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ONTOLOGY IN THE TRACTATUS OF L. WITTGENSTEIN

ROMAN SUSZKO

Abstract mathematics
may be a genuine philosophy.

The Tractatus Logico-Philosophicus of Ludwig Wittgenstein is a very
unclear and ambiguous metaphysical work. Previously, like many formal
logicians, I was not interested in the metaphysics of the Tractatus. How-
ever, I read in 1966 the text of a monograph by Dr. B. Wolniewicz of the
University of Warsaw2 and I changed my mind. I see now that the con-
ceptual scheme of Tractatus and the metaphysical theory contained in it
may be reconstructed by formal means. The aim of this paper* is to sketch
a formal system or formalized theory which may be considered as a clear,
although not complete, reconstruction of the ontology contained in Wittgen-
stein's Tractatus.

It is not easy to say how much I am indebted to Dr. Wolniewicz. I do
not know whether he will agree with all theorems and definitions of the
formal system presented here. Nevertheless, I must declare that I could
not write the present paper without being acquainted with the work of Dr.
Wolniewicz. I learned very much from his monograph and from conversa-
tions with him. However, when presenting in this paper the formal system
of Wittgenstein's ontology I will not refer mostly either to the monograph
of Dr. Wolniewicz or to the Tractatus. Also, I will not discuss here the
problem of adequacy between my formal construction and Tractatus. I think
that the Wittgenstein was somewhat confused and wrong in certain points.
For example, he did not see the clear-cut distinction between language
(theory) and metalanguage (metatheory): a confusion between use and men-
tion of expressions.

•Presented in Polish at the Conference on History of Logic, April 28-29, 1967,
Cracow, Poland, cf. footnote 1.
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Ludwig Wittgenstein attempted in the Tractatus to build a theory of the
epistemological opposition:

Mind (language) - Reality (being)

One may distinguish in the Tractatus the three following components:

1. Ontology, i.e., a theory of being,
2. Syntax, i.e., a theory of the structure of language (mind),
3. Semantics, i.e., a theory of the epistemological relations between

linguistic expressions and reality.

I present below the formalized version of Wittgenstein's ontology. The
syntax and semantics contained in Tractatus will be not considered here.
Wittgenstein's ontology is general and a formal theory of being. It may be
called here shortly: ontology. It concerns (independently of time and
space)3, situations (facts, negative facts, atomic and compound situations)
and objects. Thus, the ontology is composed of two parts:

1. s-ontology, i.e., the ontology of situations (Sachlagen),
2. <9-ontology, i.e., the ontology of objects (Gegenstdnde).

The link between the two parts of ontology consists in the somewhat
mysterious concept of a state of affairs (Sachverkalt) and that of a config-
uration of objects. The s-ontology is an original theory of Ludwig Wittgen-
stein. It is related in a sense to certain conceptions of G. Frege and to the
formalized system of protothetics of St. Le&iiewski. The theories of Frege
and Le^niewski make use of sentential variables and of operators (e.g.
quantifiers) binding them. The s-ontology is also to be formalized by
means of sentential variables and corresponding operators binding them.
This is the cause of a certain strangeness of s-ontology and, consequently,
of the whole of Wittgenstein's philosophy. Firstly, most formalized lan-
guages of contemporary mathematical logic do not use bound sentential
variables. On the other hand, the Tractatus essentially uses natural lan-
guage and the notions and statements of s-ontology formulated in this
language may seem to be produced by hypostatising thinking. Certainly,
thinking in natural language is much more appropriate to the o-ontology
than to s-ontology. Consequently, mathematical thinking in its historical
development up to to-day is concerned with (abstract) objects and not situ-
ations. Consider for example the following sentence of s-ontology:

(1) Some situations are not facts.

It has the same grammatical structure as the following sentence:

(2) Some philosophers are not logicians.

Both sentences (1) and (2) are existential sentences. But there is a very
deep difference between them. The terms ''philosopher" and "logician" in
(2) are unary predicates. The terms "situation" and "fact" are not
predicates. They are unary sentential connectives like the word "not"
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which converts any sentence φ into its negation: not-c/?. To see this, let us
make the first step in formalizing (1) and (2). We write:

(3) for some p, Sp and not-Fp
(4) for some x9 Px and not-Lx.

The letter p is a sentential variable and the letter x is a nominal variable.
They are bound above in (3) and (4), respectively, by the existential quanti-
fier: "for some" . The symbols P and L are unary predicates and the
letters S and F are unary sentential connectives like the connective " n o t " .
The difference between sentences (sentential variables, sentential for-
mulae) and names (nominal variables, nominal formulae)4 is very deep and
fundamental in every language. It must be observed in any rigorous think-
ing. However, natural language leads sometimes to confusion on this point.
Having in mind the categorial difference mentioned above we consider the
sentence (1) quite as legimate and meaningful as the sentence (2). More-
over, both sentences (1) and (2) are true because:

1. It is a situation that London is a small city but it is not a fact.
2. Dr. B. W. is a good philosopher but he is not a logician.

1. The language of ontology. The language £ 0 of ontology contains vari-
ables of two kinds:

1. sentential variables: p, q, r, s9 t, u9 w, plyp2, . . . ,Pk, . .
2. nominal variables: x, y9 z, A, B9 C, R9 S9 xl9x2, . . . , * & , . . .

There are in £ 0 some sentential constants, i.e., simple sentences. There
may be in £ 0 some nominal constants, i.e., simple names. The meaningful
expressions of Qθ9 or well formed formulae of £0> are divided into sen-
tential formulae and nominal formulae. The variables may occur in for-
mulae as free or bound (by suitable operators). Any sentential or nominal
formula which contains no free variable is called a sentence or name, as
the case may be. The formulae of £0 are built of variables and constants
by means of certain sync ate gorematic expressions (and parentheses) like
predicates, functors5, sentential connectives, quantifiers, etc.

At first we mention the predicate of logical identity and the connective
of logical identity. Both are denoted by the same symbol: =. Thus, if 77,δ
are nominal formulae and φ9ψ are sentential formulae then the expres-
sions:

(1.1) 77 = δ φ = ψ

are sentential formulae. The language £0 contains the customary compound
sentential formulae: φ A ψ9 φ v ψ9 φ -» ψ9 φ = ψ9 "Nφ built by means of
classical sentential connectives (conjunction, alternation, material implica-
tion, material equivalence, negation, respectively). The quantifiers: v,3
(general and existential) are allowed to bind sentential variables and
nominal variables as well. Thus we have in £0 sentential formulae of the
following forms:
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(1.2) V* φ(x) Ix φ{x)

(1.3) Vpψ(p) 1PΨ(P)

Strictly speaking, we have in £0 two kinds of quantifiers: (1.2) and (1.3).
But we do not need to use different symbols for them. The language Qo

contains also the description operator (unifier in the sense of P. Bernays,
1958) which is allowed to bind nominal and sentential variables. It will be
not used explicitly here however.

All the symbols mentioned above (=, Λ, V, -% =9 N, V,3 and the unifier)
are used in £0 with their customary meaning. This means that the relation
of logical derivability in £0 is determined by the classical rules of inter-
ference. We assume that a sentential formula φ follows logically (is
logically derivable) from sentential formulae φί9 . . . , ψk if and only if φ
may be obtained in finitely many steps from φlf . . . , φk according to the
rules of classical logical calculus. This calculus includes: two-valued
sentential tautologies, modus ponens (for material implication), the rules
for introducing and omitting quantifiers, two rules of substitution for free
variables, the axioms for logical identity and the axioms for the unifier.
A formula φ is called a logical theorem if and only if φ follows logically
from the empty set of formulae. We decide to allow in the system of
ontology the definitions of equational type only, i.e., identities (1.1) of some
special form.

Our task consists in determining two sets of sentential formulae: the
set of ontological axioms and the set of ontological definitions. Con-
sequently, the ontology or the set of ontological theorems may be identified
with the* set of all sentential formulae which follow logically from ontolog-
ical axioms and definitions. Clearly, every logical theorem is an ontolog-
ical theorem but not conversely. Many theorems will be formulated below
with free variables. The reader may convert them into sentences by pre-
ceding them by general quantifiers. The ontological axioms and definitions
proposed below cannot be considered as the ultimate solution of our prob-
lem. To avoid unnecessary derivations, many ontological theorems are
included here in the set of axioms. Therefore, our axiom system is not
independent. It may be replaced by another equivalent one which is shorter
and more elegant. On the other hand, perhaps there may be some reasons
(other than simplification) either to strengthen the proposed axiom system
(e.g., to replace the equivalencies (4.7), (4.8) and (5.6) by corresponding
equalities) or to change in some way the adopted definitions. I am not here
to systematically study the logical properties (independent axiom system,
the derivations of theorems, the proof of consistency) of the formal system
of ontology. I intend only to present a formal theory which is identical in
content with Wittgenstein's ontology.6

2. Logical identity For logical identity we have the two following axioms:

(2.1) Vs{s = s)

(2.2) Vz(z = z)
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and the two following schemes of axioms:

(2.3) x = y -* (φ(x) = φ(y))

(2.4) P=q~* (Ψ(P) Ξ ψ(q))

The axioms for identity belong to the logical calculus. They are logical
theorems. It is easy to see that the following schemes of formulae:

(2.5) x = y-* (φ(x) = φ(y))

(2.6) p= q - (ψ(p) = ψ(q))

follow logically from the axioms for identity. Clearly, we have:

(2.7) P=q~>P=q

Observe that the formula:

(*) P=q-*P=q

is equivalent to the following scheme of formulae:

(**) p Ξ q - (φ(P) Ξ Ψ(q))

In the sequel we will use the auxiliary definitions:

(2.8) (Pέq)= N(/> = q)
(2.9) (x £ y) = N(* = y)
(2.10) pϋq = N(/> = q) (p or q, but not both)
(2.11) Sp= (p = p) (it is a situation that p)
(2.12) Ox = (x = #) (X is an object)

The term "situation" is a universal sentential connective and the term
"object" is a universal predicate. We have the theorems:

(2.13) Vp Sp Vx Ox

The logical axioms of identity have interesting consequences in o-
ontology. We use here the connective L of necessity which will be intro-
duced later. We obtain immediately from (2.5) that: x = y-* (Lφ(x) =
Lφ(y)). It is a logical theorem. By (4.9) we have: L(x = x). It follows that:

x =y -> L(x = y)

On the other hand, let us suppose that our language contains an opera-
tor B binding no variable and such that the expression δJBφ is a sentential
formula for any nominal formula δ and any sentential formula φ. Thus, the
symbol B is a mixed operator (predicate-connective) studied first by J. Los
in 1948. It follows from (2.5) and (2.6) that:

x = y -* {zBφ(x) = zBφ(y))

In view of this logical theorem one may say that the operator B above can-
not be used to formalize the notion of believing which occurs, e.g., in the
true sentence:

I believe that Wittgenstein was a great philosopher.
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3. S-ontology We assume the axiom:

(3.1) Np = Nq~>p = q

The connective "fact" or "positive fact" is introduced by the definition:

(3.2) Fp=p

The formula Fp means: it is a (positive) fact that p . The formula Np may
be read: it is a negative fact that p . It follows from (3.2) that: Fp =
FFp = , . . . , = FF. . . Fp and:

(3.3) FNp =NFp = Np (double equality)
(3.4) F(pΛq)=FpAFq

(3.5) F(pv q) = FpvFq

(3.6) Vr(Sr-> FrDNr)

Let σ be an arbitrary sentence. We assume the definitions:

(3.7) l = FσvNσ 0 = FGANG

Clearly, OD1. It follows from (2.7) that:

(3.8) 1 £ 0

Of course, we have:

(3.9) Fl and, consequently, lp{Sp A Fp)

(3.10) NO and, consequently, lp{Sp Λ Np)

Thus, there exist (positive) facts and negative facts.
The formula (*), i.e., Vp\fq(p = q-*P - q) may be called the condition

of ontological two-valuedness. To explain this terminology let us remark
that theorems (3.9) and (3.10) state the existence of (positive) facts and
negative facts. On the other hand, the formula (*) above is equivalent to
each of the following formulae:

(1) N(lPiq(PέqΛFpΛFq))
(2) N(iPiq(PέqΛNpΛNq))
(3) Sp->p = lvp=0
(4) Fp=(p= 1)
(5) Np = (q = 0)
(6) Vr<p(r)sφ(l) Λ <p(0)
(7) lrφ(r)^φ(l)vφ(0)

Thus, the formula (*) "means" that (1) there are exactly two situations,
(2) there exists exactly one (positive) fact, 1, and exactly one negative fact,
0, and (3) the role of quantifiers binding sentential variables is not essen-
tial.7 The formula (*) is a theorem of the system of Frege and of Le£-
niewski's protothetics.

Postulate: the formula (*) is not an ontological theorem.
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4. Modality The s-ontology contains the sentential connectives of neces-
sity L and of possibility M. We assume the following equalities as ontolog-
ical axioms for modal connectives:

(4.1) NNp = p

(4.2) NLr = MNr NMr = LNr
(4.3.1) LLr=Lr MMr = Mr
(4.3.2) LMLMr = IMr MLMLr = MLr
(4.4) LMZr = MLr MLMr = LMr
(4.5) MLr = Lr LMr = Mr

The equalities above reduce so called modalities.8 We have here 6 mod-
alities as in Lewis' system S5: Fp, Np, Lp, Mp, NLp, NMp. The follow-
ing laws of distributivity:

(4.6) L(p A q) = Lp Λ Lq M(p v q) = Mp v Mq

also serve to simplify the formulae containing modal operators. The
formulae (4.6) are assumed here as axioms. We assume as ontological
axioms the formulae:

(4.7) Lr={r = 1) Mr = (r ^ 0)

(4.8) (p = q) = Lip = q)

and all formulae of the form:

(4.9) Lφ

where the formula φ is an arbitrary logical theorem. The comprehensive
axiom scheme (4.9) may be considerably simplified if we take into account
that the logical theorems are suitable "axiomatized" in a logical calculus.
Clearly, we have the theorems:

(4.10) Lp->Fp Fp-Mp
(4.11) N(Fp Λ Np) = (Np v Fp) = (p - q) (double equality)
(4.12) L(p^q)->(LP-+ Lq)

We assume as axioms the following important axiom schemes (Barcan
formulae)9:

(4.13) LVpφ(p) = VpLφ(p)
(4.14) Mlpφ(p) = lpMφ(p)

5. Boolean algebra of situations A situation p may include another situa-
tion q. Then we say also that the situation p entails the situation q or that
the situation q occurs in the situation p and we write simply: pEq. Note
that: pEq = FpEFq. The connective E corresponds to Lewis' strict impli-
cation. However, we do not consider it as an interpretation of the condi-
tional sentences in natural language. This would be a confusion. Inclusion
or entailment is a special relation between situations in the same sense as
necessity and possibility are properties of situations. They are connected
together as stated in the following axioms:
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(5.1) L(p - q) = pEq = NM(Fp Λ Nq) (double equality)

(5.2) Lp=lEp NMp=pE0

It is clear that only one of the connectives L, M, E need be taken as a

primitive undefined symbol. We assume as ontological axioms all for-

mulae of the form:

(5.3) φEψ

where φ is a sentence and the sentential formula ψ follows logically from

φ. It may be shown that the axioms (4.9) and (5.3) are equivalent. Clearly,

we have the theorem:

(5.4) pEq -(p-+q)

The following axioms state that the universe of all situations is a

Boolean algebra with the relation of inclusion E. The situations p v q9 p Λq

and Np may be called: the sum and product of situations p, q and the comp-

lement of the situation p.

(5.5) pEp

(5.6) pEq A qEp = (p = q)

(5.7) pEq Λ qEr-* pEr

(5.8) (p Λq = p) = pEq = (pv q = q) (double equivalence)

(5.9) pEq = NqENp pEq = {p Λ Nq = 0)

(5.10) pEl l=N0 QEp

(5.11) p A q = q A p pvq = qvp

(5.12) p Λ(q A r) = (p Λ^)Λ r p v (q v r) = (p v q) v r

(5.13) p* (qvr) = (p* q) V(/>A r) p v (q A r) = (p v q) A (p v r)

(5.14) p * 1 = p pv 0 = p

(5.15) pλNp=0 pvNp=l

Remark. According to the terminological convention assumed above

the formula pEq is to be read: tζp includes q". In customary Boolean

terminology it is read: p is included in q. If we had replaced the equival-

encies (4.7), (4.8) and (5.6) by corresponding equalities then the connec-

tives £, M, E would be definable as follows: Lp = (p = 1), Mp = (p £ 0),

pEq = ((p -> q) = 1). Let us introduce now the definition of the independence

of situations. The formula plq is to be read: the situations />, q are inde-

pendent.

(5.16) plq = M(Fp A Fp) A M(Fp A Nq) A M(Np A Fq) A M{Np A Nq)

From this we infer that:

(5.17) Niplq) = (pENq) v (££<?) v (?£/>) v (NpEq)

(5.18) iV(/?//>) A i\Γ(/)/iV/)) A N(qll) A N(qI0)

According to Dr. Wolniewicz the Wittgenstein's principle of logical

atomism consists of two statements. One of them is concerned with the

independence of states of "affairs and will be discussed in section 8. The
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second one asserts the existence of at least two independent situations. It
is formulated as the following axiom:

(5.19) lqiq(Sp.Λ Sq Λ plq)

It follows from this that 3#(1 ̂  p £ 0). Consequently,

3tf i q ( P = q^Pϊq)

Thus, we have the negation of the formula (*) discussed in section 3.
We assume that the Boolean algebra of all situations is, in the usual

terminology, atomic (5.24) and complete (6.1), (6.2). Let us introduce the
following definition:

(5.20) Pw = MWΛ Vr(Sr - wEFr v wENr)

The formula Pw may be read: "the situation w is a point".10 Following E.
Stenius (1960) the points may be called the possible worlds. They con-
stitute, in the terminology of Tractatus, logical space (logischer Raum). If
Pw then the formulae wEFr9 wENr may be read as follows: "the situation
that r occurs (does not occur) in the possible world w". It is easy to prove
the following theorems:

(5.21) Pw -> {wENq = N{wEq))
(5.22) Pw -> (wE(p Λ q) = wEp Λ wEq)
(5.23) pEq = Vw(Pw - (wEp -> ^£#))

The first axiom announced above (Boolean atomicity) is represented by
the formula:

(5.24) Mp-> lt(Pt* tEp)

It may be read: "every possible situation occurs in some possible world."
If plq then the four situations p, q, Np9 Nq are different and they differ

from 1 and 0. Therefore, it follows from (5.19) that there exist at least
four situations r such that Mr and MNr. There exist possible situations.
Therefore, the possible worlds exist, too. Clearly, if 0 ^ r ^ 1 then
0 / NT]£ 1. Consider a situation r such that Mr and MNr. The situations
r, Nr cannot occur in the same possible world. Consequently, there exist
at least two possible worlds:

(5.25) lwΊu(Pw Λ Pu ΛUJ£ w)

There is, of course, the question how many possible worlds exist. The
number of them depends on the number of states of affairs and determines
the number of situations. This will discussed later.

6. Boolean completeness Let us introduce the sum operator V binding
sentential variables like the quantifiers. Using it we build formulae of the
form Vrφ(r). The situation that Vrφ(r) is the sum (ontological alterna-
tion) of all situations r such that φ(v). This is expressed in the following
scheme of axioms (Boolean completeness):
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(6.1) Vp(φ(p) ~*pEVrφ(r))
(6.2) Vp(φ(p) - pEq) -* Vrφ(r)Eq

The sum-operator V may be defined by means of the unifier (description
operator) if we assume instead of (6.1) and (6.2) the corresponding existen-
tial axioms. It is easy to prove that:

(6.3) Vs(φ(s) = s =pxvs =p2) ->Vrφ(r) = plV p2

One may define the product-operator Λ binding sentential variables
which corresponds by duality to the operator V. We assume the definition:

(6.4) Arφ(r) =NVrφ(Nr)

The situation that Λr φ(r) is the product (ontological conjunction) of all
situations r such that φ(χ). This is illustrated by the theorem:

(6.5) Vs(φ{s) = s = px v s = p2) - Λrφ(r) = pλ Λp2

Of course, two schemes of axioms, being dual to (6.1) and (6.2), hold for the
operator Λ. It is easy to prove the following theorems:

(6.6) tEArφ(r) =Vr(φ(r) ->tEr)

(6.7) Vr φ(r)Et =Vr{φ{r)-> rEt)

It follows from these theorems that if Vr{φ(r) = ψ(r)) then:

Arφ(r) = Arψ(r) and Vrφ(r) = Vrψ(r) .

It may be interesting to compare the operators Λ,V with the quan-
tifiers V, 3. Let us consider only V and 3. It is clear that: ψ(q)E31ψ(t).
Consequently, we have the implication:

(6.8) lq(p = ψ(q))->pEltψ(t)

Suppose now that: Vp(lfiφ = ψ(t)) - pEq). It follows that: Vt(ψ(t)Eq), i.e.
LVt(ψ(t) -* q). The formula: Vt(ψ(t) -> q) - (ltψ(t) -* q) is a logical the-
orem. Therefore, we have: £(3fψ(ί) -» q), i.e., Ίtψ(t)Eq. Thus, we have
proved the formula:

(6.9) V/>(3*(/> = Ψ(t)) - PEq) - 3t(ψ(t)Eq) .

If we now compare (6.8) and (6.9) with (6.1) and (6.2) then we see that:

(6.10) ltψ(t) = Vr(3ί(r = ψ(t))) .

Both operators V and 3 are generalizations in a sense of the connective
of alternation v. However, there is a sharp difference between them. We
explain it in the following intuitive but not quite exact way. The formula
3 tψ(t) is the alternation of all sentences of the form ψ(σ) where σ is any
sentence. The formula V rψ(r) is the alternation of all sentences σ such
that the sentence ^(σ) is true. The reader may compare the operators Λ
and V and reconstruct a theorem dual to (6.10). It follows directly from
(6.1) that:
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(6.11) Ίpiφip) ΛwEp)-*wEvrφ(r)

We prove that the implication (6.11) may be reversed if the situation
that w is a possible world. Suppose that:

1. Pw
2. wEVrφ(r)
3. Vp(φ(p)-*N(wEp))

According to (5.20) we infer that: Vp{φ(P) -• wENp). Consequently,
Vp(φ(p) -* pENw). Using (6.2) we obtain: Vrφ(r)ENw. Therefore, by (3):
wENw, i.e. w = 0, contrary to (1). Thus, we have proved the theorem:

(6.12) Pw - (wEVrφ(r) = lp(φ(p) A wEp)

One may read this theorem as follows: if w is any possible world then the
situation that Vrφ(r) occurs in w if and only if some situation p such that
φ(p) occurs in w. Using (6.12), (5.23) and (5.6) one obtains easily the the-
orem:

(6.13) Vrψ(r) v Vrφ(r) = \ίr(ψ(r) v φ(r))

The reader may formulate three theorems which are dual to (6.11),
(6.12) and (6.13). Take notice of the last case!

We conclude this section with the theorem:

(6.14) p = Vw(Pw A wEp)

which may be easily obtained from (5.23), (6.1) and (6.2). It states that
every situation is the sum (ontological alternation) of all possible worlds in
which it occurs. The situation Vw(Pw Λ wEp) is composed of points in the
logical space. One may say that every situation is a place (Ort) in the
logical space.

7. The real world Let us consider now three situations s0, sl9 and w which
are defined as follows:

(7.1) so = VrFr sx= irFr

(7.2) w = ArFr

Clearly, Fs± A JVs0. This is a logical theorem. It follows that:

(7.3) s x = 1 A s0 = 0

Using the theorems dual to (6.1) and (6.2) we obtain the equality:

(7.4) A rFr = Λr(Fr A r / 1)

Starting now with the theorem dual to (6.1) we obtain two formulae:

(7.5) Fp-^wEFp Np-^wENp

It follows from this that: V/>(S/> -» ϊvEFp v wENp). Thus, we have proved
the remarkable theorem:

(7.6) w = 0 vPw
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It means that either the situation w is impossible or it is a point (possible
world). The formula:

(7.7) Mw

is assumed as an axiom. It states that the product (ontological conjunction)
of all facts is a possible situation. Consequently, the situation w is a point
in the logical space and will be called the real world.

Now, using (5.21), we infer from (7.5) the following theorem:

(7.8) Fp = wEp

Any situation is a (positive) fact if and only if it occurs in the real world.
In another words, the real world includes a situation if and only if it is a
(positive) fact.

From (7.8), (5.21), (5.22) and (6.12) we obtain the theorems:

(7.9) Fw
(7.10) Np=wENp
(7.11) F(p Λ q) = wEFp Λ wEFq

(7.12) F(Vrφ(r)) ^ lp(φ(p) Λ Fp)

(Remark, added November 1967.) As observed by B. Wolniewicz and P. T.
Geach, Wittgenstein would not say that Fσ where σ is a logical theorem.
This means, in my opinion, that Wittgenstein's notion of a fact may be ex-
pressed more adequately by the connective F defined as follows: Fp -
Fp Λ p £ 1. However, observe that the real world may be defined using F
and F a s well. See (7.4). In many theorems we may replace Fby F. Also,
we have: FFp = Fp. The difference between F and F is not very deep.
Figuratively speaking, it is like that between nonnegative integers and posi-
tive integers. The theorem (7.4) corresponds to the equality: 0 + 1 + 2 =
1 +2.

8. States of affairs The notion of state of affairs or atomic situation is
represented in the system of ontology by the sentential connective SA. The
formula SAp is to be read: the situation that£ is a state of affairs. Wit-
tgenstein uses the notion of (positive) atomic fact (the connective FA) but he
does not use the notion of a negative atomic fact (the connective NA). We
introduce both in the following definitions:

(8.1) FAp = SAp*Fp
(8.2) NAp = SAp Λ Np

States of affairs are neither necessary nor impossible. We formulate
this as an axiom:

(8.3) SAp-*Mp Λ MNp

It follows from this (a formula of Wolniewicz):

(8.4) SAp - {Fp = (p Λ MNp))
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There exists only one necessary fact (LF1) and only one impossible
fact (NMO). The atomic facts (positive and negative) are contingent situa-
tions. We assume now the axiom:

(8.5) yrSAr = 1

This axiom is equivalent to each of two following formulae:

(8.6) ΛrSA(Nr) = 0 L(Vr SAr)

It follows from (6.12) and (8.5) that in every possible world (including
the real world) there occur at least one state of affairs, i.e.:

(8.7) Pw-* lp(SAp AtvEp)

Points exist (5.25). Therefore, states of affairs exist too:

(8.8) 3p SAp

The existence of situations is a logical theorem: ipSp.
The difference between different possible worlds consists in the occur-

rence of different states of affairs in them. We see from (8.6) that the
product of all complements of states of affairs equals the impossible situa-
tion 0. One may consider also an arbitrary product of certain states of
affairs and of complements of all other ones. Every such product will be
called a combination of states of affairs. In particular, the product of all
states of affairs is a combination of them. We assume that every positive
combination of states of affairs, i.e. every combination except that men-
tioned in (8.6), is not equal zero. Moreover, we assume that every positive
combination is a possible world (8.10). To make it precise, let us suppose
that we have a sentential formula φ(r) such that lr(SAr A φ(r)). The situa-
tion that Λr(SAr Λ φ(r)) is the product of all states of affairs r such that
φ(r). On the other hand, the situation that Ar(SA(Nr) A Nφ(Nr)) is the
product of all complements of states of affairs # such that Nφ(q). To see
this it is enough to check the equality: Ar(SA(jSfr) A Nφ(Nr)) = Λr(3#(r =
Nq Λ SAq Λ Nφ(q))).

One may easily verify the following equality (compare the dual equality
to (6.13)): Ar(SAr A φ(r)) A Λr(SA(Nr) A Nφ(Nr)) = Ar((SAr A φ(r)) v
(SA(Nr) ΛNφ(Nr))). Thus, the product Λr((SAr A φ(r)) v (SA(Nr) A Nφ(Nr)))
is a combination of states of affairs. We assume the definition:

(8.9) Dr(ψ(r), φ(r)) = Λr((ψ(r) A φ(r)) v (ψ(Nr) A Nφ(Nr)))

Here, a new operator 3 binding sentential variables is introduced. It
follows from above that for any formula φ(r) the situation that Dr(SAr9φ(r))
is a combination of states of affairs. It is a positive combination if
3r(£Ar A φ(r)). As announced above, we assume the following scheme of
axioms (for any arbitrary formula φ(r)):

(8.10) MSAr A φ(r)) - P(Dr(SAr, φ(r)))
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This scheme of formulae may be read: to every positive combination of
states of affairs corresponds (in the sense of identity) a uniquely deter-
mined possible world. We assume that this correspondence is biunique. In
other words, two combinations of states of affairs which differ in some of
their factors are different. It is expressed by the scheme of axioms:11

(8.11) Dr(SAr, φ(r)) = Dr(SAr9 ψ(r)) -> Vr(SAr - (φ(r) = ψ(r)))

Suppose now that there exists a situation p such that SAp and SA(Np). Then,
it follows from the theorem dual to (6.1) that the product of all states of
affairs, i.e., Dr(SAr, Sr) is equal to the impossible situation 0, contrary to
(8.10). Therefore:

(8.12) SAp - N(SA (Np)) SA (Np) - NSAp

It follows from (6.6) that

(8.13) tEDr(SAr, φ(r)) = Vp(SAp A φ(p)-*tEp) A vq(SA(Nq) ΛNφQfq)

~>tEq)

Let us introduce now the definition:

(8.14) sa(t) =Dr(SAr, tEr)

Clearly, the combination sa(t) is the product of all states of affairs occur-
ring in t and of all complements of those states of affairs which do not
occur in t. If t is a possible world then the situation sa(t) may be called the
combination of states of affairs in the possible world t. In view of (8.7) this
combination is a positive one. Therefore, if t is a point then sa(t) is also a
point. It may be inferred from (8.13) that they are identical. Thus, we
have the theorem:

(8.15) Pt->sa(t)=t

Every possible world is a positive combination of states of affairs.
Therefore, the biunique correspondence (in the sense of identity) between
positive combinations of states of affairs and possible worlds is concerned
not only with all positive combinations but also with all possible worlds.12

We have seen (6.14) that every situation is the sum (ontological alternation)
of certain possible worlds. This includes also the impossible situation 0
although it occurs in no possible world. On the other hand, every possible
world is a product of certain states of affairs and of complements of other
states of affairs. In view of this, we say that the states of affairs are
generators of the Boolean algebra of all situations, i.e., the Boolean
algebra of all situations is generated by the states of affairs. Every situa-
tion may be obtained from the states of affairs by means of the generalized
sum-operation V, generalized product-operation Λ and complement opera-
tion N.

Let us now discuss the problem of the number of states of affairs, of
possible worlds and of situations. It is clear that
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(1) if there exist exactly n states of affairs then there exist exactly
2n - 1 positive combinations of them, i.e., there exist exactly 2n - 1 pos-
sible worlds. On the other hand,

(2) if the (atomic and complete) Boolean algebra of all situations con-
tains exactly m points (possible worlds) then there exist exactly 2m situa-
tions.

In the infinite case, n and m are infinite cardinal numbers and we have
only to replace 2n - 1 by 2n in (1) above. The number of states of affairs is
determined in some degree by the postulate of their independence. This is
the second component of the principle of logical atomism in Tractatus;
compare (5.19). Notice that the formula (5.19) follows from our assumption
(8.16) below. It doesn't suffice to assume that any two different states of
affairs are independent: vpvq(SAp A SAq A p £ q -> plq). To formulate the
independence of states of affairs we must introduce the notions of indepen-
dence of three, four, . . . , states of affairs. Let us write I2(p,q) instead of
plq. Subsequently, in analogy to (5.16), we may define for each k = 3,
4, . . . , the &-ary connective 4 such that the formula h(Pi, Pz, . . . , Pk)
means: the situations pί9 p2, . . . , Pk are independent. For example, we
define the formula h(pi9th9Ps) using a formula which is the product of 8
factors:

M(Fp1 Λ Fpτ Λ Fp3) Λ M(Fpλ A Fp2 A Np3) Λ, . . . , Λ M{Np1 Λ Np2 Λ Fp3) A

M(Npχ A Np2 Λ Np3)

Now, we assume as axioms all formulae of the following kind:

(8.16) (SAfoΛ, . . . , A SApkAp^p2 A, . . . , A p{ φp] A, . . . ,A
Pk-iίPk)-> hipu . . . ,Pk)

They mean that each& different states of affairs are independent; i <j <k =
2, 3, 4, . . . . Suppose that there exist finitely many, e.g. k, states of
affairs: ρl9 ρ29 . . . , pk. We infer from (8.16) that the situation Npx Λ
Np2 A, . . . A Npk is possible. This contradicts (8.6). Thus:

(8.17) There exist infinitely many states of affairs.

On the other hand, all the axioms (8.16) may be inferred from (8.17) and
(8.10). Therefore, one may consider the independence of states of affairs
as equivalent to the existence of infinitely many of them. It follows from (1)
and (2) above that the number of possible worlds is much greater than the
number of states of affairs and the number of all situations is much greater
than the number of possible worlds. This holds also in our infinite case
(8.17). The number of all situations is enormously large. This applies
also to the number of all (positive) facts because in our infinite case the
cardinal number of all situations occurring in a given possible world is
equal to the number of all situations.13

9. Configurations of objects The link between the s-ontology and o-ontology
is given by the following thesis of Tractatus:
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(1) The states of affairs are configurations of objects.

It is an important but very difficult point in the philosophy of Wittgenstein.
I cannot give here an ultimate and complete explication of thesis (1). The
considerations in this section must be seen as preliminary remarks only.
Firstly, the main difficulty consists in the precise presentation of the
principles of the o-ontology. The o-ontology has its own serious problems
and will be not presented here in a definite form. On the other hand, the
notion of configuration of objects and thesis (1) give rise to certain special
problems which cannot be solved here. I will propose a definition of the
notion of configuration of objects (9.0). The main idea of this definition is
quite right, in my opinion. It will be applied to formulate thesis (1). How-
ever, it will be shown that the formula (9.1) which corresponds to (1) is not
adequate.

Let us reflect for a moment on the notion of configuration. Here, I
consider the configurations of finite number of objects. When speaking
about configurations of certain objects xl9 . . . , xn we take usually into
account many possible configurations of these objects. In other words,
there may be many configurations of the given objects xί9 . . . , xn. One
may infer from this that the notion of configuration must contain a hidden
parameter which changes from one configuration of ΛΓ1? . . . , xn to another
one. To reveal this parameter we may use the phrase:

(2) the /^-configuration of objects xl9 . . . , xn

where the letter R is a nominal variable. To explain the role of the pa-
rameter R we suppose that every configuration of objects xl9 . . . , Xn con-
sists in a certain n-ary relation holding between the objects xl9 . . . , xn. In
particular, it is quite natural to use phrase (2) for the situation that the
n-ary relation R holds between xl9 . . . , xn. Therefore, we assume that the
phrase (2) means:

(3) the situation that w-ary relation R holds for xl9 . . . , xn

Instead of (3) one may use the sentential expression:

(4) the ra-ary relation R holds for xίf . . . , xn

or the symbolic sentential formula:

(5) R*xl9 . . . , xn

Thus we have the definition:

(9.0) the R-configuration of xlf . . . , xn. = R * xu . . . , xn

It allows us to dispense with phrases of the form (2) and to formulate
thesis (1) as follows:

(9.1) SAp s 3 « 3 ^ . . . lxn(P= R * xl9 . . . , Xn)

The formula (9.1) should be assumed as an ontological axiom. It might
read: a situation p is a state of affairs if and only if p consists in a certain
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(given) relation holding between some (given) objects. Note that formula
(9.1) is not quite precise because first of all the number of existential
quantifiers occurring in it is indefinite. There are several subtle points
connected with the formula (9.1). Some of them will be mentioned below.

It follows immediately from (9.1) that:

(9.2) SA(R * # ! , . . . , xn)

for every w-ary relation R and objects xl9 . . . , xn.

(A) The identity on the right hand side of (9.1) must not be replaced by
equivalence. For, suppose that:

(6) (p = R * xl9 . . . , xn) - SAp

If F(R * xl9 . . . , xn) then R * xl9 . . . , xn = 1. Consequently, SA19 contrary
to (8.3). On the other hand, one may see that the formula:

(7) p = q -> SAp = SAq

does not hold; compare the scheme (**) in the section 2.

(B) Let R be an w-ary relation and S be an ra-ary relation. Consider
arbitrary objects xl9 . . . , xn, xn+u . . . , xn+m. Ίi n+ m then the states of
affairs:

(8) R * xl9 . . . , xn S * xn+ί, . . . , xn+m

are not only different, their structures are also different. Suppose now that
n = m. One may say that the states of affairs:

(9) R * xlf . . . , xn S * xn+l9 . . . , xn+m

are of the same structure in a weak sense. A stronger version of this
notion may be introduced in the case of isomorphic relations. Let C be a
one-to-one correspondence between the fields of the relations R and S. It
assigns to the elements x, y of the field of R certain objects C * x and C *y
in the field of S.14 If we also have:

(10) x £ y-> C * x £ C*y
(11) R * *i, . . . , xn

 Ξ 5 * (C * xj, . . . , (C * χn)

then the correspondence C is called an isomorphism between R and S. We
say that the states of affairs (9) are of the same structure in the strong
sense and with respect to the correspondence C if and only if C is an iso-
morphism between R and S and xn+k = C * X& for k = 1, . . . , n.

(C) It is clear that the states of affairs (9) are identical if R = S and
xk= xn+k for k = 1, . . . ,n. Does the inverse implication hold? In other
words, is it true that:

(12) R * xl9 . . . , xn = S * xnVu . . . , χ2n - R = S Λ Xl = χn+1 Λ, . . . ,
Λ Xn = X2n
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(D) Let Id be the identity relation. This means that for all elements x,
y of some class of objects (which does not need to be specified): (fd * x,y) =
(#= y). In view of (2.2), (4.8), (4.9) and (4.12) we infer that L(ld* x,x).
Consequently, according to (8.3) the situation that Id *x,x is not a state of
affairs which contradicts (9.2). On the other hand, suppose that the relation
S is the complement of the relation R in the sense for all elements x, y of
some class of objects (which does not need to be specified): (S * x,y) =
N(R * x,y). We infer from (9.2) that SA(S * x9y), i.e., SA{N{R * x,y)). It
follows from (8.12) that N(SA(R * x,y))9 contrary to (9.2). Thus we see that
the formula (9.2) cannot hold in full generality. Therefore, the formula
(9.1) must also be suitably modified. The problem is: how to restrict the
range of nominal variables (R9 #i, . . . , Xn) bound by the existential quan-
tifiers in (9.1).

One may conjecture that the formula (9.2) holds if the objects xu . . . ,
xn are individuals, i.e., non-abstract objects (Urelemente), and the relation
R is a Wittgensteinean one. I think that Wittgensten believed in the exist-
ence of a certain absolute class of relations between individuals which
generates the states of affairs according to (9.2). Of course, only Der Hebe
Gott could define the class of Wittgensteinean relations. However, I think,
it is possible to formulate certain necessary conditions which must be
satisfied by Wittgensteinean relations. Our considerations above (point D)
suggest two following conditions:

(1) No Wittgensteinean relation is an invariant under all permutations
of individuals. In particular, the relation of identity is not a Wittgen-
steinean one.

(2) The Wittgensteinean relations are mutually independent. Thus, for
example, the complement of a Wittgensteinean relation is not a Wittgen-
steinean relation.

Both conditions call for further explanation. Especially, the condition
of independence is somewhat complicated because the Wittgensteinean rela-
tions may be unary, binary, . . . , n-ary, . . . . However, I do not enter into
these details here.

Remark, suggested by Dr. Wolniewicz, December 1967. Anyway we
define states of affairs there exist infinitely many of objects. If there were
finitely many objects then there would exist only finitely many configura-
tions of them, i.e., finitely many states of affairs, contrary to (8.17). Note,
however, that the existence of infinitely many objects is not equivalent to
the existence of an infinite class of objects.

10. Odontology. Traditional opposition between realism and nominalism
belongs to the field of ontology of objects and is concerned with the problem
of existence of abstract objects. We assume here (!) the realistic point of
view. Nominalism is followed by poor and mostly negative conclusions. In
particular, nominalism (e.g., reism of T. Kotarbiήski) seems to be unable
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to reconstruct classical mathematics. On the other hand, it is known that
classical mathematics may be reconstructed within realistic ontology (e.g.,
set theory). Starting from the realistic point of view we introduce the
notion of an abstract object as a primitive one. We assume also certain
specific axioms concerning the existence of abstract objects. Realistic
formal ontology does not formulate any specific assumptions concerning
individuals.

There are many contemporary versions of realistic ontology (e.g., the
theory of types, the set theory of Zermelo-Fraenkel or of von Neumann-
Bernays-Gόdel, the systems NF and ML of Quine). Moreover, most of them
offer certain difficult special problems which seem to be solvable by
decision only. Under such circumstances I do not feel inclined to present
here any elaborated system of o-ontology. When speaking about realistic
o-ontology I do not intend either to choose a particular system known in
mathematical logic or to construct a new one. I will restrict my considera-
tions to the so called principle of abstraction (Cantor, Frege) which is the
kernel of every realistic ontology. The principle of abstraction formulated
below is concerned with the abstract objects derived from objects and
situations as well. I will discuss also a classification of abstract objects
and some problems connected with the principle of extensionality.

There exists, of course, the question as to whether the ontology of
objects contained in the Tractatus is realistic or nominalistic. Wittgenstein
gives no direct answer to this question. However, I think that the Tractatus
must be interpreted in a realistic way. This follows from the interpretation
of configurations of objects given in the section 9. The revealed parameter
R represents relations which, certainly, are abstract objects. There is
also an indirect historical argument. Clearly, Wittgenstein was influenced
by Russell's theory of types. Every strict formulation of the theory of
types (Church's simple theory of types, the so-called ontology of St. Les*-
niewski, Tar ski's general theory of classes) proves to be a restricted ver-
sion of set theory and, thereby, a version of realistic ontology of objects. In
former times the realism of the theory of types was not obvious because,
mostly, of certain shortcomings in Prίncipίa Mathematica. The theory of
types is a many sorted theory. It uses essentially many sorts of nominal,
i.e., nonsentential variables. This peculiar syntatic feature of the theory of
types (formed sometimes in the style of the so-called higher-order-system)
gave rise to certain misinterpretations of this theory in the past. Now,
only simpleminded people believe in the nominalistic character of the
theory of types.

Certainly, the realistic ontology we are speaking about is not the theory
of types. Our formalized language Lo contains just one kind of nominal,
i.e., non-sentential variable. Therefore, the principle of abstraction for-
mulated below states explicitly the existence of abstract objects.

11. Principle of abstraction The formulae which are neither sentences nor
names contain some free variables. For simplicity, we consider only
formulae which contain as free exactly the nominal variables xί9 . . . , xm
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and sentential variables plf . . . ,pn We assume that m9n = 09 1,2, . . .
with the exception of the case when m +n = 0. There formulae will be
called of rank (m9n). Sentential or nominal formulae of rank {mμ) will be
called formulae of rank (0;m,n) or (l;m,n), respectively.

One might use the following suggestive notation:

X(*l, . . . , Xm, px, . . . , pn)

for arbitrary formulae of rank (m,n). But I will not use this notation.
When we use (!) certain formulae φ and ψ of rank (0;m,n) and (l;m,n),

respectively, then we think about indeterminate object ψ and situation φ
which depend on indeterminate objects xu . . . , xm and situations ph . . . ,
pn. In other words, to any objects xl9 . . . , xm and situations Pi, . . . ,pn

there correspond an object ψ and situation φ. This correspondence is
univocal. Thus, one may say that every meaningful formula of rank (rn,n)
determines an univocal correspondence, i.e., assignment. Indeed, the for-
mula ψ of rank (l;m,n) assigns to arbitrary objects xl9 . . . , xm and situa-
tions piy . . . , pn the corresponding object ψ. On the other hand, the
formula φ of rank (0;m,n) assigns to arbitrary objects xx, . . . , xm and
situations pi, . . . , pnthe corresponding situation φ.

Certainly, the assignments determined by the formulae of some rank
are abstract objects. One may assume that every abstract object is an
assignment. This does not mean that every abstract object is determined
by some formula. The formulae only refer in an indirect way to some
abstract objects. The existence of abstract objects determined by the
formulae of any rank is stated in the principle of abstraction.

(Remark, added November 1967.) The existence of abstract objects is
meant here in the sense of the existential quantifier binding nominal vari-
ables. This applies to the formulation of PA0 and Ί?Al9 below.

When speaking about assignments it may be useful to introduce a suit-
able notation. Let C be an assignment. The symbolic formula:

(*) C * XU . . . , Xm, />!, . . . ,pn

will be used for the object or situation which is assigned by C to the objects
Xi, . . . , xm and situations ply . . . , pn. It may be read:

the value of C at xl9 . . . , xm, ply . . . , pn

The value of an assignment C is an object or situation. Strictly speak-
ing there are exactly two cases:

Case 0; for every xl9 . . . , xmy pi, . . . , pn the value (*) of C is a situa-
tion.

Case 1; for every xu . . . , xm ph . . . , pn the value (*) of C is an
object.

The assignment C is called of kind (0) or (1) correspondingly to the
case 0 or 1, above. Consequently, formula (*) is either a sentential formula
(case 0) or nominal formula (case 1). Therefore, the asterisk * is a syn-
tactically ambiguous symbol. It is, in general, an operator (not binding any
variable) which forms a formula (sentential or nominal)
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Ψo * Ψl, , Ψm, <Pl, . , Ψn

together with ra + 1 nominal formulae ψ0, Ψi, , Ψm and w sentential for-
mulae φl9 . . . , φn for any natural numbers m, n such that m +n = 0. Ίi n =
0 then the asterisk * is either an (m + l)-ary predicate (case 0) or an
(m + l)-ary functor (case 1). I hope, the high syntactic ambiguity of the
asterisk * will not give rise to any confusion.

The principle of abstraction is comprised of two components. Both are
schemes of statements corresponding to nominal and sentential formulae of
any rank.

Principle of abstraction PA0. Given a formula φ of rank (0;m,n) there
exists an abstract object A being an assignment of kind (0) such that for all

XU - 9 Xm, Ph - 9 Pn'

( 1 1 . 0 ) (A * X ! , . . . , Xm, / > ! , . . . , Pn) = Ψ

Principle of abstraction PA^ Given a formula ψ of rank (l;m,n) there
exists an abstract object B being an assignment of kind (1) such that for all

XV> 9 XfΛ9 Pl9 9 Pn'

(11.1) (B * xl9 . . . , xm9 Pi, . . . ,Pn) = Ψ

Observe that the symbol of identity is either a binary connective in
(11.1) or a binary predicate in (11.1).

(Remark, added November 1967.) The principles PA0 and PAX may be
formulated in a more general way. One has only to allow the formulae φ
and/or ψ to contain some additional free variables.

It is well known that the general principle of abstraction is a contra-
dictory scheme. It gives rise to the antinomies. Therefore, one cannot
assume the principle of abstraction in full generality, i.e., for all formulae.
The general principle of abstraction must be limited in some way. This is
the principal problem in the foundations of o-ontology. It may be resolved
in many ways. But I will not discuss this point here. Instead, I will con-
sider shortly the vicious element in the principle of abstraction. The
abstract objects, i.e. assignments, are objects. Therefore, we may con-
struct the formula:

x * x

which will be called the diagonal formula. It contains only one free vari-
able. Observe that the diagonal formula is either a sentential (case 0) or a
nominal (case 1) formula.

Let us consider the case of a nominal diagonal formula. Suppose that
there exists a nominal formula χ(z) which contains exactly one free vari-
able z and that for all objects z:

X(z) £ z

According to PAX there exists an assignment B of kind (1) such that for all
objects x: (B * x) = χ(x * x). It follows that B * B = χ(B * B) which is
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impossible. This reasoning shows that the principle PAX is incompatible
with the existence of the nominal formula metioned above.

In the case of sentential diagonal formula the reasoning is quite ana-
logous. Observe, however, that for every situation p:

NpέP

It follows according to the principle of abstraction PA0 that there exists an
assignment A of kind (0) such that for all objects x: (A * x) = N(x * x).
Consequently, A * A = N(A * A) which is a contradiction (RusselΓs an-
tinomy).

12. Classification of abstract objects We have divided abstract objects
into two kinds. We may introduce a more precise division into the realm of
abstract objects. It corresponds exactly to the classification of formulae
according to their ranks. We say that the assignment determined by some
formula of rank (i;m,n) according to the principle of abstraction is of kind
(i;m,n) where i = 0, 1 and m, n = 0, 1, 2 . . . (the case m = n = 0 being ex-
cluded). Consequently, the formulation of the principle of abstraction
(PA0, PAJ given in the preceding section must be suitable precise. We
have to put the expression "kind (i;m,n)" instead of the expression "kind
(i)" where i = 0,1. Strictly speaking, we have infinitely many notions of
abstract objects of some kind. They are unary predicates Abs7'w. The
notation Absf 'n(x) is to be read:

x is an abstract object of kind (i;m,n)

On the other hand, we have the general notion of abstract object given by
the unary predicate Abs. If we wish to state that our classification of
abstract objects is exhaustive then we meet a serious difficulty. Indeed, we
have to assert the general statement of the form:

(1) V#(AbsU)- . . . )

where the three point blank represents an infinite alternation of all for-
mulae of the form: Absf n(x). Certainly, this alternation is somewhat too
long for our purpose. This is the point where the problem of reduction of
abstract objects arises. It will be discussed later. The abstract objects
may be grouped into three broad kinds. A terminology stemming from
arithmetic may be applied to them. An abstract object is called (a) real,
(b) imaginary and (c) complex if and only if it is of the following kind,
respectively:

(a) (e;ra,0) where m ^ 0
(b) (i;0,n) where n ^ 0
(c) (i;m,n) w h e r e m^O^n

The real abstract objects are intensively studied in set theory. The
mathematical set theory may be considered as a realistic ontology of
objects but limited to real abstract objects. Indeed, the abstract objects of
kind (0;ra,0) are usually called m-ary relations (between objects); compare
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(4) and (5) in section 9. Especially, the abstract objects of kind (0;l,0) are
identical with classes or sets (of objects). In this case the formula A * x
may be read: object x is an element of the class A. On the other hand,
abstract objects of kind (l;m,0) are usually called functions or operations
of m arguments (on objects); for the case m = 1 compare (10) and (11) in
section 9.

The imaginary abstract objects of kind (0;0,n) may be called rc-ary
relations between situations or classes of situations, in the special case
when n - 1. These abstract objects are taken into account by Lesniewski
in his protothetics. However, this theory is an oversimplification because it
states that there exist exactly two situations; compare section 3. Con-
sequently, protothetics distinguishes exactly 22n abstract objects of the kind
(0;0,n). There are also complex abstract objects. For example, formulae
like the one (xBp) mentioned at the end of section 2, determine abstract
objects of kind (0;l,l).

Now, I intend to sketch how to solve the problem of reduction of
abstract objects. First, let us consider real abstract objects. Thus, we
are within set theory. It is known that von Neumann (1927) has shown that
all real abstract objects may be reduced to those of kind (l;l,0), i.e.,
functions of one argument. In other words, von Neumann introduced the
predicate AbsJ'0 as a primitive notion and then, defined all remaining
predicates Abs7'°. The von Neumann system is not popular with mathema-
ticians and philosophers, however. The customary systems of set theory
reduce real abstract objects to those of kind (0;l,0), i.e. classes or sets.
This reduction is carried over as follows. According to Peano's definition
(1911) functions of m arguments may be identified with (m + l)-ary rela-
tions which satisfy the condition of univocality:

(2) R * xu . . . , xmy Λ R * χlf . . . , xm ,z -*y = z

Subsequently, a device of Wiener-Kuratowski is to be used. We define
ordered pairs and, in general, ordered &-tuples (k ^2) of objects. They are
defined as certain classes of objects, i.e., objects of kind (0;l,0). Finally,
the &-ary relations are identified with classes of ordered &-tuples. Thus,
we may introduce the predicate AbsJ'0 as a primitive notion and, then,
define all remaining predicates Absf °.

It is easy to realize that the reduction procedure sketched above may
be applied to imaginary abstract objects, i.e., abstract objects of kind
(i;09n) where n ^ 0. The only difference consists in the definition of ordered
pairs and, in general, &-tuples (k ^ 2) of situations. There are, of course,
certain abstract objects. It results that the abstract objects of kind (0;0,n)
where n ^ 2, i.e., relations between situations reduce to certain classes of
objects, i.e., abstract objects of kind (0;l,0). On the other hand, abstract
objects of kind (l;0,n) where n ^ 2 reduce to those of kind (l;l,0) and,
finally, to classes of abstract objects, i.e., abstract objects of kind (0;l,0).
Our reduction procedure does not affect abstract objects of kind (0;0,l) and
(l;0,l). All remaining imaginary abstract objects reduce to certain real
abstract objects.
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The reduction procedure which uses the notion of ordered ^-tuples of
objects or of situations may be applied also to complex abstract objects.
Abstract objects of kind (0,mtn) where m ^ 1 and n ^ 2 reduce to binary
relations between objects and, finally, to classes of objects. On the other
hand, abstract objects of kind (l;m,w) where m ^ 1 and n ^ 2 reduce to
functions of two arguments (binary operations on objects) and, finally, to
classes of objects. The complex abstract objects of kind (0;l,l) or (1;1,1)
remain unreduced. All other complex abstract objects reduce to them or to
certain real abstract objects.

The reduction procedure sketched above allows one to draw the follow-
ing conclusion. It is possible to introduce the predicates:

AbsJ'0, Abs?\ Abs?'1, AbsJ'1, Absί'1

as primitive notions and, subsequently, to define all other predicates
Absf>w. It follows that we can now formulate and, also, assume as an
axiom, the statement that our classification of abstract objects is exhaus-
tive. It is enough to put the alternation:

(3) Abs£'°U) v AbsΓM v AbsΓM v AbsJ'V) v Abβ^W

in the three point blank in (1).

13 The principle of extensίonalίty The reduction of abstract objects may
seem to be guided by the philosophical idea known as Occam's razor. This
idea seems also to be the source of the principle of extensionality.

The general problem of extensionality arises already in connection
with the principle of abstraction. The last one states, roughly speaking, the
existence of abstract objects determined by the formulae. It is not excluded
thereby that there may exist a formula which determines two different
assignments. Occam's razor suggests excluding this possibility and to
formulate a stronger version of the principle of abstraction according to
which every formula determines exactly one abstract object.

It is not necessary to formulate here the stronger version of the
principle of abstraction. The reader will easily verify that it follows from
the usual principle (PA0, PAj and the principle of extensionaltiy PE for-
mulated below. It will be enough to mention here that the stronger version
of the principle of abstraction serves as a principle of defining abstract
objects. It is used in the reduction procedure to define at least the ^-tuples
of objects or situations. In general, the following symbol:

{Xl9 . . . , Xm, pi, . . , Pn\x]

may be used to denote the only assignment determined in the stronger ver-
sion of the principle of abstraction by the formula X of rank {m,n).

(Remark, added November 1967.) Given a situation q, we define: {q} =
{pi\Pi = #}. Clearly, {q} is the unit class such that the situation q is the
only element of it. Thus, to every situation q there corresponds an abstract
object {q}. This correspondence is biunique (one-to-one). Therefore,
instead of studying situations and their properties we may investigate the
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corresponding abstract objects. Also, note that the states of affairs (com-
pare (5) and (9.2) in section 9) may be put into one-to-one correspondence
with ^-tuples <R,xl9 . . . xn> of objects, k = n + 1.

The principle of ex tens tonality PE. Let A and B be any abstract

objects of the same kind, say (i;m,n). If the equality:

(1) A * Xl9 . . . Xm, / > i , . . . p n = B * Xl9 . . . , Xm9 p l f . . . , p n

holds for all % , . . . , xm, pi, . . . , Pn then A = B.

The principle PE allows one to strengthen the principle of abstraction.
Therefore, one may say that the principle PE follows in a sense from
Occam's principle. On the other hand, PE serves as a necessary and suf-
ficient condition (criterion) for identifying and distinguishing abstract
objects of the same kind. To see this it suffices to observe that the impli-
cation contained in PE may be reversed. It is clear that the principle of
extensionality PE may be decomposed into two principles PE0 and PEX

corresponding to two cases: i - 0 or i = 1. The reader may formulate
partial principles PE0 and PEi, and observe that the symbol of identity in
(1) is either a connective (PE0) or a predicate (PEi).

The case when i = 0 gives rise to certain problems concerning ex-
tensionality. The symbol of identity serves to identify either objects or
situations. However, besides the connective of logical identity of situations
there is in our language £othe connective of material equivalence. It cor-
responds to the fundamental dyadic division of all situations into positive
and negative facts (ultrafilter and dual ultraideal in the Boolean algebra of
situations). This correspondence is expressed in the following theorem
(compare definition (2.10)):

(13.1) (p^q) = (Fp ΛFq)D(Np Λ Nq)

Let us replace in PA0 and PE0 the connective of logical identity of situ-
ations by the symbol of material equivalence. The principles PA0 and PE0

are transformed in this way into the weak principle of abstraction WPA0

and strong principle of extensionality SPE0. Principles of abstraction and
of extensionality occur in the usual set theory in the form of WPA0 and
SPE0, respectively. Note that there is in the domain of objects nothing
which would correspond to the distinction between positive and negative
facts and to material equivalence. Therefore, there is no analogous pos-
sibility to strengthen PEi and weaken PAx.

We may state, because of (2.7) that:

(1) WPAQ follows from PA0 and
(2) PEo follows from SPE0.

Moreover, PA0 and SPE0 reduce to WPA0 and PE0, respectively, in the case
of ontological two-valuedness (section 2 and 3).

In my opinion, the principle PA0 does not offer any serious difficulty
besides the antinomies. Therefore, the principles PA0 and PAX as well,
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limited in certain ways, may be assumed as axiom schemes. As to the
principles of extensionality I would like to assume the principles SPE0 and
PEi as axioms of ontology. If one assumes PE 0 instead of SPEothen one
cannot exclude the possibility that there exist two different coextensional
objects A, B of some kind (0;m,n), i.e., A / B and for all xl9 . . . ,xm,

Pl9 ' ' 9 Pn A * Xl9 . . . , Xm, pi, . - . , pn= B * Xι, . . . , Xm,pι, . . . , pn.

The abstract objects A, B would be intensional entities.
Our preference for SPE0 against PE 0 rests in Occam's principle and

accords with usual mathematical thinking. The principle SPE0 excludes the
existence of intensional abstract objects. There may be only one argument
against SPE0. We will be hindered in assuming SPE0 only if somebody will
prove that it contradicts the postulate formulated at the end of section 3.
Indeed, this postulate is the heart of Wittgenstein's ontology. The formula
(*) is sometimes called the Principle of Extensionality of Situations, PES.
Clearly, SPE0 follows from PES. I hope, PES does not follow from SPE0.

NOTES

1. The original version in Polish "Ontologia w Traktacie L. Wittgensteina," has
been published in Stadia Filozoflczne 1(52), 1968, 97-120, Warsaw.

2. Rzeczy i Fάkty (Things and Facts). Paήstwowe Wydawnictwo Naukowe (Polish
State Publishers in Science), 1968, Warsaw, Poland.

3. There is an opinion that mereology, a formal theory built by St. Lesniewski, is a
suitable basis for the theory of spatiotemporal relations.

4. The predicates 'philosopher", 'logician" are called sometimes nominal predi-
cates or, simply names. However, they are not names in our sense.

5. If Q is a fe-ary predicate, / is a fe-ary functor and θ 1 } . . . , θ^ are nominal
formulae then the expression:

"«(θ l f . . . , ek)

is sentential formula and the expression:

/ ( θ i , . , θk)

is nominal formula.

6. For a concise axiom system see my "Non-Fregean logic and theories," sub-
mitted to The Journal of Symbolic Logic.

7. It is clear that the quantifiers play an essential role only when there exist
infinitely many situations.

8. If we assume (4.1), (4.2), (4.3.1), (4.3.2) then we have 14 modalities like Lewis'
system S4. The additional assumption of (4.4) reduces the number of modalities
to 10; compare the system S4.2 of M. A. E. Dummett and E. J. Lemmon (and of
P. T. Geach).

9. We assume also (in o-ontology) Barcan formulae with nominal variables:
LVxφ{x) = VxLφ{x), M3xφ(x) = ΞxMφ(x).

10. Usually, in the theory of Boolean algebras the points are called atoms.
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11. The converse of (8.11) is a logical theorem formulated with defined terms. It
follows from definitions (8.9) and (6.4).

12. One might consider the reflexive, antisymmetric and transitive relation of "en-
tailment" between points represented by the connective W and defined as follows:
pWq means that p, q are points and every state of affairs occurring in p occurs
also in q. Every point entails in this sense the point:

Or(SAr, Sr)

Remember, however, that every two different possible worlds ρt q exclude them-
selves, i.e. the product of them is impossible (p Λ q = 0). It may also be shown
that there exists a situation (state of affairs) which occurs in one of the points
p, q and does not occur in the other.

13. R. Wojcicki (University of Wroclaw) observed in a letter to the writer that the
axiom system for the states of affairs reduces to the formulas (8.5), (8.10), (8.16).
All the remaining theorems (8.3, 8.4, 8.6, 8.7, 8.8, 8.11, 8.12, 8.13, 8.14, 8.15,
8.17) are provable.

14. There is a systematic ambiguity in our use of the asterisk *. This point will be
explained later.
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