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STUDIA LOGICA
Tom XXVII — 1971

SterueNn L. Broom

A COMPLETENESS THEOREM FOR “THEORIES OF KIND W~

This paper presents a completeness theorem for “theories of kind W”, introduced
by R. Suszko in [8], [9], [10] in order to formalize part of the Tractarus of L. Wittgen-
stein. The paper is self-contained, although the reader should consult Suszko’s papers
for some details of certain theories of kind W and an appreciation of their philosoph-
ical significance. From the purely formal point of view, the only essential feature
of theories of kind W is the identity connective and its logical axioms.

1. LANGUAGES OF KIND W

A theory of kind W is a triple (L, Cn, ®) where L is a language of kind W, ® is
a set of sentences of L, and Cr is the consequence operation specified below. We
first describe L.

L contains two types of variables, sentential variables, and nominal variables. The
letters p and ¢ will be used to denote sentential variables, and the letters x and y will
be used for nominal variables. The letters £ and C will be used ambiguously as either
sentential or nominal variables. The distinction between a free and bound occurrence
of a variable is presumed known. For each pair (n,m) of non-negative integers, L
contains a set ‘®™™ of relation symbols of type (n, m) and a set 7™™ of function sym-
bols of type (n, m). We assume that all sets ™™, 7%/ are pairwise disjoint (some may
be empty) and, for convenience, we suppose that each set ™", 7™ is at most denumer-
able. We take the logical connective — (implication) and the universal quantifier V
as primitive, and assume that the sentential constants 0 and 1 are members of <R%°
(1 is a truth-functional tautology, 0 is not). The connectives ~1, V, A, <, 3, 3 are
introduced as the usual abbreviations (7 « is (x — 0), etc.; 3 means “there is exactly
one”.

In addition to the above connectives, L contains a binary identity connective, written
=, in ‘N¥>°, and an identity predicate (also denoted by =) in %%2. Lastly, L contains
a symbol U for the Bernays wunifier operation ([1] and [5]).

The terms and formulas are defined simultaneously such that

(i) every sentential variable is a formula;

(ii) every nominal variable is a term;

! It is a pleasure to acknowledge the encouragement and stimulation provided by conversations
with Professor Suszko during the preparation of this report. He suggested several revisions of an earlier
draft.
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44 S. L. Bloom [2]

(iii) if @y, gy ... @, are formulas, and py, pgy ..., 4y are terms, then, for each R
in C)gen,m’

R (q’l’ evey Py Hay ooy P‘m)

is a formula, and for each g in %™

g (CPD ceey Py M1 eees P‘m)

is a term. Each member of ‘®%° is a formula and each member of 7%° is a term.
(iv) If ¢ is a formula, and « is an expression not containing the variable £ free,
then

_ UE (9 «)
is
(iv.1) a formula, #f £ is a sentential variable and « is a formula;
(iv.2) a term, #f £ is a nominal variable and o is a term. £ is bound in UE (¢, «).
(v) If ¢ and ¢ are formulas, so are V&9 and (¢ — ¢).
(It follows from (iii) that (¢ = ¢) is a formula.)
Languages of kind W differ from the usual two sorted languages in that one type
of variable (the sentential variable) is also a formula.

2. AXIOMS

In this section we describe the logical axioms for theories of kind W, and define
the consequence operation Cn.

A generalization of a formula ¢ is the result of prefixing zero or more universal
quantifiers to ¢ :ie. V& V&, ... VE, ¢ is a generalization of ¢, where #» >0 and &,
(1 < i < n) is either a sentential or nominal variable. If « and 8 are expressions, £ (§/)
is the expression obtained from B by replacing every free occurrence of £ in § by «,
so long as no variable, free in «, becomes bound. Otherwise, B (§/«) is £. We will use
the letters ¢, ¢ and 6 (sometimes with subscripts) for formulas, and the letters y and v
(sometimes with subscripts) for terms. The axioms will be presented in three groups:
the standard axioms, the identity axioms, and the unifier axioms.

The standard axioms are those formulas which are generalizations of any formula
of the following kinds:

Al. A truth-functional tautology (based on —, 0, I);
A2. Vxo — o (x/w) @ — any term;
Voo — o (p/0) 6 — any formula;

A3. VE(p >¢) = (VEp - VEY).
A4. ¢ — VEp if £ is not free in ¢ .

The identity axioms are those formulas which are generalizations of any formula
of the following kinds:

El. X=2x; p=p;s
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[3] A completeness theorem 45

(Recall that the symbol = is being used ambigously; in the formula x = x, = is
in ‘%2 in p = p, the connective = is in W>°.)
E2. E=0->{=¢
E3. L=t NG =8>8 =§&.
E4. PIEGA APhEG- N XL =EYA e AXy =Y, —
R (p:l, e pn: x13 e xn) = R (ql) cee) qn’yl’ "°,ym)
for every R in ‘R™™ (n-+m > 0)
E5. PIEQAN e APa =G AXy =Y A vee A Xy = Vi —>
& (D15 wes Pus %15 +vvs Xm) = & (15 o5 Gus V1> ves Ym)
for every g in 7% (n+m > 0)

E6. =@ AP =g~ (P1 =P2) = (¢1 = ¢0)
X1 =Y A Xy =y > (301 = %) = (31 = 93)
E7. Pr=EPs NG =g~ (P~ q) = (P2 > ¢0)]
E8. Vi(p =) > (VEp = V&)
E9. (Special identity axiom)
p=9)~>(peq
The unifier axioms are the generalizations of any formula of the following form:

UL  Up(pd)=qgoVpleop=qg A (s rd=g).
U2 Ux(pp)=yoVrilpox=y) v (Tdmpip=y)

where in Ul, ¢ is a formula (not containing free p), and in U2, w is a term (not con-
taining free x).

U3. VE(p1 = @) Ao =B~ (UE (91, @) = UE (95, 8)) »

where the expressions « and 8 stand for terms or formulas, depending on the type
of the variable &. The variable £ does not occur free in « or B.

The only rule of inference is modus ponens: from ¢ and ¢ — ¢, infer ¢. The opera-
tion Cn is a function from the set of all sets of formulas into itself defined as follows:
for any set B of formulas, ¢ € Cn (B) iff? there is a finite sequence ¢y, Yy, ..., ¢, of
formulas such that ¢, is ¢ and for each 4, 1 < i < , either {, is a standard, identity
or unifier axiom, or ¢, is in B, or ¢, follows from two earlier formulas by the rule of
inference. A theory of kind W, as mentioned above, is a triple (L, Cn, ®>, where L
is a language of kind W, Cn is the consequence relation just defined, and @ is a set
of sentences (i.e., formulas having no free variables) of L. Formulas in Cn (®) are
theorems. If ¢ is in Cn (2 ), we call { a logical theorem. (& is the empty set.)

This completes the syntactical description of theories of kind W. For the remainder
of the paper, suppose that L is a fixed language of kind W. We will characterize the
theory (L, Cn, o).

 ,iff” abbreviates ,,if and only if”,
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46 S. L. Bloom [4]

REMARKS. 1. It is easily seen that if ¢ (p) is a formula of which p is a part, then

™ VoV (p =q—(2(p) =9())
is a logical theorem. However, from Corollary 3 it follows that

VoV (poq—(e(p) =9 (P9)))
is not a logical theorem; indeed, neither is

VpVq(pog—(2(p) <2 (2/9))-
Thus the identity connective is not a truth-functional one. On the other hand, the
essential characteristic of identity is preserved: equals may be substituted for equals
salva identitate, whereas materially equivalent formulas may not (in general) be so
substitutable.
It is interesting to note that the apparently weaker schema

VpVq(p =g (2(p)<2(2/9))
is Cn-equivalent to the schema (*).

2. This Deduction theorem may be proved: for any set ® of formulas of L, and
any formulas ¢ and ¢ of L,

Yeln(® Viph) <o >yeclCn(®)

3. INTERPRETATIONS

We define an interpretation in two steps. First, those relational structures capable
of being interpretations are defined. Then we specify which further properties such
a structure must possess in order to be an interpretation.

An admissible relational structure I for the language L consists of the following:

I1. A non-empty set A, whose elements are called (for lack of a better name)
A-entities. We will use the letters a, b, ¢ and ¢ (sometimes with subscripts) for mem-
bers of A.

I2. A non-empty set D, whose elements are called D-entities. We use the letters
d, e and f (sometimes with subscripts) for members of D.

I3. A proper, non-empty subset T of A, whose elements are called the designated
A-entities.

14. Two functions, =; and —; from AX A into 4.

I5. Two A-entities, 0 and I; 0¢ T and 1€ T.

16. For each element R of ®™™, a function R from A"xD™ into A. (If n,m =
=0,ReA)

I7. For each element g of 7™™, a function g from A"xD™ into D. (If n,m =
=0,geD.)

I8. Two partial operations A4, Ap. The domain A, of A, is a subset of A4 (the
collection of functions from A into A4) and the domain A, of A, is a subset of AP.
The range of both operations is 4. (A, and A, must be large enough to insure that
V6 in section 4 is well-defined.)

19. Two partial operations U, and U,. The domain of U, is the Cartesian product
of A, and A,A,x A;the range of U,is A. The domain of U, is ApX Djits rangeis D.
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[5] A completeness theorem 47

We say that an admissible relational structure I = {4, D, T, ...) is an interpreta-
tion of L iff I satisfies the properties P1—P10 below.

Pl.a—>;b¢TiffacT and b¢ T.
REMARK 1. Property Pl guarantees that the usual connectives receive their clas-

sical interpretation. Using the fact that 0 ¢ T, we may define the unary operation 7]
and the binary operations Vv, A and < as follows:
DEFINITION:
la=a—; 7]
avb="Tla—>;b
aNb="1(a—>;71b)
aeob=(a—>;b)Ab—>a)

It is easy to verify that these operations have the expected relation to T, namely:

TlaeT iff a¢ T

avbeT iffaeT or beT;
anbeT iff aeT and b€ T;
a—beT iff both @ and b are in T

or neither @ nor b is in T .
P2. Ifa =; b€ T, then a < b € T (where « is the operation defined in Remark 1.).
P3. Let ~ be the binary relation on A defined by
a~bifa=,beT.
Then, we require that
P3.1 ~ is an equivalence relation on A, and
P3.2 if a; ~ by, a, ~ b,, then
(ay =1a,) ~ (by =1 b,) and
(a1 —>rag) ~ (by —1by).
By I6 there is a function from D? into A4 corresponding to the identity predicate =
(in °R%?). We denote this function by =,.

P4. Let ~ be the binary relation on D defined by d ~ e iff d =,eeT.
Then

P4.1 ~ is an equivalence relation on D, and

P4.2. For each function R : A"x D™ — A, and for each function g : A"x D" — D,
and for any a;, b;,dj,¢; G=1,..,n5 7= 1,...,m)ifa, ~ b; G = 1,..,n) and d; ~ ¢;
(j=1,...,m) then

k (al, ceey d,,, dl’ “eey dm) ~ E (b13 “eey bn, el, “eey em)
and

& (15 vos Ans dis ovvy d) ~ & (b1 s by €155 €)

We denote by Az a, that member of A4 whose value at t is a,.

P5. Suppose for each ¢ in A4, a, ~ b,, and that both Az a, and At b, are in A,.
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48 S. L. Bloom [6]

Then
P5.1. Ayxa, ~ A b,
Furthermore, if ¢ ~ ¢/, then
P5.2. Uit a,,c) ~ Uy b, ).
P6. Suppose for each d in D, a; ~ b,, and both A\ a, and Ad b, are in A,. Then
P6.1. Aprda, ~ Apadb,.

Furthermore, if ¢ ~ ¢, then
P6.2. U;(Ad asye) ~ Uy(Ad by, ¢€') .
P7. If Ma, €A, and Adb,e Ap then
Asna,eT iff a, €T, every ¢t in A, and Ay Md b, e T iff b,e T, every d
in D.

P8. If ata, €Ay, then At Ta,€A,: if Adb,cAp then 2ad T1b,€Ap.

REMARK 2. P7 guarantees that the quantifiers receive their standard interpretation.
Also using P7, P8 and Remark 1, we can define operations \/ 4 and V p, having do-
mains A, and A, respectively, by

Varta, = 1A N Ta,
VprMb;=T1A,Ad 10b,.
Clearly, then
VaMaeTiff a,eT, some ¢t in A4,
and Vprdb,eT iff bye T, some din D.
To shorten the statement of P9 and P10, we further assume the existence of two

operations \/, and V), with domains A, and A, respectively, having the properties
that

i) Vaira €Tiff a,eT, some t, and if a, € T as well, then z ~ ¢;
(i) Vprdb,eTiff bye T, some d, and if b,,€ T as well, then d ~ d'.
P9. Suppose that Az a, €A, . Then
P9.1. [Uy(rta, b) =, c] € T iff (a) or (b) hold, where
(a) VirntaeT, and if a,€ T, then ¢ ~ ¢c.
(b) Vaira ¢T,and b~ c.
P9.2. Uy(rt a,, b) e T iff (c) or (d) hold, where
(©) Vara,eT and if a,€ T, then
[Urta,, b) =,t)eT.
) Vera, ¢ T and [U(M a,,b) =;b]eT.

P9.1. was included only to simplify the statement of P9.2. The property P10 is
analogous to P9.

P10. Suppose that Ad b,€ Ap. Then
U,(Md b, e) =pfe T iff (e) or (f) hold,

where
(e) VpMbeT and if b,e T, then d ~ f.
)] VprMb¢Tand e ~ f.
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7 A completeness theorem 49

It follows from P10, that if V,2db,e T and b, € T then U,(Ad by, ¢€) ~ do;
and if Vprdbs¢ T then Uy(\d b,,e) ~ €.

4. VALUATIONS

A valuation of the interpretation [ = <4, D, T, ...) is a function X from the set
of variables of L into the union of 4 and D such that the image of a sentential variable
is in A, and the image of a nominal variables is in D. If X is a valuation of I, t€ 4 U
U D, then X is the valuation which differs from X at most at the variable &, and whose
value at & is z. (Of course, if £ is a sentential (or nominal) variable, then z € 4 (or D).)

Every valuation can be uniquely extended to a function from the set of formulas
and terms of L into the set 4 U D, such that the image of a formula (resp. term) is
n A (resp. D). The extension of the valuation X will be denoted by Z. The definition
of this extension is given inductively.

V1. On the set of variables, = agrees with .

V2. If Re R»™ and X is defined on the formulas o, (1 <7 < n) and the terms
w; (I <j < 'm) then '

2[R ((PD e0e3 Pns L1y ooy ['Lm)] =R (ECPD veey ZPpy Bifhyy ceny Siky)
where R is the interpretation of Rin I. If n = m = 0, ZR = R. X0, X1 are the 4-enti-
ties 0, 1 resp.

V3. If g € Fnm,

b [g (<P13 cees Pns 1y eees ll'm)] = E (z(Pb ooy ECPM Z(J'D cees ZV-m)

where g is the interpretation of gin I. f n=m =0, Zg = 7.
V4. Yo —d]=Z¢ >, ZY
V5. @ Zle=¢l—-Sp=%Y

(b) Sp=v]=2p =,2v
V6. (a) S[Vpol =A,nZFo, ted.

(b) Z[Vxol=A, M2, deD.
vi. (@  Z[Up(e, Y] = Ug(nr XF ¢, X))

®)  Z[Ux(e,w] = UM Z5 ¢, S) -
This completes the definition of the extension X.

X is said to satisfy a formula ¢ (in the interpretation I) iff X¢ € T. A formula ¢
is true (in I) iff every valuation of I satisfies ¢. ¢ is valid iff ¢ is true in every interpreta-

tion of L. If @ is a set of formulas, each of which is true in the interpretation 7, I is
called a model of ®.

5. THE COMPLETENESS THEOREM

The following theorem may be proved by straightforward verification.

VALIDITY THEOREM. If ¢ is a logical theorem then ¢ is valid.
We will prove the converse of this theorem by modyfying Henkin’s well-known
proof of Godel’s completeness theorem.

4 Studia Logica t. XXVII
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50 S. L. Bloom [8]

COMPLETENESS THEOREM. Every valid formula is a logical theorem.
As usual, the proof of the Completeness Theorem follows easily once the next
lemma has been proved.

LeEMMA. If O is a consistent set of sentences (of the language L of kind W ), ® has a model.

Indeed, suppose the lemma has been proved, and let ¢ be a valid formula of L.
If ¢ is a closure of o, ¢ is valid also, as may be seen from an easy induction argument.
Suppose that ¢ is not a logical theorem. It follows from the Deduction theorem (Re-
mark 2, section 2) that the set {71 ¢} is consistent, and, by the Lemma, has a model I.
Since ¢ is valid, ¢ is also true in I, which is impossible. Thus ¢ is a logical theorem,
and, by several uses of axiom A2, so is ¢, g.e.d.

It remains to prove the Lemma. Let L* be the language obtained from L by adding
a countable number of new symbols
(D kis Roy Rg, ...
to the set 7%° (of nominal constants), and also adding the new symbols
(2) T1s Tos Vg oee

to the set % (of sentential constants). L* is also a language of kind W, and we sup-
pose the logical axioms of L are extended to L*. Suppose that

(3) @15 Pa> P> e

is some listing of all of the sentences of L*. (This is the only place that the countability
of the language L is used.) We define subsequences of (1) and (2) as follows: let &,
(resp. ;) be the first symbol of the list (1) (resp. (2)) which does not occur in the
sentence ;. Assume that k; and r; are defined. Let &,  (resp. ,,) be the first
symbol of the list (1) (resp. (2)) which does not occur in any of the sentences P15 Pas
. @n+1 such that 7,4, > 2,
We now define an increasing sequence of sets of sentences A, < 4, < 4, =

Let Ay = @ and define 4,4+, by:

If ¢, is Vx ¢, 4,4, 18
Ay VY (xfk) >V d}.
If ¢, is Vp i, A+, is
A, VA{Y (pfry) > Vp ).
Otherwise, A,+; = A,
Let A* = | A,. The usual argument shows that 4* is consistent and may be ex-

tended to a maximal consistent set M of sentences of L* (i.e., if ¢ is a sentence not
in M, then M U {¢} is inconsistent). M will have the following properties:

Ml1Cn(M)=M

M2 If o and ¢ - are in M, so is ¢ .

M3 o—>deéeMiff oeM and ¢ M.

M.4 A sentence of the form ¥ x ¢ is in M iff  (x/w) is in M for every constant term p.*
of L*; a sentence of the form Np § is in M iff { (p[0) is in M for every sentence & of L*.

3 A constant term is a term having no free variables.
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9] A completeness theorem 51

We will prove only half of the second statement in M.4. Suppose that { (p/0) is
in M, for every sentence 6 of L*. In particular then, ¢ (p/r;) is in M, all 7. There is
an n such that Vp ¢ is the sentence ¢,. Then the sentence ¢ (p/r; ) - Vp ¢ is in M,
since it is in A*. It follows from M.2 that Vp ¢ is in M, q.e.d.

We use the set M and the language L* to construct an interpretation [ * in which @
is true.

Define I* = (A4, D, T, ... by:

I*1. 4 is the collection of all sentences of L*.

I*2. D is the collection of all constant terms of L*.

I*3. The set T of designated A-entities is the maximal consistent set M. (For
the remainder of this section, we use the letter “M?> instead of “7T> to denote the de-
signated A-entities.)

I*4. The functions —; and =, are defined as follows: for o, ¢ in A:

@ —; ¢ = (the sentence) (¢ — ¢)

¢ =;{ = (the sentence) (¢ = {).

I*5. The element 0 is the sentence 0; the element 1 is the sentence I. (0,1 are
in R, 0¢ M, since M is consistent, and 1€ M, since M is maximal consistent.

I*6. If Re R*™, R is the function from A"x D™ — A whose value at P15 eees Py
1> o> b 1S the sentence R (Piy ...y Pps thys oy eoes Um). If 2 =m =0, R is R. The
function =, is the function whose value at the constant terms u, v is the sentence
(w = ).

I*7. If g € 7™, g is the function from A"X D™ — D whose value at ©;, @y, ..., @y
{15 -5 Wm 1S the constant term g (Pus .5 Pus 1 ooy W) If #=m = 0, g is the term g.

I*8. The domain A, of the operation A, is the collection of all functions of the
form
(a) 20 (p/9)
where ¢ is some formula having p as its only free variable. The domain A, of the
operation A, is the collection of all functions of the form
(®) Ao (x/u)
where ¢ is some formula having (the nominal variable) x as its only free variable.

The value of the operation A, at the function (a) is the sentence Vp ¢; the value
of the operation A, at the function (b) is the sentence Vx o.

I*9. U, is the function whose value at the pair (f,{) is the sentence Up (o, {)
where f is the function (a); U, is the function whose value at the pair (4, u) is the
term Ux (9, w) where % is the function (b).

This concludes the definition of I*. It should now be shown that I* satisfies all of the
properties P1.—P.10 of an interpretation. Because this is a routine matter, we will
only indicate the proof that P2 and P5 hold.

In order to show that I* satisfies P2, we must show that, for every pair of sentences
¢, ¥ of L*, if ¢ = ¢ € M, then ¢ — ¢ and ¢ — ¢ are in M. But, by M.1, every in-
stance of the special equality axiom (E9)

VpVe(p=g—(p-q)

4*
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52 S. L. Bloom [10]

is in M. Thus by M.2,if ¢ = ¢ € M, ¢ < { € M. The proof is completed by Remark 1
of Section 3.

As for P5, suppose that the functions f; = At a, and f, = At b, are in A,. Then
fi@ = 1,2) must have the form

2 ¢i(2/9)
for some ¢;. (It is no loss of generality to suppose that the variable p is the same for
both functions). Assume that for each sentence 0,

$i(p/0) = ba(p/0) e M .
It must be shown that Vp ¢, = Vp J,e M.
For some 7, the sentence Vp (; = {,) is ¢, in the list (3). Thus
WUi(pfri) = balplr))) = VP (b1 = ¢2)
is also in M. But, by hypothesis,
bi(plri,) = do(pir:)
is in M, Hence, by M.2, axiom E8, and M.1 Vp ¢, = Vp ¢, is in M, q.e.d.
It must also be shown that
(C) UP (4’13 OL) = UP (4’23 B)
is in M, where « and B are any sentences such that « = 8 € M. But it follows from
the above argument that Vp ({; = {,) is in M. Thus, by M.1, M.2, and the (invariance)
axiom U3, (c) must also be in M.
We now outline a proof that I* is a model for ®. Let X be any valuation of I*.

For any expression (i.e. term or formula) o of L*, let o* be the result of replacing
every variable £ free in « by Z (§). We will be finished once we have shown that

™) 2 (o) = a*.
Indeed, suppose (*) has been proved. If ¢ is a sentence, ¢* = ¢. Thus T satisfies ¢
in I* iff ¢ € M. Thus every sentence in M (and hence in ®) is true in I*.

The proof of (*) is by induction on the structure of «. It is clearly true when «
is a variable or either kind. We will present only the interesting induction steps.

Suppose that « is of the form Vp¢. By V7,
2 (x) = Ay M)chp .
Under the induction assumption, the function lefgcp has the form
@ 00
where ¢’ is the result of replacing every variable £ free in ¢ other than p by Z (§) (=
= X7 (%)). But by definition I*8,
AsNZro=Vpo = a*.

If o has the form Up (¢, {), then, by definition = () = U,[A0 _Z—gcp, Z¢]. But by
the induction assumption, £ = {*. Thus, (with the above notation) by (d) and de-
finition I*9,

X (o) = Up (95 4*)
But this is o*.
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The cases we have omitted are either trivial or are handled in a manner analogous
to those presented. This concludes the proof of the Completeness theorem.

6. COROLLARIES

In this section, we list without proof a number of results which follow rather
easily from the Completeness theorem. We suppose that L is a fixed language of
kind W.

COROLLARY 1. Let @ be a set of sentences and ¢ some sentence of L. If ¢ ¢ Cn (D)
then there is some model I of © in which ¢ is false (i.e. 71 ¢ is true).

Let I = {A,D, T, ... be an interpretation of L. I is called a normal interpretation
if (i) the equivalence relation ~ on A (given by property P3) is the identity relation
on A, and (ii) the equivalence relation ~ on D (given by property P4) is the identity
relation on D.

COROLLARY 2. If I is an interpretation of L, I may be ‘contracted’ (in the usual way)
to a normal interpretation I, such that, for any sentence ¢ of L, ¢ is true in I iff ¢ is true
in I,

The following sentence is called the Fregean Axiom. Its significance is discussed
in Suszko’s papers.

(F) VoV ((p =9~ (p =19)
CorOLLARY 3. Neither the sentence (F) nor its negation are logical theorems, since
each is consistent with the axioms of L.

An interpretation I is called a Fregean interpretation if the sentence (F) is true in
I Iis a strictly Fregean interpretation if A, (the set of A-entities of I), is the two elements
set {0, 1}.

COROLLARY 4. Ler I be a Fregean interpretation, and I, its contraction to a norma l
interpretation. Then I, is a strictly Fregean interpretation. Indeed, (F) is true in a normaj]
interpretation 1' iff I' is strictly Fregean.

Corollary 4 clarifies the connection between theories of kind W and standard first-
order theories with only nominal variables. In the latter, the Fregean axiom is tacitly
assumed, and, by Corollary 4, there is thus no need to consider quantification over
sentential variables.

REMARK 1. In our definition of languages of kind W, we took only — (and the
constants 0 and I) as the primitive truth functional connective. At the expense of
including a number of additional axioms, it is clearly possible to include all of the
standard connectives

(#) T Vs Ay >y e

as primitive. Suppose we had taken this approach (as, indeed, Suszko did). The follow-
ing question would then arise: is it possible to give an equational definition of a truth
functional connective? That is, is there a sentence of the form

D) VpVe(p&gq=9)
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(where & is one of the binary connectives (%) and ¢ is a formula not containing &)
which is a logical theorem? Call any sentence of the form (D) a possible equational defini-
tion of &. But given any possible equational definition « of & it is possible to construct
an interpretation in which « is false. Thus, no possible equational definition (of &) is
a logical theorem. This fact had been noticed previously by Cresswell in [2].

Let L, be the language obtained from L by deleting the unifier symbol U, and
let Cn, be the consequence operation on L, obtained from Cr by omitting the unifier
axioms Ul, U2, U3. Let ® be a set of formulas of L.

COROLLARY 5. Let ¢ be a formula of L, If ¢ € Cn (D), then ¢ € Cny(D).

Corollary 5 says that if ¢ can be proved from @ using the unifier axioms, it can
also be proved without them.

COROLLARY 6. Suppose that @ does not contain any equation (i.e. a formula of the
form @ = or p. = ). Then any equation in Cny(®) is trivial (i.e. of the form ¢ = ¢
or p = ).

REMARK. The consequence operation defined here differs slightly from that in [10].
Suszko uses a formulation of quantification theory which involves the rules for intro-
duction and elimination of quantifiers, rules of substitution for free variables and the
rule for rewriting bound variables. (Compare [3], [7].) If Cn* is Suszko’s consequence
operation, then Cn*(®) = Cn (®) for every set of sentences @ (!) and thus the present
completeness theorem and all of the above corollaries may be easily applied to theories
(L, Cn*, ®> where ® is an arbitrary set of formulas. Let L} be the language obtained
from L by deleting the operators binding variables (unifier and quantifier) and let
Cn? be the consequence operation obtained from Cn* by omitting the logical axioms
and rules for the unifier and quantifiers. Lastly, let ® be a set of formulas of L.

COROLLARY 7. If ¢ is a formula of Ly and ¢ € Cn*(®), then ¢ € Cny(®D).

Corollary 7 is a theorem on the elimination of bound variables from derivations
of formulas of L% from formulas of L}. It is sometimes called the “first e-theorem™
(see [4] and [6]).
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S. L. BLoom

TWIERDZENIE O PEENOSCI DLA ,,TEORII RODZAJU W”

(Streszczenie)

Artykul ten przedstawia twierdzenie o pelnosci dla ,,teorii rodzaju W” wprowa-
dzonych przez R. Suszk¢ w [8], [9], [10] w celu sformalizowania czg¢Sci Traktaru
L. Wittgensteina. Stanowi on zamknig¢ta w sobie calo$¢, jednakze czytelnik powinien
zajrze¢ do prac Suszki po pewne szczegély niektérych teorii rodzaju W oraz po ocene
ich doniostoéci filozoficznej. Z czysto formalnego punktu widzenia, jedyng istotng
cechg teorii rodzaju W jest spéjnik identycznosci oraz charakteryzujace go aksjomaty
logiczne.

C. JI. BiiroM

TEOPEMA O IIOJIHOTE OJIf ,, TEOPUI BUIOA W”

(Pe3rome)

CTaThs CONEPKUT TEOPEMY O MOJHOTE IUIs ,, Teopmit Buna W’ BBeaeHHbIX P. Cyuko#
B [8], [9] u [10] ¢ memsto popmamm3auuu vactu Tpakmama J1. Burrenmreiina. OHa cTa-
HOBHT 3aMKHYTOE Ilejioe, OJHAKO YMTaTeNlb NOJIKCH oOpaTuThes K paboram Cymikd 3a
HEKOTOpBIMH TloapoGHoCcTsME Teopuit Buga W a Takke 3a oneHkod ux ¢uiocodckoro
3gaveHus. C 4YucTO (OpMaJIIBHOH TOYKM 3pEHHsS €OMHCTBEHHO CYIIECTBEHHOHM 4YepTOH
Teopuii Buga W 3TO CBA3Ka TOXAECTBA 4 TaKXe €€ JIOTHYECKHE AKCHOMBEIL.
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