J admits a definitional extension J∗ with⇒ and =p being new connectives
such that

J∗(∅) � {∧,∨,⇒, =p} = K(∅).

This result is sometimes interpreted as definability of the classical logic K
in the intuitionistic one. But, of course, in order to have such definability
in the sense which we accepted here it does not suffice to have the identity
mentioned above. It would be necessary to have

J∗ � {∧,∨,⇒, =p} = K

As it has been proved in R. Wójcicki [1970] there is no definitional exten-
sion J∗ of J under which the latter identity holds true. Thus K is not
definable in J . Curiously enough (this is P. Wojtylak’s result [1979b]),
given any strengthenings J+

1 , J+
2 of J , J+

1 is definable in J+
2 iff J+

1 = J+
2 .

68. Definitional variants

68.1. In view of Theorem 66.3, given any logic C, we may safely treat C as
essentially the same logic as any of its definitional extensions. The latters
will be referred to as definitional variants of C. More generally, a logic
C ′ will be said to be a definitional variant of C iff the two logics have a
common definitional extension.

Thus for instance, both K � {∧,¬} and K � {∨,¬} are definitional
variants of K and, of course, of each other. N{∧,∨,→,∼} is a definitional
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variant of N . As known, as the primitive connectives of J may serve ∧,
∨, → and “absurd” ⊥, the last one being a nullary connective. Thus a
definitional variant of J can be defined in the language determined by the
connectives just mentioned.

Of course, we have

68.2. Theorem. Let C1, C2 be a definitional variants of each other. Then C1

is definable in C2 and vice versa. �

68.3. Curiously enough, the converse does not hold true. An example to this
was given by P. Wojtylak (unpublished).

Let S� be the language determined by only one unary connective �,
and S♦ the language determined by ♦, again being a unary connective.

Denote by �M , ♦N the operations on the set ω of all natural numbers
defined by

�M (k) = k + 1,

♦N (k) = k + 2

and put
Ik = {n ∈ ω : k 6 n}, k 6= 0

I0 = {5k : k ∈ ω} ∪ {5k + 1 : k ∈ ω}

Now let
M = (ω, �M , {Ik : k ∈ ω}),

N = (ω, ♦N , {Ik : k ∈ ω}),

be two ramified matrices, (ω, �M ) and (ω, ♦N ) being their algebras, re-
spectively. In what follows, instead of �M and ♦N we shall write � and
♦, respectively.

Consider the logics CnM and CnN . Since

♦k = �� k (= �2k)

for all k ∈ ω, the logic CnN is definable in CM by the convention

♦α =df �2α.

The argument to this effect, involving a certain, rather obvious, matrix
criterion of definability, is straightforward.

Now define an operation � : ω → ω by

�k = k + 6 = ♦♦♦α(= ♦3α)

and denote by CnM , the operation defined in S� by the ramified matrix
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M ′ = (ω, �, {Ik : k ∈ ω}).

We shall leave to the reader the part of the proof that consist in showing
that CnM = CnM ′ . But if CnM = CnM ′ , we conclude that CnM is
definable in CnN for, quite clearly CnM , is definable in CnN , by the
convention

� =df ♦3α

Suppose that there exists a common definitional extension C ′ of both
CnM and CnN . Then, of course, there exists a common definitional ex-
tension C of CnM and CnN defined in the language determined by the
connectives � and ♦ only. Moreover, the two connectives must be related
to each other in such a way that for some k and some s,

(1) �α ≡ ♦kα(C),

(2) ♦α ≡ �sα(C).

Now, if k = 0 we would have

(3) �α ≡ �2α(C).

Similarly s = 0 implies

(4) ♦α ≡ ♦2α(C).

But (3) yields

(5) �α ≡ �2α(CnM ).

And (4) yields

(6) ♦α ≡ ♦2α(CnN ).

Now we rather easily verify that neither (5) nor (6) holds true.

A bit more involved argument is necessary in order to show that neither
k = 1 nor s = 1. The assumption to the contrary disagrees with the fact
that

(7) �2α /∈ CnM (α, �α)

but au the same time

(8) ♦2α ∈ CnM (α, ♦α).
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We leave the argument to the effect that (7) and (8) hold true to the
reader.

Thus k, s > 2, and once (1) and (2), we conclude that

(9) �α ≡ �ksα(C),

and hence

(10) �α ≡ �lα(CnM ),

for some l > 1. But, as one may verify (10) is false for all l > 1. The
contradiction at which we arrive concludes the proof.
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[1970] Algebraičeskie Sistemy, Nauka, Moskva. English translation: Algebraic
Systems, 1970, Springer Verlag, Berlin.
[1971] The mathematics of algebraic sistems, collected papers; 1936–1967, trans-
lated by B.F. Wells, III, North-Holland, Amsterdam.
[1973] Algebraic System, Springer Verlag, Berlin.

Malinowski, G.
[1974] Degrees of maximality of some  Lukasiewicz logics, BSL Vol. 2, No. 3,
pp. 185–191.
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