NAMING GAME AND HOMONYMY-SYNONYMY PUZZLE

DOROTA LIPOWSKA

Department of Applied Logic Institute of Linguistics Adam Mickiewicz University Language is a complex adaptive system, which emerges from local interactions between its users and evolves according to principles of evolution and self-organization.

Research techniques:

- genetic algorithms
- neural networks
- game theory
- optimization techniques
- statistical methods
- learning techniques
- multi-agent modelling
- bottom-up approach the best for studying dynamic complex systems

Two dominant paradigms in agent-based modelling

1) Iterated Learning Model

(Kirby 2002)

- "vertical" transmission of language (from one generation to the next)
- 2) Language Game Model

(Steels 1995)

- egalitarian agents in an open population
- "horizontal" transmission of language (cultural)
- naming game

There is no such thing as a true synonym (L. Urdang 1979)

synonymy is rare

- napkin/serviette; flat/apartment ...
- bicycle/bike; hippopotamus/hippo ...
- die/expire; shit/crap ...

homonymy is common

bank

– file

present

list

- port

– ...

E. CLARK: Principle of Contrast (Clark 1990)

E. MARKMAN: Mutual Exclusivity Principle (Markman 1989)

K. WEXLER, P. CULICOVER: Uniqueness Principle (Wexler & Culicover 1980)

S. PINKER

(Pinker 1984)

- homonymy synonymy puzzle
 - synonymy does not disturb communication
 - homonymy gives rise to misinterpretations

- computer languages
 - synonyms allowed
 - no homonyms

Humans evolved to be well adapted as senders of messages;
accurate reception of messages was less important...
We may be primarily speakers, and secondarily listeners.

James R. Hurford (2003)

Why synonymy is rare:

Fitness is in the speaker

genetic algorithm favours

either communicative success :
 rare synonyms, homonyms tolerated
 (as in natural languages)

or interpretive success:
 rare homonyms, synonyms tolerated
 (unlike natural languages)

- the homonymy-synonymy asymmetry
 - distinctive feature of natural languages
 - potential test of computational models of language development

Homonyms and synonyms in the n-object naming game

- naming game
 - → two agents (speaker and hearer in turns)
 - → many objects

each agent has lists of words (one list for each object)

each word has a weight assigned to it

words are integer numbers

the speaker selects an object and a word for it from its respective list (randomly, according to weights of words)

the hearer determines the meaning of the word

success or failure
 determine modification to the vocabularies

the hearer

 calculates measures of similarity of the word x to each of the lists :

$$S^{k}(x) = \frac{1}{\sum_{i} W_{i}} \sum_{i} \frac{W_{i}}{\varepsilon + |X_{i} - X|}$$

 w_i – the weight of the word x_i

 $10^{\text{--}5} \leqslant \epsilon \leqslant 10^{\text{--}1}$ — ensures finiteness of s^k

using these measures as weights,
 makes a roulette selection of a list
 (and so an object) as the meaning

Modification of vocabularies

- → success
 - both agents increase the weights of the word
- → failure
 - the speaker decreases the weight of the word
 - the hearer adds the word to the appropriate list or increases its weight
- → reinforcement learning approach

The time evolution of the success rate (n=500, l=10, r=1000)

The time evolution of the number of different largest-weight words

The time evolution of the success rate of utterances with largest- and second-largest-weight words

The time evolution of the fraction of second-largest-weight utterances

Noise

with the probability p the word x chosen by the speaker is changed to

$$x_c = x + \eta$$

$$-a \le \eta \le a$$
 (a – the amplitude of noise, η – random integer)

with the probability 1-p the communicated word x does not change ■ For p=0 a redistribution of largestweight words reduces homonymy

■ For p>0 noise enhances such a redistribution

■ For p>0 noise changes a distribution of second-largest-weight words (reducing synonymy?)

- In the model, the noise plays an important role in the evolution of language:
 - results in a more even distribution of words within the available verbal space

- reduces the number of homonyms
- reduces the number of synonyms

- Homonymy and synonymy
 - homonymy persists over time ("dynamic trap")
 - → synonymy diminishes over time (transient characteristic)

- Noise
 - facilitates communication

Asymmetry between homonymy and synonymy can thus be explained within a fairly simple naming game model, without resorting to evolutionary Hurford's argument (that a speaker benefits more from conversation than a listener).

CANGELOSI, A., PARISI, D. (eds.) 2002. Simulating the Evolution of Language. London: Springer Verlag.

CLARK, E.V. 1990. On the Pragmatics of Contrast. *Journal of Child Language*. 17, 417-431.

DE BOER, B. 2006. Computer modelling as a tool for understanding language evolution. In: N. Gonthier *et al.* (eds.) *Evolutionary Epistemology, Language and Culture – A Non-adaptationist, Systems Theoretical Approach.*Dordrecht: Springer, 381–406.

DESSALLES, J. L. 1998. Altruism, status, and the origin of relevance. In: J. R. Hurford *et al.* (eds.) *Approaches to the Evolution of Language: Social and Cognitive Bases*. Cambridge: Cambridge University Press, 130–147.

Hurford, J.R. 2003. Why Synonymy is Rare: Fitness is in the Speaker. In: W. Banzhaf *et al.* (eds.) *Advances in Artificial Life—Proc. of the Seventh European Conference on AI (ECAL03).* Berlin: Springer-Verlag, 442–451.

KIRBY S., 2002. Natural language from Artificial Life, *Artificial Life* 8(2), 185-215.

KIRBY, S., HURFORD, J. 2002. The emergence of linguistic structure: An overview of the iterated learning model. In: A. Cangelosi and D. Parisi (eds.) *Simulating the Evolution of Language*. London: Springer Verlag, chapter 6, 121-148.

LIPOWSKI, A., LIPOWSKA, D. 2009. Language structure in the *n*-object naming game. *Physical Review E*, 80, 056107-1–056107-8.

MARKMAN, E.M. 1989. *Categorization and Naming in Children: Problems of induction*. Cambridge MA: MIT Press. (esp. chapters 8 & 9).

Pinker, S. 1984. *Language Learnability and Language Development*. Cambridge MA: Harvard University Press.

PINKER, S., BLOOM, P. 1990. Natural language and natural selection. *Behavioral and Brain Sciences*, 13(4), 707–784.

STEELS, L. 1995. A self-organizing spatial vocabulary. *Artificial Life* 2(3), 319-332.

STEELS L., 1997. The synthetic modeling of language origins, *Evolution of Communication* 1(1), 1–34.

WEXLER, K., CULICOVER, P. 1980. Formal Principles of Language Acquisition. Cambridge MA: MIT Press.