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 STUDIA L?GICA
 Tom XXVII - 1971

 Stephen L. Bloom

 A COMPLETENESS THEOREM FOR "THEORIES OF KIND W"

 This paper presents a completeness theorem for "theories of kind Ww, introduced
 by R. Suszko in [8], [9], [10] in order to formalize part of the Tractatus of L. Wittgen?
 stein. The paper is self-contained, although the reader should consult Suszko's papers
 for some details of certain theories of kind W and an appreciation of their philosoph?
 ical significance1. From the purely formal point of view, the only essential feature
 of theories of kind W is the identity connective and its logical axioms.

 1. LANGUAGES OF KIND W

 A theory of kind W is a triple <L, Cn, 0> where L is a language of kind W, O is
 a set of sentences of L, and Cn is the consequence operation specified below. We
 first describe L.

 L contains two types of variables, sentential variables, and nominal variables. The
 letters p and q will be used to denote sentential variables, and the letters x and y will
 be used for nominal variables. The letters \ and ? will be used ambiguously as either
 sentential o? nominal variables. The distinction between a free and bound occurrence

 of a variable is presumed known. For each pair (n, m) of non-negative integers, L
 contains a set 92">m of relation symbols of type (n, m) and a set ^n>m of function sym?
 bols of type (n, m). We assume that all sets 92"jm, 7fc,J are pairwise disjoint (some may
 be empty) and, for convenience, we suppose that each set 92">m, i7Mjm is at most denumer
 able. We take the logical connective -> (implication) and the universal quantifier V
 as primitive, and assume that the sentential constants 0 and 1 are members of 92?3?
 (1 is a truth-functional tautology, 0 is not). The connectives "1, V, A, <->, 3, 3 are
 introduced as the usual abbreviations (~1 a is (a ~> 0), etc.; 3 means "there is exactly
 one35.)

 In addition to the above connectives, L contains a binary identity connective, written
 = , in 922j0, and an identity predicate (also denoted by =) in 92?>2. Lastly, L contains
 a symbol U for the Bernays unifier operation ([1] and [5]).

 The terms and formulas are defined simultaneously such that
 (i) every sentential variable is a formula;
 (ii) every nominal variable is a term;

 1 It is a pleasure to acknowledge the encouragement and stimulation provided by conversations
 with Professor Suszko during the preparation of this report. He suggested several revisions of an earlier
 draft.

 [43]
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 44  S. L. Bloom  [2]

 (iii) if ?13 cp2,..., 9? are formulas, and ?i13 ?i2, ...,[im are terms, then, for each R
 in 92"*m,

 R (<Pl9 ?9 <?n> Pi) -9 Pm)

 is a formula, and for each g in 9^

 is a term. Each member of c#0>0 is a formula and each member of 7?'? is a term.

 (iv) If 9 is a formula, and ol is an expression not containing the variable \ free,
 then

 t/? (c, a)
 is

 (iv.l) a formula, z/ I is a sentential variable and a is a formula;
 (iv.2) a term, if \ is a nominal variable and a is a term. ? is bound in ?7!; (9, a),
 (v) If cp and ty are formulas, so are V&p and (9 -> <]>).
 (It follows from (iii) that (9 = <j/) is a formula.)

 Languages of kind W differ from the usual two sorted languages in that one type
 of variable (the sentential variable) is also a formula.

 2. AXIOMS

 In this section we describe the logical axioms for theories of kind W, and define
 the consequence operation Cn.

 A generalization of a formula 9 is the result of prefixing zero or more universal
 quantifiers to 9 : i.e. V^ V?2 V?? 9 is a generalization of 9, where n > 0 and ??
 (1 < i < n) is either a sentential or nominal variable. If a and ? are expressions, ? (?/a)
 is the expression obtained from ? by replacing every free occurrence of ? in ? by ol,
 so long as no variable, free in a, becomes bound. Otherwise, ? (?/a) is ?. We will use
 the letters 9, ty and 6 (sometimes with subscripts) for formulas, and the letters (i and v
 (sometimes with subscripts) for terms. The axioms will be presented in three groups:
 the standard axioms, the identity axioms, and the unifier axioms.

 The standard axioms are those formulas which are generalizations of any formula
 of the following kinds:

 Al. A truth-functional tautology (based on ->, 0, 1)',

 A2. Vx9 -> 9 (jc/(x) \i ? any term;
 V/>9 -> 9 (/>/6) 0 ? any formula;

 A3. V?(9->+)-(V??->V^).
 A4. 9 -> V^9 if \ is not free in 9 .

 The identity axioms are those formulas which are generalizations of any formula
 of the following kinds:
 El. x = x', p s p;
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 [3]  A completeness theorem  45

 (Recall that the symbol = is being used ambigously; in the formula x = x, = is
 in (}?0>2; in p = p, the connective == is in 922?0.)

 E2. ? = ? -> ? = ?
 E3. I, = ?2 A ?2 = 53 - li = 53.
 E4. Pi = qi A ... A />? = ?? A *i = ^i A ... A xn = yn ->

 ^ (Pl5 ...5/>?3 *13 ?3 **) = R (?15 -3 ??3.)>13 -3j>m)

 for every i? in a"**11 (rc+m > 0)
 E5. px = q1/\ ... A pn = qn A xx = y? A ... A xm == ym ~>

 ? (?13 ...3P?3 *13 -O *m) = g (?13 -O ??3j>l3 -ojO

 for every ? in 3n>m (n +m > 0)

 E6. pi=qiAp2 = q2-+ ((px = p2) = (?i = ?2))
 *i = yi A x2 = jy2 -> (fo = *2) = (y? = j/2))

 E7. pi=p2Aq1=q2-> [(px -> ?0 = (/>2 -> ?2)]
 E8. V^ (9 = +) -* (V?9 = V^)
 E9. (Special identity axiom)

 The unifier axioms are the generalizations of any formula of the following form:

 Ul. Up (9, <J0 = q <-+ Vp (9 <r+p == 4) a ("1 3/><p A^sj).

 U2. [7jc (9, [i) = y <-> Vx (9 <- x s 3;) v (~1 3*9 A [i = y)

 where in Ul, ^ is a formula (not containing free p), and in U2, fx is a term (not con?
 taining free x).

 U3. V? (9l ee 92) A a EE ? - (C7? (9l, a) ee C7? (?23 ?)) ,

 where the expressions a and ? stand for terms or formulas, depending on the type
 of the variable ?. The variable ? does not occur free in a or ?.

 The only rule of inference is modus ponens: from 9 and 9 -> 4s infer <j>. The opera?
 tion Cn is a function from the set of all sets of formulas into itself defined as follows:

 for any set B of formulas, 9 e Cn (B) iff2 there is a finite sequence ty13 ^2, ...,tyn of
 formulas such that <\>n is 9 and for each i, 1 < i < n, either ^ is a standard, identity
 or unifier axiom, or ^? is in B, or ^ follows from two earlier formulas by the rule of
 inference. A theory of kind W, as mentioned above, is a triple (L, Cn, 0>, where L
 is a language of kind W, Cn is the consequence relation just defined, and O is a set
 of sentences (i.e., formulas having no free variables) of L. Formulas in Cn (O) are
 theorems. If ty is in Cn ( 0 ), we call ty a logical theorem. ( 0 is the empty set.)

 This completes the syntactical description of theories of kind W. For the remainder
 of the paper, suppose that L is a fixed language of kind W. We will characterize the
 theory <L, Cn, 0>.

 ?iff" abbreviates ?if and only if".
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 46  S. L. Bloom  [4]

 Remarks. 1. It is easily seen that if <p (p) is a formula of which p is a part, then

 (*) VpVq(P = q^(9(p)^9(Plq)))
 is a logical theorem. However, from Corollary 3 it follows that

 VpVq(p^>q-+ (9 (/>) = 9 (/>/$)))
 is not a logical theorem; indeed, neither is

 VpVq(p<->q-+ (9 (/>) +-> 9 (pjq))) .
 Thus the identity connective is not a truth-functional one. On the other hand, the
 essential characteristic of identity is preserved: equals may be substituted for equals
 salva identitate, whereas materially equivalent formulas may not (in general) be so
 substitutable.

 It is interesting to note that the apparently weaker schema

 VpVq(p = q-+ (9 (p) <- 9 (pjq)))
 is Cft-equivalent to the schema (*).

 2. This Deduction theorem may be proved: for any set O of formulas of L, and
 any formulas 9 and ^ of L,

 ty e Cn (O u {9}) o 9 -> ^ e Cn (<D)

 3. INTERPRETATIONS

 We define an interpretation in two steps. First, those relational structures capable
 of being interpretations are defined. Then we specify which further properties such
 a structure must possess in order to be an interpretation.

 An admissible relational structure I for the language L consists of the following:
 11. A non-empty set A, whose elements are called (for lack of a better name)

 A-entities. We will use the letters a, b, c and t (sometimes with subscripts) for mem?
 bers of A.

 12. A non-empty set D, whose elements are called D-entities. We use the letters
 d, e and / (sometimes with subscripts) for members of D.

 13. A proper, non-empty subset T of A, whose elements are called the designated
 A-entities.

 14. Two functions, =x and -+? from Ax A into A.
 15. Two ^-entities, 0 and T; 0$ T and Je T.
 16. For each element R of 92',,w, a function R from AnxDm into A. (If n, m =

 = 09ReA.)
 17. For each element g of 7w,m, a function ~g from AnxDm into D. (If n,m =

 = 0,geD.)
 18. Two partial operations A^, A?. The domain A? of A^ is a subset of AA (the

 collection of functions from A into A) and the domain AD of AD is a subset of AD.
 The range of both operations is A. (A^ and AD must be large enough to insure that
 V6 in section 4 is well-defined.)

 19. Two partial operations U0 and Ux. The domain of U0 is the Cartesian product
 of AA and A, AA x A; the range of U0 is A. The domain of Ux is Ap x D; its range is D.
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 [5]  A completeness theorem  47

 We say that an admissible relational structure / = (A, D, T, ...> is an interpreta?
 tion of L iff / satisfies the properties PI?P10 below.

 PL a-^j-bt Tiff aeT and b?T.
 Remark 1. Property PI guarantees that the usual connectives receive their clas?

 sical interpretation. Using the fact that 0 $ T, we may define the unary operation "1
 and the binary operations V, A and <-> as follows:

 Definition:
 ~~I a = a ->/ 0

 avb=~~\a->ib
 a A b = "1 (a ->j "I b)
 a <- b = (a ->/ b) A (b ->7 a)

 It is easy to verify that these operations have the expected relation to T, namely:
 ~]aeT iff a$T;
 aw beT iff aeT or beT;
 a a be T iff ae T and beT;
 a^beT iff both a and b are in T

 or neither a nor ? is in T.

 P2. If a =jbe T, then a^beT (where <-? is the operation defined in Remark L).
 P3. Let ~ be the binary relation on A defined by

 a ~ b if a =7? e T.
 Then, we require that

 P3.1 ~ is an equivalence relation on A, and
 P3.2 if ax ~ b19 a2 ~ b2, then

 (ax =!a2) ~ (bj =7?2) and
 (ax ->j a2) ~ (?i -*j 62) .

 By 16 there is a function from D2 into A corresponding to the identity predicate =
 (in 920'2). We denote this function by =D.

 P4. Let ~ be the binary relation on D defined by d ~ e iff d =Dee T.
 Then

 P4.1 ~ is an equivalence relation on D, and
 P4.2. For each function R : AnxDm -> A, and for each function g : AnxDm -> D,

 and for any at, bt, dj, e5 (i = 1,..., n; j = 1,..., m) if a? ~ bt (i = 1,..., n) and dj ~ es
 (j = 1,..., m) then

 ? (ax,..., an, d15..., dm) ~ i? (?13..., bn, ex,..., ?M)
 and

 g (a?,..., a?, ?j,..., dm) ~ g (b19..., bn, e19..., *m) .
 We denote by Xr at that member of AA whose value at t is at.

 P5. Suppose for each t in A, at ~ bt, and that both \tat and \tbt are in ?aA.
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 48  S. L. Bloom  [6]

 Then
 P5.1. AA Ar at ~ AA Ar bt

 Furthermore, if c ~ c', then
 P5.2. U0(\tat,c) ~ U0?ktbt,c').
 P6. Suppose for each d in D, ad ~ bd, and both \dad and \dbd are in AD. Then
 P6.1. AD \dad ~ AD \dbd.

 Furthermore, if e ~ e', then
 P6.2. Ux(^dad,e) r U^dbd,e').
 P7. If Ar at e AA and Ad bd e AD then

 AA \tateT iff a, g T, every r in i4, and AD \dbde T iff bd e T, every d
 in D.

 P8. If Ar af g A?, then Ar ~| at e A? : if Ad bd e AD then Ad ~] bd e AD .

 Remark 2. P7 guarantees that the quantifiers receive their standard interpretation.
 Also using P7, P8 and Remark 1, we can define operations \J A and VD, having do?
 mains AA and AD respectively, by

 \JA\tat = "| AA Ar "la,

 yD'kdbd= -\ADld-]bd.
 Clearly, then

 \/A Ar at g T iff at g T, some r in A ,

 and \/D\dbdeTiffbdeT, some d in D .
 To shorten the statement of P9 and P10, we further assume the existence of two

 operations V A and V D with domains AA and AD respectively, having the properties
 that

 (i) V ^ Ar ate T iff at g T, some r, and if at> e T as well, then t ~ t'\
 (ii) VD7dbdE T iff bd e T, some d, and if bd>, e T as well, then d ~ d'.
 P9. Suppose that Ar ate AA. Then
 P9.1. [U0(Xta, b) =Ic\eT iff (a) or (b) hold, where

 (a) V A Ar at e T, and if at e T, then r ~ c .
 (b) \J A Ar at $ T, and b ~ c .

 P9.2. c70(Ar at,b)eT iff (c) or (d) hold, where

 (c) \J A Ar ate T and if at0 e T, then
 [U0(Xtat,b) =It0]eT.

 (d) yA \tat$T and [?/0(Ar a? ?) =7 b] e T.
 P9.1. was included only to simplify the statement of P9.2. The property P10 is

 analogous to P9.
 P10. Suppose that \dbdeAD. Then

 U^Xdb^e) =Dfe T iff (e) or (f) hold,
 where
 (e) \JD-kdbeT and if bd e T, then d ~ /.
 (f) <JD\db$T and e ~ f.
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 [7]  A completeness theorem  49

 It follows from P10, that if VD \dbde T and bdo e T then UtQdbd9e) ~ d0;
 and if \JD\dbd$T then UxQdbd9e) ~ e .

 4. VALUATIONS

 A valuation of the interpretation / = {A, D, T,...} is a function 2 from the set
 of variables of L into the union of A and D such that the image of a sentential variable
 is in A, and the image of a nominal variables is in D. If S is a valuation o?l, te A u
 u D, then 2f is the valuation which differs from 2 at most at the variable ?, and whose
 value at ? is r. (Of course, if \ is a sentential (or nominal) variable, then r g A (or D).)

 Every valuation can be uniquely extended to a function from the set of formulas
 and terms of L into the set A u D, such that the image of a formula (resp. term) is
 n A (resp. D). The extension of the valuation 2 will be denoted by 2. The definition
 of this extension is given inductively.

 VI. On the set of variables, 2 agrees with 2.

 V2. If R e Rn>m and 2 is defined on the formulas <p? (1 < i < ?) and the terms
 [Xj (1 </ < m) then

 S [i? (9x,..., 9?, fix,..., fim)] = R (29!,..., S<pB5 S(x13..., 2fim)

 where 2? is the interpretation of 7? in J. If n = m = 0, Si? = i?. 20, 27 are the ^-enti?
 ties 0, 1 resp.

 V3. lfgeFn>m,
 S [? (9i3 -o ??3 fA15 -o (?m)] = g (29i,..., 29?, 2^,..., 2(im)

 where ? is the interpretation of g in /. If w = m = 0, 2^ = g .
 V4. 2 [9 -><];] - 29 ->, 2^
 V5. (a) 2 [9 = ^] = S? = ,2^

 (b) 2 [(i. = v] = Sjx =0^
 V6. (a) S[V/>9] = AAAr2f9, te A.

 (b) 2[Vx9]-ADAd2^9, ?eD.
 V7. (a) 2 [Ufa, +)] - c/0(Ar 2[_9, ?j,)

 (b) 2 [Ux (9311)] = t/i(Xi 2* 9, 2^.
 This completes the definition of the extension 2.

 2 is said to satisfy a formula 9 (in the interpretation /) iff 29 e T. A formula 9
 is true (in /) iff every valuation of I satisfies 9. 9 is valid iff 9 is true in every interpreta?
 tion of L. If O is a set of formulas, each of which is true in the interpretation /, / is
 called a model of O.

 5. THE COMPLETENESS THEOREM

 The following theorem may be proved by straightforward verification.

 Validity theorem. If 9 is a logical theorem then 9 is valid.
 We will prove the converse of this theorem by modyfying Henkin's well-known

 proof of GodePs completeness theorem.

 4 Studia L?gica t. XXVII
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 50  S. L. Bloom  [8]

 Completeness theorem. Every valid formula is a logical theorem.
 As usual, the proof of the Completeness Theorem follows easily once the next

 lemma has been proved.

 Lemma. If<&isa consistent set of sentences (of the language L of kind W), O has a model.
 Indeed, suppose the lemma has been proved, and let 9 be a valid formula of L.

 If 9 is a closure of 9, 9 is valid also, as may be seen from an easy induction argument.
 Suppose that 9 is not a logical theorem. It follows from the Deduction theorem (Re?

 mark 2, section 2) that the set {~1 9} is consistent, and, by the Lemma, has a model I.
 Since 9 is valid, 9 is also true in I, which is impossible. Thus 9 is a logical theorem,
 and, by several uses of axiom A2, so is 9, q.e.d.

 It remains to prove the Lemma. Let L* be the language obtained from L by adding
 a countable number of new symbols

 yl) &!, k2, k3, ...

 to the set 7?'? (of nominal constants), and also adding the new symbols

 (2) r15 r2, r3, ...
 to the set 92?'? (of sentential constants). L* is also a language of kind W, and we sup?
 pose the logical axioms of L are extended to L*. Suppose that
 (3) 9l3 923 933 ..
 is some listing of all of the sentences of L*. (This is the only place that the countability
 of the language L is used.) We define subsequences of (1) and (2) as follows: let kt
 (resp. rt ) be the first symbol of the list (1) (resp. (2)) which does not occur in the
 sentence &-,. Assume tha? k, and r, are defined. Let kt (resp. rt ) be the first ' x ln ln ln+l K r ln+l/
 symbol of the list (1) (resp. (2)) which does not occur in any of the sentences 9!, 92,
 ..., (pn+1 such that in+1 > in.
 We now define an increasing sequence of sets of sentences A0 ? Ax ? A2 ? ... .

 Let A0 = O and define An+1 by:

 If 9? is Vx ty, An+1 is

 A? u {+ (xlkin) -> Vjc $} .
 If 9? is Vp ty, An+1 is

 A u {KpK) - VM} .
 Otherwise, An+1 = An

 Let A3" = (J An. The usual argument shows that A* is consistent and may be ex
 n

 tended to a maximal consistent set M of sentences of L* (i.e., if 9 is a sentence not
 in M, then M u {9} is inconsistent). M will have the following properties:
 M.1 Cn(M) = M
 M.2 If 9 and 9 -> ^ are in M, so is ^ .
 M.3 9 -> ^ ^ A? iff 9 g M and ^ <? M .
 M.4 A sentence of the form Vjc ty is in Miffty (#/[a) is in M for every constant term \ix

 of L*; a sentence of the form V/> ^ is in Miff' ^ (/>/6) is in M for every sentence 0 of L*.

 3 A constant term is a term having no free variables.
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 [9]  A completeness theorem  51

 We will prove only half of the second statement in M.4. Suppose that ^ (p/0) is
 in M, for every sentence 0 of L*. In particular then, ty (/>/rf) is in M, all i. There is
 an n such that Vp ^ is the sentence <p?. Then the sentence ^ (/>/r? ) -> Vp ty is in M,
 since it is in A*. It follows from M.2 that Vp ty is in M, q.e.d.

 We use the set M and the language L* to construct an interpretation /* in which O
 is true.

 Define /* = (A,D, T, ...> by:
 1*1. A is the collection of all sentences of L*.
 1*2. D is the collection of all constant terms of L*.

 1*3. The set T of designated ^4-entities is the maximal consistent set M. (For
 the remainder of this section, we use the letter ccAi" instead of C(T" to denote the de?
 signated ^-entities.)

 1*4. The functions ->x and =7 are defined as follows: for 9, ip in A:
 9 ->i ty = (the sentence) (9 -> ij/)

 <p =j ^ = (the sentence) (9 = <{/).

 1*5. The element jO is the sentence 0; the element 1 is the sentence 1. (0,1 are
 in 92?'?). 0<?M, since M is consistent, and 1 e M, since M is maximal consistent.

 1*6. If R e c7in>m, R is the function from AnxDm -> A whose value at 9^ ..., 9?,
 [x15..., [Jtm is the sentence i? (9l3..., 9?, [l19 \i2, ..., [im). If n = m = 0, i? is i?. The
 function =d is the function whose value at the constant terms fx, v is the sentence
 (JI = v).

 1*7. If ? g 7nm, g is the function from AnxDm -> D whose value at cp13 <p2,..., 9?,
 ^13 ..?3 H-m is the constant term g (91,..., 9?, [j^,..., (/.?,). If n = m = 0, gis the term ?.

 1*8. The domain AA of the operation AA is the collection of all functions of the
 form
 (a) A09(/>/0)

 where 9 is some formula having p as its only free variable. The domain AD of the
 operation AD is the collection of all functions of the form

 (b) A [x 9 (xI[l)
 where 9 is some formula having (the nominal variable) x as its only free variable.

 The value of the operation AA at the function (a) is the sentence V/> 9; the value
 of the operation A^ at the function (b) is the sentence Vjc 9.

 1*9. ?70 is the function whose value at the pair (/, i?) is the sentence Up (9, <\>)
 where / is the function (a); U? is the function whose value at the pair (h, \j) is the
 term Ux (9, ja) where h is the function (b).

 This concludes the definition of I*. It should now be shown that I* satisfies all of the

 properties PL?P. 10 of an interpretation. Because this is a routine matter, we will
 only indicate the proof that P2 and P5 hold.

 In order to show that I* satisfies P2, we must show that, for every pair of sentences
 9, ty of Z,*, if 9 = ^ g M, then 9 -> ^ and ^ -> 9 are in M. But, by M.l, every in?
 stance of the special equality axiom (E9)

 VpVq(p = q-^(p^q))
 4*
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 52 S. L. Bloom [10]

 is in M. Thus by M.2, if 9 = ^ g M, 9 <-> ^ g M. The proof is completed by Remark 1
 of Section 3.

 As for P5, suppose that the functions fx = Ar at and f2 = Ar ?r are in Ax. Then
 ft(i = 1, 2) must have the form

 for some ^?. (It is no loss of generality to suppose that the variable p is the same for
 both functions). Assume that for each sentence 0,

 +i(p/6) = Wp/e)6Ai.
 It must be shown that \fp <h = V/> ^2 g M.

 For some ?, the sentence V/> (+1 = ^2) is 9? in the list (3). Thus

 is also in Af. But, by hypothesis,

 is in Ai. Hence, by M.2, axiom E8, and M.l \/p ^ = V/> ^2 is in M, q.e.d.
 It must also be shown that

 (c) Up(^,o) = Up(l?2,$)
 is in M, where a and ? are any sentences such that a = ? e M. But it follows from
 the above argument that V/> OK = ^2) is in M. Thus, by M.l, M.2, and the (invariance)
 axiom U3, (c) must also be in M.

 We now outline a proof that I* is a model for <D. Let 2 be any valuation of 7*.
 For any expression (i.e. term or formula) a of L*, let a* be the result of replacing
 every variable \ free in a by 2 (?). We will be finished once we have shown that

 (*) 2 (a) - a*.
 Indeed, suppose (*) has been proved. If 9 is a sentence, 9* = 9. Thus 2 satisfies 9
 in 7* iff 9 g M. Thus every sentence in M (and hence in O) is true in J*.

 The proof of (*) is by induction on the structure of a. It is clearly true when a
 is a variable or either kind. We will present only the interesting induction steps.

 Suppose that a is of the form V/> 9. By V7,

 2(a)-A^A02^9. _
 Under the induction assumption, the function A0 2^ 9 has the form
 (d) A09'(/>/0)

 where 9' is the result of replacing every variable \ free in 9 other than p by 2 (?) (=
 = 2* (?)). But by definition 1*8,

 AA A0 2^9 = V/><p' = a*.
 If a has the form Up (9, +), then, by definition 2 (a) = c7o[A0 2*; 9, 2<J/|. But by

 the induction assumption, 2^ = ip*. Thus, (with the above notation) by (d) and de?
 finition 1*9,

 S(?)=l7/>(?',?W
 But this is a*.
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 [11]  A completeness theorem  53

 The cases we have omitted are either trivial or are handled in a manner analogous
 to those presented. This concludes the proof of the Completeness theorem.

 6. COROLLARIES

 In this section, we list without proof a number of results which follow rather
 easily from the Completeness theorem. We suppose that L is a fixed language of
 kind W.

 Corollary 1. Let O be a set of sentences and 9 some sentence of L. If 9 ? Cn (O)
 then there is some model I of O in which 9 is false (i.e. ~] 9 is true).

 Let I = (A, D, T, ...> be an interpretation of L. I is called a normal interpretation
 if (i) the equivalence relation ~ on A (given by property P3) is the identity relation
 on A, and (ii) the equivalence relation ~ on D (given by property P4) is the identity
 relation on D.

 Corollary 2. If I is an interpretation of L, I may be 'contracted' (in the usual way)
 to a normal interpretation I0 such that, for any sentence 9 of L, 9 is true in liffy is true
 in I0.

 The following sentence is called the Fregean Axiom. Its significance is discussed
 in Suszko's papers.

 (F) vpvq((p?q)-+(p^q))
 Corollary 3. Neither the sentence (F) nor its negation are logical theorems, since

 each is consistent with the axioms of L.

 An interpretation I is called a Fregean interpretation if the sentence (F) is true in
 I. lis a strictly Fregean interpretation if A, (the set of ^-entities of I), is the two elements

 set {?, ?}.
 Corollary 4. Let I be a Fregean interpretation, and I0 its contraction to a norma I

 interpretation. Then I0 is a strictly Fregean interpretation. Indeed, (F) is true in a normal
 interpretation I' iff V is strictly Fregean.

 Corollary 4 clarifies the connection between theories of kind W and standard first
 order theories with only nominal variables. In the latter, the Fregean axiom is tacitly
 assumed, and, by Corollary 4, there is thus no need to consider quantification over
 sentential variables.

 Remark 1. In our definition of languages of kind W, we took only -> (and the
 constants 0 and 1) as the primitive truth functional connective. At the expense of
 including a number of additional axioms, it is clearly possible to include all of the
 standard connectives

 (#) n, v, a, ->, ?->

 as primitive. Suppose we had taken this approach (as, indeed, Suszko did). The follow?
 ing question would then arise: is it possible to give an equational definition of a truth
 functional connective ? That is, is there a sentence of the form

 (D) V/> V? (p & q = 9)

This content downloaded from 207.162.240.147 on Fri, 26 Aug 2016 20:48:09 UTC
All use subject to http://about.jstor.org/terms



 54  S. L. Bloom  [12]

 (where & is one of the binary connectives ( # ) and 9 is a formula not containing &)
 which is a logical theorem ? Call any sentence of the form (D) a possible equational defini?
 tion of &. But given any possible equational definition a of & it is possible to construct
 an interpretation in which a is false. Thus, no possible equational definition (of &) is
 a logical theorem. This fact had been noticed previously by Cresswell in [2].

 Let L0 be the language obtained from L by deleting the unifier symbol U, and
 let Cn0 be the consequence operation on L0 obtained from Cn by omitting the unifier
 axioms Ul, U2, U3. Let O be a set of formulas of L0.

 Corollary 5. Let 9 be a formula of L0. If 9 e Cn (O), then 9 e Cw0(O).
 Corollary 5 says that if 9 can be proved from O using the unifier axioms, it can

 also be proved without them.

 Corollary 6. Suppose that O does not contain any equation (i.e. a formula of the
 form 9 = ty or \i = v). Then any equation in Oi0(O) is trivial (i.e. of the form 9=9
 or [i = \l).

 Remark. The consequence operation defined here differs slightly from that in [10].
 Suszko uses a formulation of quantification theory which involves the rules for intro?
 duction and elimination of quantifiers, rules of substitution for free variables and the
 rule for rewriting bound variables. (Compare [3], [7].) If C/2* is Suszko's consequence
 operation, then Oz*(0) = Cn (O) for every set of sentences O (!) and thus the present
 completeness theorem and all of the above corollaries may be easily applied to theories
 <L, Cn*, 0> where O is an arbitrary set of formulas. Let L*0 be the language obtained
 from L by deleting the operators binding variables (unifier and quantifier) and let
 Cn* be the consequence operation obtained from Cn* by omitting the logical axioms
 and rules for the unifier and quantifiers. Lastly, let O be a set of formulas of L*0.

 Corollary 7. If 9 is a formula of L*0 and 9 e Cw*(0), then 9 e Cwo(O).
 Corollary 7 is a theorem on the elimination of bound variables from derivations

 of formulas of L* from formulas of L*0. It is sometimes called the "first s-theorem"
 (see [4] and [6]).
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 S. L. Bloom

 TWIERDZENIE O PELNO?CI DLA ?TEORII RODZAJU W"

 (Streszczenie)

 Artykul ten przedstawia twierdzenie o pelnosci dla ?teorii rodzaju W" wprowa
 dzonych przez R. Suszk? w [8], [9], [10] w celu sformalizowania cz?sci Traktatu
 L. Wittgensteina. Stanowi on zamkni?t^ w sobie cal?se, jednakze czytelnik powinien
 zajrzec do prac Suszki po pewne szczeg?ly niekt?rych teorii rodzaju W oraz po ocen?
 ich donioslosci filozoficznej. Z czysto formalnego punktu widzenia, jedyn^ istotn^
 cechq teorii rodzaju W jest sp?jnik identycznosci oraz charakteryzuj^ce go aksjomaty
 logiczne.

 C. J?. Bjiiom

 TEOPEMA O nOJlHOTE RJIK ?TEOPH?? BHflA W"

 (Pe3K>Me)

 CraTbfl co^epacHT TeopeMy o nojiHOTe juin ?TeopHH BH#a W" BBe,neHHbix P. CyiincoH
 b [8], [9] h [10] c ixejiLK) <J)opMajiH3aiiHH nacra TpaKmama JI. BHTreHnrreHHa. OHa ora
 hobht 3aMKHyToe uejioe, o^Haico HHTaTejib #0JDKeH o?paraTbca k pa?oTaM CyniKH 3a
 HeKOTOpbIMH nOApO?HOCTHMH TeopHH BH^a W a TaK?ce 3a OIjeHKOH HX (})HJIOCO(J)CKOrO
 3HaHeHH?. C HHCTO 4>OpMaJIbHOH TOHKH 3peHH5I e^HHCTBeHHO cymecTBeHHOH HepTOH
 TeopHH BH^a W 3TO CBH3Ka Toac?ecrBa a Taoce e? nornnecKHe aKCHOMbi.
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