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Introduction

Characterization of identity predicate in second-order logic:

The principle of indiscernibility of identicals:
∀x∀y (x = y → ∀P (P(x)↔ P(y))).
The principle of identity of indiscernibles:
∀x∀y (∀P (P(x)↔ P(y))→ x = y).

Axioms characterizing the identity predicate in first-order logic.
Example – set theory:

Reflexivity, symmetry and transitivity of =.
∀x∀y∀z ((x ∈ y ∧ x = z)→ z ∈ y).
∀x∀y∀z ((x ∈ y ∧ y = z)→ x ∈ z).

How could we characterize identity of situations described by
sentences?
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Introduction

s(ϕ) ←− ϕ −→ t(ϕ) = 1 or 0, if ϕ is a sentence

f ↘ ↓ ↗g

r(ϕ)

One can associate with any sentence ϕ:

its sense s(ϕ)
its referent r(ϕ)
its logical value t(ϕ).

Functional dependencies between sense, referent and logical value are
presented at the diagram above.
r(ϕ) is the situation described by ϕ.
Roman Suszko Abolition of the Freagean axiom.
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Sentential Calculus with Identity The identity connective

A binary connective ≡ is called the identity connective in a logical
system (S,C ) iff it satisfies the following conditions (here C is a
structural consequence and X ` α means that α ∈ C (X )):

1 ` (α ≡ α)
2 α, α ≡ β ` β
3 for any n-argument functor Fi in (S,C ):
α1 ≡ β1, α2 ≡ β2, . . . , αn ≡ βn ` Fi (α1, α2, . . . , αn) ≡
Fi (β1, β2, . . . βn).

The first rule is an axiomatic rule, the second is specific for the
identity connective, and the remaining rules are rules of invariance.
≡ is the identity connective in a logical system (S,C ) iff each
C -theory is closed w.r.t. the above rules.
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Sentential Calculus with Identity The identity connective

Theorem. If ≡ is the identity connective in a logical system (S,C ), T
is any invariant theory in this system, then the relation ∼T on S
defined by α ∼T β iff (α ≡ β) ∈ T is an invariant congruence and the
algebra S/ ∼T is freely generated by the set of all ∼T -equivalence
classes of propositional variables of S. �

Theorem. If ≡ is the identity connective in a logical system (S,C ),
then the relation ∼C(∅) defined by α ∼C(∅) β iff (α ≡ β) ∈ C (∅) is the
greatest congruence of the system (S,C ).
Proof. Let θ be a congruence of (S,C ) and let αθβ.
Since αθβ and βθβ, we have (α ≡ β)θ(β ≡ β).
Since θ is a logical congruence and (β ≡ β) ∈ C (∅), we have
(α ≡ β) ∈ C (∅), which means that α ∼C(∅) β. �
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Sentential Calculus with Identity The identity connective

The quotient algebra S/ ∼C(∅) is the Lindenbaum-Tarski algebra for
(S,C ).
Let KS(C ) be the class of algebras similar to S such that for every
A ∈ KS(C ) any mapping from the set of ∼C(∅)-equivalence classes of
propositional variables of S can be extended to a homomorphism from
S/ ∼C(∅) into A.
The class KS(C ) can be used for developing semantics of logical
systems with the identity connective.
Note the difference between the identity connective and ≡ and
material equivalence ↔ in (S,C ):

1 (α↔ β) ∈ C (X ) iff C (X ∪ {α}) = C (X ∪ {β})
2 (α ≡ β) ∈ C (X ) iff C (X ∪ {ϕ[p/α]}) = C (X ∪ {ϕ[p/β]})

(where α, β, ϕ ∈ S , X ⊆ S , and p is a propositional variable of S).
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Sentential Calculus with Identity Axioms of SCI

L = (L,¬,∧,∨,→,↔,≡) is the language of SCI.
Modus ponens α,α→β

β is the only rule of inference in SCI.
TFA is the set of truth-functional axioms:

1 α→ (β → α)
2 (α→ (β → γ))→ ((α→ β)→ (α→ γ))
3 ¬α→ (α→ β)
4 (α→ β)→ ((¬α→ β)→ β)
5 (α↔ β)→ (α→ β)
6 (α↔ β)→ (β → α)
7 (α→ β)→ ((β → α)→ (α↔ β))
8 (α ∧ β)↔ ¬(α→ ¬β)
9 (α→ β)→ (¬α→ β)
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Sentential Calculus with Identity Axioms of SCI

IDA is the set of identity axioms:
1 α ≡ α
2 (α ≡ β)→ (¬α ≡ ¬β)
3 ((α ≡ β)∧ (γ ≡ δ))→ ((α◦γ) ≡ (β ◦ δ)), where ◦ ∈ {∧, ∨, →, ↔, ≡}
4 (α ≡ β)→ (α↔ β).

LA is the union of TFA and IDA.
Consequence C in L is defined as follows: α ∈ C (X ) iff α can be
derived from LA ∪ X in a finite number of steps using modus ponens
as the only rule of inference. From now on let C denote this
consequence operator.
Then C is finitary, structural, compact, and regular.
(L,C ) is called the sentential calculus with identity (SCI).
The deduction theorems holds for C .
C (∅) is the set of theorems of SCI.
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Sentential Calculus with Identity Models of SCI

Algebras similar to the algebra of SCI-language are called SCI-algebras.
The class of all such algebras includes the class of all B-algebras.
A subset F of the universe of a SCI-algebra A is called a SCI-filter iff
for any homomorphism h of the algebra of SCI-language into A the set
h−1(F ) is a SCI-theory.
(A,F ) is a SCI-matrix iff A is a SCI-algebra and F is a SCI-filter. The
fact that C is a structural consequence implies that for any set X the
Lindenbaum matrix (L,C (X )) is a SCI-matrix (because h−1[C (X )] is
a SCI-theory for any homomorphism h : L → A).
(A,D) is called a SCI-model iff A is a SCI-algebra, and D ⊆ A is such
that for any a, b ∈ A:

1 ¬Aa ∈ D iff a /∈ D
2 a ∧A b ∈ D iff a ∈ D oraz b ∈ D
3 a ∨A b ∈ D iff a ∈ D lub b ∈ D
4 a→A b ∈ D iff a /∈ D or b ∈ D
5 a↔A b ∈ D iff a, b ∈ D or a, b /∈ D
6 a ◦A b ∈ D iff a = b.
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Sentential Calculus with Identity Models of SCI

If (A,D) is a SCI-model, then D is a normal ultrafilter in A, and A is
called a semi-model of L. If A is a semi-model, then the intersection
of all its normal ultrafilters is non-empty, because the sets
{a ∨A −a : a ∈ A}, {a→A a : a ∈ A}, {a↔A a : a ∈ A},
{a ◦A a : a ∈ A}, {¬A(a ◦A a) : a, b ∈ A, a 6= b} are included in every
normal ultrafilter in A.
A Boolean ultrafilter U is called normal in A = (A,∧,∨,−, .,÷, ◦) iff
for any a, b ∈ A: a ◦ b ∈ U iff a = b.
Theorem. There exists a normal ultrafilter in B-algebra
A = (A,∧,∨,−, .,÷, ◦) iff for any n and m and every finite sequences
c1, . . . , cn, a1, . . . , am, b1, . . . , bm of A the following condition holds:

(∗) if
n∧

i=1
(ci ◦ ci ) 6

m∨
j=1

(aj ◦ bj), then aj = bj for some 1 6 j 6 m. �
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Sentential Calculus with Identity Completeness theorem for SCI

Let M = (A,D) be a SCI-matrix and h : L → A be a homomorphism.
We recall that:

Sath(M) = {α ∈ L : h(α) ∈ D} and hence Sath(M) = h−1(D).
E (M) =

⋂
h∈Hom(L,A)

Sath(M) and hence E (M) =
⋂

h∈Hom(L,A)

h−1(D).

Theorem. T is a complete theory iff there exists a SCI-model
M = (A,D) and a homomorphism h : L → A such that
T = Sath(M).
Note that if T is a complete theory, then the Lindenbaum-Tarski
matrix M(T ) = (L/ ∼T ,T/ ∼T ) is a SCI-model and
T = Satk∼T

M(T ), where k∼T
(a) = a/ ∼T and α ∼T β iff

(α ≡ β) ∈ T . �

Completeness theorem for SCI. For any X ⊆ L and α ∈ L:
α ∈ C (X ) iff for every SCI-model M = (A,D) and for every
homomorphism h : L → A we have: if X ⊆ Sath(M), then
α ∈ Sath(M). �

In particular, α ∈ C (∅) iff α ∈ CM(∅) for every SCI-model M.
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Sentential Calculus with Identity Completeness theorem for SCI

We say that a theory T in SCI-language is quasi-complete iff:
1 T is consistent
2 T is invariant
3 for any formulas α and β, if Var(α) ∩ Var(β) = ∅ and α ∨ β ∈ T , then
α ∈ T or β ∈ T .

Theorem. A SCI-theory T is quasi-complete iff there exists a
SCI-model M such that E (M) = T . �
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Axiomatic extensions of SCI

Axiomatic extensions of C . If A ⊆ L is a set of additional axioms, then
let CA(X ) = C (A ∪ X ) for any X ⊆ L. Obviously, CA(∅) = C (A).
Note that if C (A) 6= C (B)), then CA 6= CB .
Theorem. CA is a structural consequence iff A is invariant. �

Invariant theories in the SCI-language are called theories of situations.
If there exists a model M such that T = E (M), then M is called
adequate for T . If a model M is such that for all α ∈ L and X ⊆ L:
α ∈ CT (X ) iff α ∈ CM(X ), then M is called adequate for the system
(L,CT ) (for consequence CT ).
Theorem. If T is a consistent theory, then M = (A,D) is adequate
for CT iff

1 M is adequate for T .
2 For every complete theory Ti such that T ⊆ Ti there exists a

homomorphism h : L → A such that Ti = h−1(D). �

Theorem. If M is adequate for T , then CT = CM iff CM is a finitary
consequence. �
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Theories in the language of SCI The theory WB

Let AB denote the set of all substitutions of the formulas:
1 ((p ∧ q) ∨ r) ≡ ((q ∨ r) ∧ (p ∨ r))
2 ((p ∨ q) ∧ r) ≡ ((q ∧ r) ∨ (p ∧ r))
3 (p ∨ (q ∧ ¬q)) ≡ p
4 (p ∧ (q ∨ ¬q)) ≡ p
5 (p → q) ≡ (¬p ∨ q)
6 (p ↔ q) ≡ ((p → q) ∧ (q → p)).

Let WB = C (AB). Then WB = C ({α ≡ β : α↔ β ∈ TFT}).
WB is an invariant theory and it determines a structural consequence
CWB defined by: α ∈ CWB(X ) iff α ∈ C (WB ∪ X ).
Theories in SCI-language containing the theory WB are called Boolean
(theories of situations).
(A,U) is called a B-model iff A is a B-algebra and U is a normal
ultrafilter in A.
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Theories in the language of SCI The theory WB

Theorem. WB is exactly the set of all SCI-formulas which are true in
every B-model.
Proof. Let M = (A,U) be a B-model. Of course, E (M) is closed
with respect to the modus ponens rule. In order to prove that
AB ⊆ E (M) one should calculate the value of any axiom from AB
under an arbitrary homomorphism h : L → A. It is easy to check that
this value is always an element of U.
Let us suppose now that α /∈WB. We are going to show that then
α /∈ E (M) for some B-model M.
If α /∈WB , then there exists a complete theory T such that WB ⊆ T
but α /∈ T .
The quotient model (L/ ∼T ,T/ ∼T ) is a B-model for T and
therefore also for WB. We have: α /∈ E ((L/ ∼T ,T/ ∼T )).
We thus proved that WB =

⋂
N

E (N). �
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Theories in the language of SCI The theory WT

Let WT = C ({α ≡ β : α↔ β ∈ C (∅)}). Any theory containing WT
is called a WT -theory. Such theories are supposed to formalize thesis
5.141 of Wittgenstein’s Tractatus (if two sentences entail one another,
then they are the same sentence).
Each WT -theory is a theory of the consequence CWT defined by:
α ∈ CWT (X ) iff α ∈ C (WT ∪ X ).
If T is a WT -theory and (α↔ β) ∈ C (∅), then ϕ[p/α] ∈ T iff
ϕ[p/β] ∈ T , for any formula ϕ and variable p.
WT is the least Boolean theory in SCI-language which is closed with
respect to the Gödel’s rule: α,β

α≡β . Moreover:

There exists a translation f of L on the language of S4-system:
f (α) = α if α does not contain the identity connective and
f (α ≡ β) = �(α↔ β). Then α ∈WT iff f (α) ∈ S4.
A converse translation is provided by the function g such that:
g(α) = α if � does not occur in α andg(�α) = α ≡ (α ∨ ¬α). Then
α ∈ S4 iff g(α) ∈WT .
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Theories in the language of SCI The theory WT

It is known that:

α ∈ S4 iff for any TB-algebra A and any homomorphism h : L → A:
h(α) = 1A.
(�α ∨�β) ∈ S4 iff �α ∈ S4 or �β ∈ S4.
Let α ∼S4 β iff �(α↔ β) ∈ S4. Then ∼S4 is a congruence and
L/ ∼S4 is a well-connected Boolean algebra.
S4 is quasi-complete.

The existence of the translations mentioned above implies that:

α ∈WT iff for any TB-algebra A and any homomorphism h : L → A:
h(α) = 1A.
α ≡ β ∨ γ ≡ δ ∈WT iff α ≡ β ∈WT or γ ≡ δ ∈WT .
Algebra L/ ∼WT is a well-connected TB-algebra.
WT is a quasi-complete theory.
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Theories in the language of SCI The theory WT

There exists a SCI-model M such that WT = E (M). This follows
from the fact that WT is quasi-complete and that there exists a
complete theory T such that WT is the largest invariant theory
included in T .
Let ∼T be a congruence defined by: α ∼T β iff (α ≡ β) ∈ T .
Let MT = (L/ ∼T ,T/ ∼T ). Then E (MT ) = WT and MT is a
countable model adequate for WT .
Because CWT is regular, the class of all Lindenbaum-Tarski models
(L/ ∼T ,T/ ∼T ), where T is a complete WT -theory, is adequate for
the system (L,CWT ).
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Theories in the language of SCI The theory WH

We extend the SCI-language by introducing two sentential constants:
1 ≡ (p ∨ ¬p) 0 ≡ (p ∧ ¬p).
Let AH be the set including AB , all substitutions of the above two
definitions and all SCI-formulas of the form
(α ≡ β) ≡ 0 ∨ (α ≡ β) ≡ 1.
Let WH = C (AH). Theories including WH are called WH-theories.
The theory WH is invariant and it is based on equational axioms AB
together with the schemas:

1 1 ≡ (α ∨ ¬α)
2 0 ≡ (α ∧ ¬α)
3 (α ≡ β) ≡ ((α ≡ β) ≡ 1)
4 ¬(α ≡ β) ≡ ((α ≡ β) ≡ 0).

Let α ∼WH β iff (α ≡ β) ∈WH. Then ∼WH is a congruence.
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Theories in the language of SCI The theory WH

Theorem. For any WH-theory T the algebra
L/ ∼T= (L/ ∼T ,¬,∧,∨,→,↔, ◦) satisfies the following conditions:

1 L/ ∼T is a TB-algebra.
2 For any α, β ∈ L: ¬(|α| ◦ |β|) = (|α| ◦ |β| ◦ 0).
3 If T is a complete theory, then L/ ∼T is a Henle algebra.
4 α ∈WH iff for every TB-algebra A = (A,¬,∧,∨,→,↔, ◦) and for any

a, b ∈ A: ¬(a ◦ b) = ((a ◦ b) ◦ 0); moreover, for any homomorphism
h : L → A: h(α) = 1A. �

Elements of the form a ◦ b are open elements in TB-algebras, and if
¬(a ◦ b) = ((a ◦ b) ◦ 0), then each closed element is also open. All
open elements of the algebra form a Boolean algebra. TB-algebras in
which ¬(a ◦ b) = ((a ◦ b) ◦ 0) are called self-dual TB-algebras.
Systems S5 and WH are mutually translatable, because ◦ and interior
operation are mutually definable in TB-algebras:
�α 7→ α ≡ (α ∨ ¬α),
α ≡ β 7→ �(α↔ β).
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Theories in the language of SCI The theory WH

Because S5 is quasi-complete, so is WH. Therefore there exists a
complete WH-theory T such that WH is the largest invariant theory
contained in T .
Let α ∼T β iff (α ≡ β) ∈ T ). The ∼T -quotient of the Lindenbaum
matrix (L,T ) is a SCI-model MT such that E (MT ) = WH.
MT is a countable model strongly adequate for WH.
A SCI-model M = (A,D) is called a Henle model iff A is a Henle
algebra.
Theorem. For any α ∈ L and X ⊆ L: α ∈ CWH(X ) iff α ∈ CM(X )
for all Henle models M.
Proof. Suppose that α /∈ CWH(X ).
It follows from regularity of SCI that there exists a complete theory T
such that X ⊆ T and α /∈ T .
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Theories in the language of SCI The theory WH

Let α ∼T β iff α ≡ β ∈ T .
The quotient matrix M(T )(L/ ∼T ,T/ ∼T ) is then a Henle model.
Let k∼T

be the canonical homomorphism. We have:
k∼T

(α) = α/ ∼T , X ⊆ Satk∼T
(M(T )) and α /∈ Satk∼T

(M(T )).
Suppose, in turn, that for some Henle model M = (A,D) and for
some homomorphism h : L → A we have: h[X ] ⊆ D i h(α) /∈ D.
It follows from the fact that h−1[D] is a complete WH-theory that
there exists a complete theory T such that WH ∪ X ⊆ T and α /∈ T ,
and therefore α /∈ CWH(X ). �
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Theories in the language of SCI The theory WF

A theory T in SCI-language is called Fregean iff it contains all
formulas from L represented by a schema (α ≡ β) ≡ (α↔ β).
Let AF be the set of all such formulas and let WF = C (AF ). Each
Fregean theory is an invariant B-theory.
The two-element Boolean algebra B2 is a model of each Fregean
theory.
The identity connective is truth-functional in any Fregean theory.
Material equivalence in such theories has all properties of the identity
connective.
For any α ∈ L and X ⊆ L let α ∈ CWF (X ) iff for any homomorphism
h : L → B2: if h[X ] ⊆ {1}, then h(α) = 1.
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Models for SCI – continued

Theorem. For any natural numbers n > 2, 1 6 t < n there exists a
SCI-model M = (A,D) such that |A| = n and |D| = t. �

Theorem. For any natural number n there exists a finite SCI-algebra
A which contains n distinct subsets D1, . . . ,Dn such that for
1 6 i 6 n the pair (A,Di ) is a SCI-model and
E ((A,Di )) 6= E ((A,Dj)) for i 6= j . �

SCI is decidable, because it has the finite model property:
Theorem. If α is satisfiable in some SCI-model, then it is satisfiable
in some finite SCI-model. �

C (∅) =
⋂
E (M), where the intersection concerns all SCI-models. We

have also C (∅) =
⋂

E (M), where the intersection concerns all finite
SCI-models.
Nevertheless, there is no single finite SCI-model M such that
C (∅) = E (M).
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Models for SCI – continued

Theorem. There exists a countable model M = (A,D) such that
C (∅) = E ((A,D)). �

Theorem. Each model adequate for C (∅) is infinite. �

Theorem. There exists a model M of the power of continuum such
that C = CM. �

Theorem. Each model M such that C = CM is uncountable. �

Theorem. There exists a countable model M such that CWH = CM.
�

Theorem. Each matrix adequate for the system (L,CWT ) is
uncountable, and hence each model adequate for this system is
uncountable. �
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W-languages Notation

α, β, γ,. . . sentential formulas
ξ, η, ζ, . . . nominal formulas
two types of functors (sentential as well as nominal): binding variables
and not binding them
σ(F ) = (k ,m, n), where k = 0 (if F is a sentential) lub k = 1 (if F is
a nominal functor), and m (number of sentential arguments) and n
(number of nominal arguments):

if σ(F ) = (0,m, 0), then F is a m-argument connective
if σ(F ) = (1, 0, n), then F is a n-argument predicate

α[v/ϕ]: the result of substitution of ϕ for variable v in formula α
generalization of α: the result of adding a quantifier prefix to α; rule
of generalization: α(v)

∀v α(v)

Gn(A): the set of all generalizations of formulas from A

X is an invariant set of formulas iff Gn(X ) ⊆ X .
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W-languages Syntax of W-languages

Functors not binding variables: ¬, ∧, ∨, →, ↔, ≡0 (identity
connective), ≡1 (identity predicate).
Alphabet of a W -language J: any sequence A(J) = (V0,V1,F,Q, σ)
such that:

1 V0,V1,F,Q are disjoint sets (sentential variables, nominal variables,
functors not binding variables, quantifiers).

2 V0,V1 are infinite (usually countable) sets.
3 F is a finite or countable set such that ¬, ∧, ∨, →, ↔, ≡0, ≡1 are

elements of F.
4 Q = {∀,∃}.
5 σ is the function defined above.
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W-languages Syntax of W-languages

The sets S(J) (sentential formulas of J) and N(J) (nominal formulas
of J) are defined inductively:

1 V0 ⊆ S(J), V1 ⊆ N(J)
2 If F ∈ F and σ(F ) = (k ,m, n), then for any α1, . . . , αm ∈ S(J) and
η1, . . . , ηn ∈ N(J):

1 F (α1, . . . , αm, η1, . . . , ηn) ∈ S(J), if k = 0
2 F (α1, . . . , αm, η1, . . . , ηn) ∈ N(J), if k = 1

3 If α ∈ S(J) and v ∈ V0 ∪ V1, then ∀v α ∈ S(J) and ∃v α ∈ S(J).

Let J0 denote the open fragment of J, S0 sentential formulas of J0
and N0 nominal formulas of J0.
µ = (F, σ) is called the syntax of J.
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W-languages Consequence in W-languages

Consequence in W -languages is defined by the axioms given below
and the rule modus ponens α,α→β

β as the only rule of inference.
A1 Axioms for sentential functors. All generalizations of the axiom
schemes in TFA.
A2 Axioms for quantifiers. All generalizations of the following schemes:

1 ∀v α[v/ϕ]
2 ∀v (α→ β)→ (∀v α→ ∀v β)
3 α→ ∀v α (if v is not free in α)
4 ∃v α↔ ¬∀v ¬α.
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W-languages Consequence in W-languages

A3 Axioms for the identity connective and identity predicate. All
generalizations of the following schemes:

1 ϕ1 ≡ ϕ2, if ϕ1 i ϕ2 differ at most w.r.t. bounded variables
2 (α ≡ β)→ (α→ β)
3 For each F ∈ F a schema of an invariance axiom:

(ϕ1 ≡ ψ1) ∧ (ϕ2 ≡ ψ2) ∧ . . . ∧ (ϕm ≡ ψm)→
F (ϕ1, ϕ2, . . . , ϕm) ≡ F (ψ1, ψ2, . . . , ψm)

4 ∀v (α ≡ β)→ (∀v α ≡ ∀v β)
5 ∀v (α ≡ β)→ (∃v α ≡ ∃v β).

Let AL = A1 ∪ A2 ∪ A3 be the set of all logical axioms of J.
For any α ∈ S(J) and X ⊆ S(J) let X ⊆ S(J): α ∈ Cn(X ) iff α can
be derived from AL ∪ X in a finite number of steps, using only the
modus ponens rule.
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W-languages Consequence in W-languages

A Cn-theory T is called invariant w.r.t. generalization rule iff
Gn(T ) ⊆ T .
Cn has all the properties of consequence C defined for SCI. Besides:

1 Cn(∅) is invariant w.r.t. generalization rule.
2 If α(v) ∈ Cn({α1, . . . , αn}) and v does not occur in α1, . . . , αn, then
∀v α(v) ∈ Cn({α1, . . . , αn}.

W -languages contain sentences (sentential formulas without free
variables) and names (nominal formulas without free variables).
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Consequence Cn0 in open W -language J0 is defined by the axioms
given below and the rule modus ponens α,α→β

β as the only rule of
inference.

1 axioms from TFA
2 ϕ ≡ ϕ for any (sentential or nominal) formula of J0
3 (α ≡ β)→ (α→ β)
4 For any functor F from J0:

(ϕ1 ≡ ψ1) ∧ (ϕ2 ≡ ψ2) ∧ . . . ∧ (ϕm ≡ ψm)→
F (ϕ1, ϕ2, . . . , ϕm) ≡ F (ψ1, ψ2, . . . , ψm)

For any X ⊆ S0 we have: Cn0(X ) = Cn(X ) ∩ S0, and therefore Cn0 is
a non-creative extension of Cn.
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Open W -languages.

Let µ = (F, σ) be the syntax of J0.
Let A0 and A1 be any disjoint sets such that |A0| > 2 and A1 6= ∅.
Sentential variables are interpreted in A0, nominal variables in A1.
For any functor F such that σ(F ) = (k,m, n) let its interpretation be
a function oF : Am

0 × An
1 → Ak , where k = 0 or k = 1.

Any structure (A0,A1, {oF}F∈F) is called bialgebra of type µ.
Any language J0 is a bialgebra absolutely free in the class Kµ of all
bialgebras of type µ.
Let ◦ denote the interpretation of the identity connective and } the
interpretation of the identity predicate.
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M0 = (M,D) is a W -model of type µ iff M = (A0,A1, {oF}F∈F) is a
bialgebra of type µ, D ⊆ A0 (the set of distinguished elements) and
for any a, b ∈ A0 i c , d ∈ A1:

1 ¬Ma ∈ D iff a /∈ D
2 a ∧M b ∈ D iff a ∈ D and b ∈ D
3 a ∨M b ∈ D iff a ∈ D or b ∈ D
4 a→M b ∈ D iff a /∈ D or b ∈ D
5 a↔M b ∈ D iff a, b ∈ D or a, b /∈ D
6 a ◦M b ∈ D iff a = b
7 c }M d ∈ D iff c = d

Any function h : V0 ∪ V1 → A0 ∪ A1 such that h(V0) ⊆ A0 and
h(V1) ⊆ A1 is called a valuation of variables of J0 in M0.
Any valuation of variables of J0 can be extended to a homomorphism
of J0 in the algebra of the model M0.

Jerzy Pogonowski (UAM) Non-Fregean Logic 2022 34 / 54



W-languages Semantics of W-languages

A formula α of J0 is called:
1 satisfied in the model M0 = (M,D) by the valuation h, if h(α) ∈ D;

Sath(M0) = {α ∈ S0 : h(α) ∈ D}
2 true in the model M0 = (M,D), if α is satisfied by every valuation in

M0;
TR(M0) =

⋂
h

Sath(M0).

Sentential formula α of a language of type µ is a tautology of J0, if it
is true in every model of type µ.
For any theory T in J0 the relation ∼T on S0 ∪N0 defined by ϕ ∼T ψ
iff ϕ ≡ ψ ∈ T is a congruence of J0 such that:

1 if ϕ ∼T ψ, then ϕ,ψ ∈ N0 or ϕ,ψ ∈ S0
2 if α ∼T β and α ∈ T , then β ∈ T .

LetM(J0,T ) denote the quotient structure (J0/ ∼T ,T/ ∼T ).
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Theorem. For any W -language J0 of type µ and any α ∈ S0 and
X ⊆ S0: α ∈ Cn0(X ) iff for every W -model M0 of type µ: if
X ⊆ Sath(M0), then α ∈ Sath(M0). �

Theorem. T is a quasi-complete theory in J0 iff there exists a
W -model M of J0 such that T = TR(M). �

Theorem. If M0 = (M,D) is a W -model of type µ, then there exists
an open language J0 with the syntax µ and a theory T in J0 such that
the Lindenbaum-Tarski modelM(J0,T ) and the model M0 are
isomorphic. �

Theorem. T is a complete theory in J0 iff there exists a model M0
such that for some valuation h of variables of J0 in M0:
Sath(M0) = T . �

Theorem. T is a quasi-complete theory in J0 iff there exists a
complete theory T0 in J0 such that T ⊆ T0 and T is the largest
theory closed under substitutions included in T0. �
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W -languages with quantifiers.

Let M0 = (A,B, {oF}F∈F,D) be any model of the open language J0.
We are going to extend this structure in order to get interpretations of
quantifiers (of both types).
Let h be a valuation of variables in M0. The value of (sentential or
nominal) formula ϕ under h in M0 is denoted by ||ϕ, h||M0 . We omit
the index if the model is clear from the context.
Let hvt denote the valuation such that v is interpreted as t and
hvt (u) = h(u) for all variables u 6= v . It is understood that t ∈ A if v
is a sentential variable and t ∈ B , if v is a nominal variable.
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For any given formula α of J0 and a valuation h let λt ||α, hvt || be the
function which associates with any t ∈ A the value ||α, hvt ||. If v does
not occur in α, then the function ||α, hvt || associates with any t ∈ A
the value ||α, h|| (which is independent from v): in this case that
function is constant.
Interpretation of quantified formulas should satisfy the following
conditions, for any formula α, sentential variable p and valuation h:

1 ||∀p α, h|| ∈ D iff for every t ∈ A: ||α, hpt || ∈ D
2 ||∃p α, h|| ∈ D iff for some t ∈ A: ||α, hpt || ∈ D.

These conditions mean that:
1 ||∀p α, h|| ∈ D iff {t ∈ A : ||α, hpt || ∈ D} = A
2 ||∃p α, h|| ∈ D iff {t ∈ A : ||α, hpt || ∈ D} 6= ∅.
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Interpretation of quantified formulas should also satisfy the following
conditions, for any formula α, nominal variable x and valuation h:

1 ||∀x α, h|| ∈ D iff for every t ∈ B: ||α, hxt || ∈ D
2 ||∃x α, h|| ∈ D iff for some t ∈ B: ||α, hxt || ∈ D.

These conditions mean that:
1 ||∀x α, h|| ∈ D iff {t ∈ B : ||α, hxt || ∈ D} = B
2 ||∃x α, h|| ∈ D iff {t ∈ B : ||α, hxt || ∈ D} 6= ∅.
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M = (A,B, {oF}F∈F,
∧A,

∨A,
∧B ,

∨B) is a partial pseudo-model for
a W -language J in the alphabet (V0,V1,F,Q, σ) iff:

1 (A,B, {oF}F∈F) is a bialgebra similar to the open fragment of J;
2

∧A
,
∨A are functions from an arbitrary but fixed subset 4A of the set

AA of all functions from A to A, which means that if f ∈ 4A, then∧A f ,
∨A f ∈ A;

3
∧B

,
∨B are functions from an arbitrary but fixed subset 4B of the set

AB of all functions from B to A, which means that if f ∈ 4B , then∧B f ,
∨B f ∈ A;

h : V0 ∪ V1 → A ∪ B is a valuation of variables of J in a partial
pseudo-model M iff h(V0) ⊆ A and h(V1) ⊆ B .
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Let a valuation h be fixed. The value of a formula of J under h is
defined inductively:

1 If ϕ ∈ V0 ∪ V1, then ||ϕ, h|| = h(ϕ);
2 If F ∈ F i σ(F ) = (k ,m, n), then ||F (α1, . . . , αm, η1, . . . , ηn), h|| =

oF (||α, h||, . . . , ||αm, h||, ||η1, h||, . . . , ||ηn, h||);
3 For any formula α, if λt ||α, hpt || ∈ 4A, then
||∀p α, h|| =

∧A ||α, hpt ||
||∃p α, h|| =

∨A ||α, hpt ||
4 For any formula α, if λt ||α, hxt || ∈ 4B , then
||∀x α, h|| =

∧B ||α, hxt ||
||∃x α, h|| =

∨B ||α, hxt ||.

If the value ||ϕ, h|| is defined for any (sentential or nominal) formula ϕ
and any valuation h, then M is called a pseudo-model of J.
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Let a pseudo-model M be fixed. A function f ∈ AA is determined by a
formula of J iff there exists a sentential formula α in J and a
sentential variable p such that for every t ∈ A: f (t) = ||α, hpt ||. In a
similar manner we define functions from AB and BB determined by a
formula of J.
M = (A,B, {oF}F∈F,

∧A,
∨A,

∧B ,
∨B ,D) is called a model of a

W -language J iff:
1 (A,B, {oF}F∈F,

∧A
,
∨A

,
∧B

,
∨B) is a pseudo-model of J;

2 (A,B, {oF}F∈F,D) is a model for the open fragment of J;
3 For any function f ∈ AA determined by a formula of J:∧A f ∈ D iff f (t) ∈ D for every t ∈ A∨A f ∈ D iff f (t) ∈ D for some t ∈ A
4 For any function f ∈ AB determined by a formula of J:∧B f ∈ D iff f (t) ∈ D for every t ∈ B∨B f ∈ D iff f (t) ∈ D for some t ∈ B.
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A formula α of J is called:
1 satisfied in a model M by a valuation h (α ∈ Sath(M)) iff ||α, h|| ∈ D;
2 true in a model M (α ∈ TR(M)) iff α is satisfied by every valuation in

M;
3 a tautology of J (α ∈ Taut(J)) iff it is true in every model of J.

It follows from these definitions that:
1 Sath(M) = {α : ||α, h|| ∈ D}
2 TR(M) =

⋂
h

Sath(M)

3 Taut(J) =
⋂
M

TR(M).

A model M of J is called a model of a set of formulas X iff
X ⊆ TR(M).
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Theorem (Bloom 1971). Let J be a W -language. For any X and α:
α ∈ Cn(X ) iff for every model M of J, if X ⊆ TR(M), then α ∈M.
Proof outline. It is convenient to divide the proof into three lemmas:

1 Lemma 1. Cn(∅) ⊆ Taut(J).
2 Lemma 2. If X is a consistent set of sentences of a W -language J,

then there exists a model M of J such that X ⊆ TR(M).
3 Lemma 3. Taut(J) ⊆ Cn(∅).
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Outline of proof of Lemma 1. Firstly, one has to check that each
axiom is a tautology.
Let us prove, for example, that ∀p (α→ β)→ (∀p α→ ∀p β) is a
tautology.
Let M = (A,B, {oF}F∈F,

∧A,
∨A,

∧B ,
∨B ,D)) be any W -model.

Then for some F ∈ F the operation oF is the denotation of →, that is
oF =→M, and we have: a→M b ∈ D iff a /∈ D or b ∈ D, for any
a, b ∈ A.
In order to prove that ∀p (α→ β)→ (∀p α→ ∀p β) is a tautology it
suffices to show that there does not exist a valuation h such that:
||∀p α, h|| ∈ D, ||∀p (α→ β)|| ∈ D i ||∀p β, h|| /∈ D.
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Suppose the contrary holds, that is for some valuation h:
||∀p α, h|| ∈ D, ||∀p (α→ β), h|| ∈ D ale ||∀p β, h|| /∈ D.
Since ||∀p α, h|| ∈ D and ||∀p β, h|| /∈ D, then according to the
definition of

∧
A:

1 ||∀p α, h|| ∈ D iff ||α, hpt || ∈ D for every t ∈ A
2 ||∀p β, h|| /∈ D iff ||β, hpt0 || /∈ D for some t0 ∈ A.

Therefore for some t0 ∈ A: ||α, hpt0 || ∈ D and ||β, hpt0 || /∈ D.
This means that for some t0 ∈ A: (||α, hpt0 || →

M ||β, hpt0 ||) /∈ D,
contrary to the assumption that ||∀p (α→ β), h|| ∈ D.
It follows from the definition of →M that the modus ponens rule
preserves tautologies, and this finishes the proof. �
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Outline of proof of Lemma 2. This proof uses the well-known
Henkin’s technique of model construction for a consistent theory.
We extend the alphabet of J by adding to it a countable set of
sentential constants (ri )i∈N and a countable set of individual constants
(ci )i∈N. Let us denote:

1 J∗: the language J with the alphabet expanded as described above
2 S : the set of all sentences of J∗
3 N: the set of all names of J∗
4 SJ∗ : the set of all sentential formulas of J∗
5 NJ∗ : the set of all nominal formulas of J∗.

The countable set S can be arranged as a sequence: γ1, γ2, γ3, . . .

Let ci1 be the first element of the sequence (ci )i∈N, which does not
occur in the sentence γ1. If the sequence (ci1 , . . . , cin) is already
defined, let cin+1 be the first element of the sequence (ci )i∈N, which
does not occur in the sentences γ1, . . . , γn, γn+1 and in < in+1.
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Let ri1 be the first element of the sequence (ri )i∈N, which does not
occur in the sentence γ1. If the sequence (ri1 , . . . , rin) is already
defined, let rin+1 be the first element of the sequence (ri )i∈N, which
does not occur in the sentences γ1, . . . , γn, γn+1 and in < in+1.
We define a sequence (Ai )i>0 of sets as follows. A0 = X ; if An is
already defined, let An+1 be defined as follows:

1 If the sentence γn is of the form ∀x α, then
An+1 = An ∪ {α[x/cin ]→ ∀x α}

2 If the sentence γn is of the form ∀p α, then
An+1 = An ∪ {α[p/rin ]→ ∀p α}

3 An+1 = An in the remaining cases.

Let A =
∞⋃
i=0

Ai . The proof that A is consistent is a routine. It is also

well-known that A can be extended to a complete consistent set, say
T . Then:

1 X ⊆ A ⊆ T ⊆ S .
2 If α ∈ S i α /∈ T , then Cn(T ∪ {¬α}) = SJ∗ .
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The set T of sentences of J∗ has the following properties:

There exists a complete theory T ∗ in J∗ such that T = T ∗ ∩ S .
For each sentence of the form ∀x α from J∗: ∀x α ∈ T iff α[x/a] ∈ T
for every name a ∈ N.
If ∀x α ∈ T , then it follows from ∀x α→ α[x/a] that α[x/a] ∈ T for
every name a ∈ N. If, in turn, α[x/a] ∈ T for every name a ∈ N, then
α[x/cin ] ∈ T for some in, and hence also ∀x α ∈ T , on the basis of
the definition of the sets An. We prove similarly that:
For each sentence of the form ∀p α from J∗: ∀p α ∈ T iff
α[p/γ] ∈ T for every sentence γ ∈ S .
For each sentence of the form ∃x α from J∗: ∃x α ∈ T iff α[x/a] ∈ T
for some name a ∈ N.
For each sentence of the form ∃p α from J∗: ∃p α ∈ T iff
α[p/γ] ∈ T for some sentence γ ∈ S .
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We construct the structure
M∗ = (S ,N, {oF}F∈F,

∧
S ,
∧

N ,
∨

S ,
∨

N ,T ):
1 S is the universe for sentential variables of J.
2 N is the universe for nominal variables of J.
3 T is the set of distinguished elements of M∗.
4 If F ∈ F, σ(F ) = (k ,m, n), γ1, . . . , γm ∈ S and η1, . . . , ηn ∈ N, then:

oF (γ1, . . . , γm, η1, . . . , ηn) = F (γ1, . . . , γm, η1, . . . , ηn).
5 The domain of functions

∧
S and

∨
S is the set of all functions

λtγ[p/t], where γ(p) is a sentential formula of J∗ with one free variable
p and t ∈ S . The values of

∧
S and

∨
S for the argument λtγ[p/t] are

defined as follows:
∧

S λtγ[p/t] = ∀p γ(p),
∨

S λtγ[p/t] = ∃p γ(p).
6 Similarly, if γ[x/a] is a sentential formula of J∗ with one nominal

variable x and a ∈ N, then:
∧

N λaγ[x/a] = ∀x γ(x),∨
N λaγ[x/a] = ∃x γ(x).

Let ϕ,ψ ∈ S ∪ N. The relation ∼T defined by ϕ ∼T ψ iff ϕ ≡ ψ ∈ T
is a congruence of M∗
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We build the quotient structure M = M∗/ ∼T . Then:
M = (S/ ∼T ,N/ ∼T , {oF/ ∼T}F∈F,

∧
S / ∼T ,

∧
N / ∼T ,

∨
S / ∼T

,
∨

N / ∼T ,T/ ∼T ).
One proves that M is a W -model and that X ⊆ TR(M). Note that:

1 Elements of X are sentences, and hence their values in any model does
not depend on valuations in the model: ||α, h|| = [α]∼T

for every
sentence α ∈ X and any valuation h.

2 If α ∈ X , then [α]∼T
∈ T/∼T

. �
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Outline of proof of Lemma 3. Assume that α is a tautologu of a
W -language J. If α is a generalization of formuły α, which does not
contain free variables, then α is a W -tautology of J as well.
Suppose that α is not a theorem.
Then ¬α is a consistent sentence, because if ¬α were inconsistent,
then ¬α ∈ Cn({¬α}), and from the deduction theorem we would have
(¬α→ α) ∈ Cn(∅).
In this case, on the basis of the theorem (¬α→ α)→ α we would
have that α, as well as α are theorems.
We can thus maintain the assumption that ¬α is consistent.
It follows from Lemma 2 that there exists a model M of J such that
¬α ∈ TR(M).
But then both α and ¬α would be true in M, which is impossible.
Therefore α is a theorem. �
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Outline of proof of the completeness theorem. Assume that
α /∈ Cn(X ). Then the set X ∪ {¬α} is consistent.
It follows from Lemma 2 that there exists a model M such that
X ∪ {¬α} ⊆ TR(M), which means that there exists a model M such
that X ⊆ TR(M) and α /∈ TR(M).
Assume, in turn, that for some model M: X ⊆ TR(M) and
α /∈ TR(M).
Then ¬α ∈ TR(M), which implies that the set X ∪ {¬α} is
consistent.
Hence there exists a complete theory T such that X ∪ {¬α} ⊆ T .
It follows from the above that α /∈ Cn(X ), because every Cn-theory is
the intersection of all complete theories including it.
This finishes the proof of the completeness theorem. �
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