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Introduction

Completeness is one of the most important notions in logic and the foundations
of mathematics. Many variants of the notion have been defined in literature. We
shall concentrate on these variants, and aspects, of completeness which are defined
in propositional logic.

Completeness means the possibility of getting all correct and reliable sche-
mata of inference by use of logical methods. The word ‘all’, seemingly neutral, is
here a crucial point of distinction. Assuming the definition as given by E. Post
we get, say, a global notion of completeness in which the reliability refers only to
syntactic means of logic and outside the correct schemata of inference there are
only inconsistent ones. It is impossible, however, to leave aside local aspects of
the notion when we want to make it relative to some given or invented notion of
truth. Completeness understood in this sense is the adequacy of logic in relation
to some semantics, and the change of the logic is accompanied by the change
of its semantics. Such completeness was effectively used by J. Łukasiewicz and
investigated in general terms by A. Tarski and A. Lindenbaum, which gave strong
foundations for research in logic and, in particular, for the notion of consequence
operation determined by a logical system.

The choice of logical means, by use of which we intend to represent logical
inferences, is also important. Most of the definitions and results in completeness
theory were originally developed in terms of propositional logic. Propositional
formal systems find many applications in logic and theoretical computer science.
Due to the simplicity of the language, one can use in research various methods and
results of abstract algebra and lattice theory. Propositional completeness theory
is a prerequisite for the other types of completeness theory and its applications.

In this monograph we wish to present a possibly uniform theory of the no-
tion of completeness in its principal version, and to propose its unification and,
at the same time, generalization. This is carried out through the definition and
analysis of the so-called Γ-completeness (Γ is any set of propositional formulas)
which generalizes and systematizes some variety of the notion of completeness
for propositional logics — such as Post-completeness, structural completeness and
many others. Our approach allows for a more profound view upon some essential
properties (e.g., two-valuedness) of propositional systems. For these purposes we
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shall use, as well, the elementary means of general algebra, the theory of logical
matrices, and the theory of consequence operations.

The subject of completeness became a separate area of research in propo-
sitional logic in the 1970s. Results of research of many authors, mainly Polish,
have been used here. Our exposition is based on a former manuscript [88], 1982.
We have tried to include all important results which are indispensable for fur-
ther work in the area. In addition, we have included some of the more recent
results stimulating present research. The book is organized on the following plan.
Basic methods and constructions of universal algebra and propositional logic are
briefly discussed in Chapter 1. Main results are exposed in the next two chapters;
Chapter 2 deals with local, and Chapter 3 with global, aspects of the notion of
completeness. In the last chapter and appendices we present some more advanced
topics which combine several methods and ideas involved in previous fragments.
The terminology and notation employed in our monograph is standard. The set
theoretical symbols ∅, ∈, ⊆, ∩, ∪ etc. have their usual meanings. The power set
of the set A is denoted by 2A and Nc(A) is the cardinality of A. We use ⇒, ∨, ∧,
¬,⇔, ∀, ∃ for (meta)logical connectives and quantifiers whereas →, +, ·, ∼, ≡ are
reserved for (intra)logical symbols, i.e., symbols of the considered logical systems.

Witold A.Pogorzelski
Piotr Wojtylak



Chapter 1

Basic notions

This chapter gives a concise background for the further study of propositional
systems. We assume that the reader is familiar with elements of propositional
logic and therefore some basic facts will be stated without proofs. Simple results
will be often given without references.

1.1 Propositional languages
Any propositional language is determined by an infinite set At of propositional
variables (it is usually assumed that At is denumerable, e.g., At = {p0, p1, . . .})
and by a finite set of propositional connectives F1, F2, . . . , Fn. Suppose that Fi,
for i � n, is a ki-ary connective (usually, we have ki � 2). The set S of the
propositional formulas is defined as follows:

(i) At ⊆ S,

(ii) α1, . . . , αki ∈ S ⇒ Fi(α1, . . . , αki) ∈ S, for each i � n.

Formulas will be denoted by Greek letters α, β, . . .. The number of occur-
rences of the signs F1, . . . , Fn in a formula α ∈ S will be called the length of α;
the precise definition of the length is as follows:

(i) l(γ) = 0 if γ ∈ At,

(ii) l(Fi(α1, . . . , αk)) = l(α1) + . . . + l(αk) + 1.

Similarly, we define, for each α ∈ S, the set Sf(α) of subformulas and the
set At(α) of variables occurring in α:

(i) Sf(γ) = At(γ) = {γ} if γ ∈ At,

(ii) At
(
Fi(α1, . . . , αk)

)
= At(α1) ∪ . . . ∪ At(αk),

(iii) Sf
(
Fi(α1, . . . , αk)

)
= Sf(α1) ∪ . . . ∪ Sf(αk) ∪ {Fi(α1, . . . , αk)}.
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If we write α(p0, . . . , pk), it will mean that At(α) ⊆ {p0, . . . , pk}. Moreover,
let At(X), for any X ⊆ S, be the set of the variables occurring in X , i.e.,

At(X) =
⋃

{At(α) : α ∈ X}.
The family of all finite subsets of the set X will be denoted by Fin(X):

Y ∈ Fin(X) ≡ Y ⊆ X ∧ Y is finite;

Y ∈ Fin∗(X) ≡ Y �= ∅ ∧ Y ∈ Fin(X).

Formal languages together with inferential rules originated in the efforts of
logicians to state precisely the intuitive notion of a proof. Inferential rules were
introduced in order to represent elementary links of deductive reasoning which
constitute (when used step by step) any mathematical proof. For a long time
mathematical logic remained devoted to this original problem, and it was appro-
priate that its methods were restricted to those possessing a finitistic character. It
was not till several years later that there appeared new problems and new points
of view which led to the introduction of some infinitistic methods.

In the case of inferential rules, it has been marked by the consideration of
rules with infinite sets of premises. It should be stressed that we are not interested
in the development of infinitistic methods here. We focus on the finitistic point of
view and therefore languages with infinitely many connectives as well as infinitary
formulas will be left outside the scope of the present book.

The development of mathematical logic and the application of elements of
universal algebra forced us, however, to consider non-denumerable languages and
infinitary rules to some extent. Nevertheless, we do not want to miss advantages
which arise when only finitary rules are considered. Therefore, our further exami-
nations will concern the finitistic as well as the infinitistic point of view. We will
examine two different definitions of the notion of a rule; however, the set of all
rules over S will be denoted, in both cases, as RS (or R if this is not misleading).

Definition 1.1.

(fin) r ∈ RS ⇔ r ⊆ Fin∗(S) × S;

(∞) r ∈ RS ⇔ r ⊆ 2S × S.

The results to come which refer to Definition 1.1 (fin) will be indicated by
the sign (fin), those referring to 1.1 (∞) by (∞). The lack of the indices (i.e., (∞)
and (fin)) will mean that the statement is true for finitary as well as for arbitrary
(possible infinitary) rules.

Thus, rules of inference are understood as families of sequents 〈Π, α〉, where
Π is a set of formulas (Π ⊆ S) and α ∈ S. If 〈Π, α〉 ∈ r, then α is said to be
a conclusion obtained from the premises Π by use of the rule r. The notation of
sequents 〈Π, α〉 ∈ r in the form of inferential schemata

r :
Π
α
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is very suggestive and will often be used.
Note that, according to 1.1 (fin), sequents 〈∅, α〉 are out of the reach of any

rule. However, such rules are not excluded by 1.1 (∞). Axiomatic rules, i.e., rules
with empty sets of premises may be regarded as sets of formulas.

In our further considerations we will mainly use logical systems formalized in
the standard propositional language provided by the truth-functional connectives
→ (implication), + (disjunction), · (conjunction) and ∼ (negation). We will also
use the abbreviation α ≡ β to denote the formula (α → β) · (β → α). The set
of all formulas built up from At by means of the connectives →, +, ·, ∼ will be
denoted as S2. The symbol S1, where S1 ⊆ S2, will stand for the set of all positive
(without negation) expressions. We will consider, as well, other sublanguages of
S2.

Let us define, as an example of a rule, the modus ponens rule

r0 = {〈{α → β, α}, β〉 : α, β ∈ S2}.

Defining r0 by use of a schema one can write

r0 :
α → β , α

β
for all α, β ∈ S2.

Brackets in formulas will be omitted where convenient, the convention for reading
formulas being that ∼ binds more strongly than + and ·, the latter binding more
strongly than →, ≡.

1.2 Abstract algebras
This section contains elements of the theory of abstract algebras. The results are
presented from the point of view of their applications to logic.

If A is a non-empty set, then any mapping

f : Ak → A, k � 0

is called a k-ary operation on A. A system A = 〈A, f1, . . . , fn〉 is called an
(abstract) algebra if the set A (the universe of A ) is non-empty and f1, . . . , fn are
operations on A. Algebras will be denoted by script letters A , B, C , . . . and the
universes by the corresponding capital letters A, B, C, . . ..

Let A = 〈A, f1, . . . , fn〉 and B = 〈B, g1, . . . , gn〉 be two similar algebras, i.e.,
algebras of the same type. A mapping h : A → B such that

h
(
fi(a1, . . . , ak)

)
= gi

(
h(a1), . . . , h(ak)

)
, for all i � n and a1, . . . , ak ∈ A

is called a homomorphism (in symbols h : A → B).
One-to-one homomorphisms are called embeddings. If h is one-to-one and

onto, it is then an isomorphism. We say that A is embeddable in B if there is



4 Chapter 1. Basic notions

an embedding from A into B. The algebras A and B are said to be isomorphic
(A ∼= B) iff there exists an isomorphism h from A onto B.

Let A = 〈A, f1, . . . , fn〉 and B = 〈B, g1, . . . , gn〉. Then B is called a subal-
gebra of A (B ⊆ A ) iff B ⊆ A and gi (for each i � n) is the restriction of fi to
the set B.

Lemma 1.2. If h : A → B is a homomorphism from A into B, then h(A) is closed
under the operations of B (i.e., is the universe of a subalgebra of B).

Obviously, A is embeddable in B iff A is isomorphic with some subalgebra
of B. If B is a subalgebra of A , then a non-empty set H is said to be a generating
set of B iff B is the smallest subalgebra of A containing H . Any non-empty
subset of the universe of A generates a subalgebra of A . We say that H is a set
of generators of A iff there is no proper subalgebra of A containing H .

Lemma 1.3. Let h and h1 be homomorphisms from A into B and let H be a set
of generators of A . Then

h|H = h1|H ⇒ h = h1.

In other words, if a mapping v : H → B can be extended to a homomorphism
hv : A → B, then this extension is unique. Obviously, it is not true that every
mapping (defined on a set) of generators can be extended to a homomorphism.

Given a class K of similar algebras and an algebra A ∈ K generated by a
set H , the algebra is said to be free over K, with the free generating set H iff
each mapping v : H → B, for each B ∈ K, can be extended to a homomorphism
hv : A → B. By Lemma 1.3, the homomorphism hv is uniquely defined.

Any propositional language determines an algebra S = 〈S, F1, . . . , Fn〉 in
which Fi (1 � i � n) denotes the operator of forming Fi-propositions.

Lemma 1.4. The algebra S of a propositional language is free over the class of all
similar algebras and the propositional variables are the free generators of S .

Therefore, if A = 〈A, f1, . . . , fn〉 is an algebra similar to S , then each map-
ping v : At → A can be uniquely extended to a homomorphism hv : S → A.

Let A = 〈A, f1, . . . , fn〉 be an algebra and � a binary relation on A. Then �
is called a congruence relation on A if it is an equivalence relation (i.e., reflexive,
symmetric and transitive) satisfying the property

a1 � b1 ∧ . . . ∧ ak � bk ⇒ fi(a1, . . . , ak) � fi(b1, . . . , bk)

for each i � n and each a1, . . . , ak, b1, . . . , bk ∈ A.
For any algebra A and any congruence relation � on A we can construct the

so-called quotient algebra

A /� = 〈A/�, g1, . . . , gn〉
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with A/� = {[a]� : a ∈ A} and the operations gi defined by

gi([a1]�, . . . , [ak]�) = [fi(a1, . . . , ak)]�.

Thus, the algebras A and A /� are similar and the natural (canonical) mapping
h� from A onto A/�,

h�(a) = [a]� for each a ∈ A,

is a homomorphism from A onto A /�.

Lemma 1.5. If h is a homomorphism from A onto B, then the binary relation �
on A induced by h, i.e.,

a � b ⇔ h(a) = h(b),

is a congruence relation on A and the algebras A /� and B are isomorphic.

Let {At}t∈T be a family of similar algebras 〈At, f
t
1, . . . , f

t
n〉. The product (or,

more specifically, the direct product) of this family is the algebra

P
t∈T

At = 〈 P
t∈T

At, f1, . . . , fn〉

where Pt∈T At is the Cartesian product of the sets At and

fi(〈at
1〉t∈T , . . . , 〈at

k〉t∈T ) = 〈f t
i (a

t
1, . . . , a

t
k)〉t∈T .

In the above definition elements of the product are regarded as T -sequences
〈at〉t∈T such that at ∈ At for each t ∈ T and the operations f1, . . . , fn are defined
componentwise. The product of two algebras A and B will be denoted by A ×B.
If At = A for each t ∈ T , then we will write A T for the power of the algebra A .
Let A n stand for A {1,...,n}. The projection from the product onto the t-axis will
be denoted by πt, i.e.,

πt(〈as〉s∈T ) = at, for t ∈ T

and, obviously, πt is a homomorphism from Pt∈T At onto At.

Lemma 1.6. Let ht, for each t ∈ T , be a homomorphism from A into At. We
define a mapping h from A into the product Pt∈T At by

h(a) = 〈ht(a)〉t∈T .

The mapping h is a homomorphism from A into the product Pt∈T At and we have
πt ◦ h = ht for each t ∈ T .

The mapping h described in Lemma 1.6 is called the product of the family
{ht}t∈T . It can be proved that any homomorphism h from A into Pt∈T At is the
product of the mappings {πt ◦ h}t∈T . We can also get by Lemma 1.6:
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Corollary 1.7. Let {At}t∈T and {Bt}t∈T be two families of similar algebras and
let ht, for each t ∈ T , be a homomorphism from At into Bt. Then the mapping

h(〈at〉t∈T ) = 〈ht(at)〉t∈T

is a homomorphism from Pt∈T At into Pt∈T Bt.

Corollary 1.8. Let {At}t∈T and {Bt}t∈T be two indexed families of similar algebras
and assume that At is embeddable in Bt for each t ∈ T . Then the product Pt∈T At

is embeddable into the product Pt∈T Bt.

One-element algebras are said to be degenerate.

Lemma 1.9. For any algebra A and any natural numbers n, m:

(i) A n × A m ∼= A n+m;

(ii) (A n)m ∼= A n·m;

(iii) A n is embeddable in A n+m;

(iv) A × B ∼= A if B is degenerate.

Proof. The properties (i), (ii), (iv) are quite obvious. We shall prove (iii) only.
Assume that n = 1. Then an embedding h : A → A m+1 can be defined by

h(x) = 〈x, . . . , x〉, for each x ∈ A.

It is clear that h is a one-to-one homomorphism from A into A m+1. Let n > 1.
Then it follows from (i) that

A n ∼= A n−1 × A and A n+m ∼= A n−1 × A m+1.

Hence if suffices to show that A n−1 × A is embeddable in A n−1 × A m+1. No-
tice that A n−1 is embeddable in A n−1. Moreover, it has been proved that A
is embeddable in A m+1. Thus, by Corollary 1.8, A n−1 × A is embeddable in
A n−1 × A m+1. �

1.3 Preliminary lattice-theoretical notions

The basic notions of lattice theory will be briefly introduced in this section. We
assume that the reader has a working knowledge of elements of lattice theory,
hence definitions of some elementary notions and proofs of many basic facts will
be omitted (they can be found, for instance, in Grätzer [28] , 1978).
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Lattices

An algebra 〈A,∪,∩〉, where ∪, ∩ are two binary operations on A, is called a lattice
iff there is an ordering � on A such that x ∩ y is the greatest lower bound —
infimum — and x ∪ y is the least upper bound — supremum — (with respect to
�) of the set {x, y}, i.e.,

x ∩ y = inf{x, y} and x ∪ y = sup{x, y}

for every x, y ∈ A. A lattice 〈A,∪,∩〉 is said to be complete iff sup(X) and inf(X)
exist for each X ⊆ A.

The greatest element in the lattice A , if it exists, is denoted by 1A (or 1 if
this is not misleading). The least element, if it occurs, is symbolized by 0A (or 0).
Clearly, every finite lattice contains the greatest and the least element.

A lattice 〈A,∪,∩〉 is distributive iff the following holds for each x, y, z ∈ A:

x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z),
x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z).

Assume that 〈A,∪,∩〉 is a lattice and let x, y ∈ A. The greatest element of
the set {z ∈ A : x ∩ z � y}, if it exists, is called the relative pseudo-complement
of x to y and is denoted by x→̇y. Note that there are finite lattices in which
x→̇y does not exist for some x, y. However, finite distributive lattices contain the
relative pseudo-complement of x to y for each x, y ∈ A.

If the element x→̇y exists for each x, y ∈ A, then 〈A, →̇,∪,∩〉 is called an
implicative lattice. It is easy to prove that each implicative lattice is distributive
and contains the unit element 1 = x→̇x for each x ∈ A.

Observe that there are implicative lattices without the least element (zero).
The existence of the zero-element in an implicative lattice 〈A, →̇,∪,∩〉 allows us
to define the operation of pseudo-complementation

−x = x→̇0, for all x ∈ A.

It can be easily seen that z � −x iff x ∩ z = 0, hence −x is the greatest
element of the set {z ∈ A : x ∩ z = 0}.

An algebra 〈A, →̇,∪,∩,−〉 with three binary operations →̇, ∪, ∩ and one
monadic operation − is called a Heyting (pseudo-Boolean) algebra iff 〈A, →̇,∪,∩〉
is an implicative lattice with the least element 0 and −x = x→̇0 for every x ∈ A.

Note that the distributivity laws hold in any Heyting algebra. Needless to
say, every finite distributive lattice 〈A,∪,∩〉 contains the least element and, for
each x, y ∈ A, the relative pseudo-complement x→̇y exists in A. Thus, any finite
distributive lattice can be considered as a Heyting algebra.
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Lemma 1.10. In each Heyting algebra:

(i) x � y ⇒ −y � −x ;

(ii) x ∩ −x = 0 ;

(iii) x � −− x ;

(iv) −−−x = −x ;

(v) −(x ∪ y) = −x ∩−y ;

(vi) −x ∪ −y � −(x ∩ y).

Let A = 〈A, →̇,∪,∩,−〉 be a non-degenerate (i.e., 1A �= 0A) Heyting algebra.
We shall specify some elements of A . An element x ∈ A is said to be dense iff
−x = 0. The set of all dense elements in the algebra A is denoted by G(A ). This
set is not empty as 1 ∈ G(A ). The dense elements possess, among others, the
following properties:

Lemma 1.11. In each Heyting algebra:

(i) x ∈ G(A ) ⇔ −− x = 1;

(ii) x ∈ G(A ) ⇔ (x ∩ y �= 0, for each y �= 0);

(iii) x ∈ G(A ) ⇔ (x = y ∪ −y, for some y ∈ A).

This lemma results directly from the definition and from Lemma 1.10.
Any Heyting algebra in which x∪−x = 1 for each x ∈ A is called a Boolean

algebra. The standard example of a Boolean algebra is 〈2X , →̇,∪,∩,−〉 where ∪,
∩, − coincide with the set theoretical operations and the lattice ordering coincides
with the relation of inclusion. A classical example of a Boolean algebra is, as well,
the two-element algebra B2, i.e., the lattice which contains exactly two elements
1 and 0 (and 0 < 1). Note that all two-element Boolean algebras are isomorphic.

Let A , B be two Heyting (Boolean) algebras and let h be a homomorphism
from A into B, i.e., h : A → B preserves the operations of the algebras. It is
evident that h preserves, as well, the ordering relation, the unit- and the zero-
element, i.e.,

x �A y ⇒ h(x) �B h(y); h(1A) = 1B; h(0A) = 0B.

Lemma 1.12. Let A and B be Heyting (Boolean) algebras. Then a mapping h
from A onto B is an isomorphism of the algebras iff

x �A y ⇔ h(x) �B h(y), for all x, y ∈ A.

Sublattices

According to the general notion of a subalgebra it is evident that each subalgebra
of a lattice (implicative lattice, Heyting or Boolean algebra) A is also a lattice
(implicative lattice, etc.). If B is a subalgebra of a lattice A (B ⊆ A ), then the
ordering relation on B is induced from A , i.e.,

x �B y ⇔ x �A y, for all x, y ∈ B.

If — in addition — A is a Heyting (Boolean) algebra, then 1A = 1B and 0A = 0B.
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Lemma 1.13. Each finitely generated lattice contains the unit- and zero-element.

Proof. Suppose that {x1, . . . , xk}, where k > 0, is a set of generators of a lattice
〈A,∪,∩〉. Let us define a subset of the set A as follows:

K = {x ∈ A : x1 ∩ . . . ∩ xk � x � x1 ∪ . . . ∪ xk}.
Obviously, xi ∈ K for each i � k and x1 ∪ . . . ∪ xk (x1 ∩ . . . ∩ xk) is the greatest
(least) element in K. Note that K is closed under ∩ and ∪, i.e.,

x, y ∈ K ⇒ x ∩ y , x ∪ y ∈ K.

Therefore, it follows from the definition of generating set that A = K and hence
〈A,∪,∩〉 contains the greatest and the least element. �

It can be shown by means of an example that finitely generated lattices
(non-distributive) need not be finite. It is also known that

Lemma 1.14. Each finitely generated distributive lattice is finite.

Proof. The proof is by induction on the number of generators. First, let us observe
that a lattice generated by one element is degenerate (i.e., one-element). Then,
suppose that the distributive lattice 〈A,∪,∩〉 has k + 1 generators a1, . . . , ak+1

and that the theorem holds for distributive lattices with k generators.
It follows from the above lemma that A contains the unit 1 and the zero 0.

By the inductive hypothesis the sublattice 〈K,∪,∩〉 of 〈A,∪,∩〉 generated by the
set {a1, . . . , ak} is finite. Now we shall consider the set

B = {x ∈ A : x = (c ∩ ak+1) ∪ d for some c, d ∈ K ∪ {0, 1}}.
Let us prove

x, y ∈ B ⇒ x ∪ y , x ∩ y ∈ B.

Suppose that x = (c1∩ak+1)∪d1 and y = (c2∩ak+1)∪d2 for some c1, c2, d1, d2 ∈
∈ K ∪ {0, 1}. Then

x ∩ y = ((c1 ∩ ak+1) ∪ d1) ∩ ((c2 ∩ ak+1) ∪ d2)
= (c1 ∪ d1) ∩ (ak+1 ∪ d1) ∩ (c2 ∪ d2) ∩ (ak+1 ∪ d2)
= (c1 ∪ d1) ∩ (c2 ∪ d2) ∩ (ak+1 ∪ (d1 ∩ d2))
= ((c1 ∪ d1) ∩ (c2 ∪ d2) ∩ ak+1) ∪ (d1 ∩ d2).

But 〈K,∪,∩〉 is a subalgebra of 〈A,∪,∩〉, hence K ∪ {0, 1} is closed under the
operations ∩ and ∪. Thus, x∩y ∈ B for every x, y ∈ B. We also have x∪y ∈ B as

x ∪ y = ((c1 ∩ ak+1) ∪ d1) ∪ ((c2 ∩ ak+1) ∪ d2) = ((c1 ∪ c2) ∩ ak+1) ∪ (d1 ∪ d2).

Obviously, B is finite and ai ∈ B for each i � k + 1. Since {a1, . . . , ak+1} is a set
of generators of 〈A,∪,∩〉, we get A = B which proves that A is finite. �
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It is worth noticing that the same theorem holds for Boolean algebras but
it is false for Heyting algebras. We can construct an infinite Heyting algebra
〈A, →̇,∪,∩,−〉 generated by a single element only. Namely — following L. Rieger
[109], 1949 — let

A = {2i · 3j : −1 � i − j � 2} ∪ {ω}
and let the lattice ordering �A be given by the relation of divisibility (assuming
that each natural number divides ω and ω divides no natural number). It can be
shown that �A is a Heyting ordering on A and that the algebra 〈A, →̇,∪,∩,−〉 is
generated by 21 · 30.

Filters
Assume that 〈A, �〉 is a lattice ordered set and let ∅ �= H ⊆ A. Then H is called
a filter in A iff the following holds for each x, y ∈ A:

(i) x, y ∈ H ⇒ x ∩ y ∈ H ,

(ii) x � y ∧ x ∈ H ⇒ y ∈ H .

The filter A in the lattice 〈A,∪,∩〉 is called the improper one and {x ∈ A : a � x}
is said to be the principal filter determined by the element a ∈ A. We can show
the following characterization of filters in implicative lattices (see [106], 1974).

Lemma 1.15. Let H ⊆ A and let A = 〈A, →̇,∪,∩〉 be an implicative lattice. Then
H is a filter in A iff

(i) 1 ∈ H;

(ii) x , x→̇y ∈ H ⇒ y ∈ H, for each x, y ∈ A.

Let A be an implicative lattice (Heyting or Boolean algebra). Assume that
x↔̇y is the abbreviation for (x→̇y) ∩ (y→̇x) where x, y ∈ A. Each filter H in A
determines the binary relation ∼H on A by

x ∼H y iff x↔̇y ∈ H.

The relation ∼H (which will be noted in short as ∼ when the filter H is fixed) is
a congruence on the algebra A . The family of abstraction classes A/ ∼H will be
denoted by A/H . In A/H we define the relation �H :

[x] �H [y] iff x→̇y ∈ H

which (as can be easily seen) is a lattice ordering in A/H such that:

[x] = 1 ⇔ x ∈ H

[x ∩ y] = [x] ∩ [y]
[x ∪ y] = [x] ∪ [y]
[x→̇y] = [x]→̇[y]
([−x] = −[x]).
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The quotient algebra will be noted as A /H . Note that A /H is not degenerate if
H is a proper filter. It is clear that the canonical mapping

h(x) = [x]H

is a homomorphism from A onto A /H .

Theorem 1.16. Let A , B be two implicative lattices (Heyting or Boolean algebras)
and let h : A → B be a homomorphism from A onto B. Then, for every filter H
in B, the set h−1(H) is a filter in A and

A /h−1(H) ∼= B/H.

Proof. Of course, h−1(H) is a filter in A . Further we have

x→̇y ∈ h−1(H) ⇔ h(x)→̇h(y) ∈ H,

x ∼ y ⇔ h(x) ∼ h(y)

for every x, y ∈ A. Hence the mapping g defined by

g([x]) = [h(x)]

is one-to-one and maps the algebra A /h−1(H) onto B/H . Moreover, the following
condition is fulfilled,

[x] � [y] ⇔ g([x]) � g([y]).

Thus, by Lemma 1.12, the algebras A /h−1(H) and B/H are isomorphic. �

In particular, if h : A → B maps A onto B, then A /h−1({1}) ∼= B.

Corollary 1.17. Let A be a non-degenerate Heyting algebra. Then

(i) the set G(A ) of all dense elements is a proper filter in A ,

(ii) if H is a filter in A and if G(A ) ⊆ H, then A /H is a Boolean algebra.

Proof. Trivial by Lemma 1.11 (ii) and (iii). �

The family of all proper filters of the lattice 〈A,∩,∪〉 is ordered by the relation
of inclusion. A maximal (with respect to the inclusion) proper filter is called an
ultrafilter. Assume that A contains the least element 0. We say that X ⊆ A has
the finite intersection property iff inf(Y ) �= 0 for every Y ∈ Fin∗(X), i.e.,

a1 ∩ . . . ∩ ak �= 0 ; for every a1, . . . , ak ∈ X.

It is easy to prove that X has the finite intersection property iff X is contained in
some proper filter. The basic theorem concerning filters in lattices is the following
equivalent of the Axiom of Choice.
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Theorem 1.18. If a lattice A = 〈A,∩,∪〉 contains the zero-element and if X ⊆ A
has the finite intersection property, then there exists an ultrafilter H such that
X ⊆ H.

The proof based on Zorn’s lemma is simple and generally known.
A proper filter H fulfilling, for all x, y ∈ A, the condition

x ∪ y ∈ H ⇒ x ∈ H ∨ y ∈ H

is said to be prime. Not all prime filters are ultrafilters. In the same way, not all ul-
trafilters are prime. It can be shown, however, that if the lattice is complementary,
then each prime filter is an ultrafilter.

We will also say that a lattice A is prime iff

x ∪ y = 1A ⇒ x = 1A ∨ y = 1A.

The connection between prime filters and algebras is stated by

Theorem 1.19. If H is a proper filter in a lattice A = 〈A,∩,∪〉, then the following
conditions are equivalent:

(i) H is a prime filter;

(ii) A /H is a prime lattice.

Note that a Boolean algebra is prime if and only if it contains at most two
elements. Hence, on the basis of Theorem 1.19, we can easily deduce that each
prime filter in a Boolean algebra is an ultrafilter and conversely that each ultrafilter
is prime.

Theorem 1.20. Let H be a proper filter in a Heyting algebra A . Then, for every
x /∈ H there is a prime filter H1 such that x /∈ H1 and H ⊆ H1.

It is evident that each proper filter in A is contained in some ultrafilter (see
Theorem 1.18) and that each non-zero element belongs to some ultrafilter. Hence
if x is not dense, then there exists an ultrafilter H such that −x ∈ H , i.e., x /∈ H .
On the other hand, it follows from Theorem 1.20 that for each non-unit element
x there exists a prime filter H such that x /∈ H .

Theorem 1.21. If H is a proper filter in a Heyting algebra A , then the following
conditions are equivalent:

(i) H is an ultrafilter;

(ii) x ∈ H ∨ −x ∈ H, for each x ∈ A;

(iii) G(A ) ⊆ H and H is prime;

(iv) A /H is a two-element Boolean algebra.
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Proof. (i)⇒(ii): If x /∈ H and H is an ultrafilter, then H ∪ {x} does not have the
finite intersection property. Thus, x ∩ y = 0 for some y ∈ H and hence −x ∈ H .

(ii)⇒(iii): G(A ) ⊆ H by (ii) and Lemma 1.11 (iii). Suppose that H is not
prime, i.e., x ∪ y ∈ H for some x /∈ H and y /∈ H . Then, on the basis of (ii), −x
and −y are in H , so 0 = (x ∪ y) ∩ −x ∩ −y ∈ H , which is impossible.

(iii)⇒(iv): By Corollary 1.17 (ii), A /H is a non-degenerate Boolean algebra.
Moreover, A /H is prime by Theorem 1.19. Thus, A /H must be a two-element
algebra.

(iv)⇒(i): This is obvious since x ∼H 0 for any x /∈ H . �

It is then clear that in Heyting algebras each ultrafilter is a prime filter. The
reverse implication, however, is not true. Since in any Boolean algebra the unit is
the only dense element, we obtain by Theorem 1.21 (cf. [107], 1963)

Corollary 1.22. If H is a proper filter in a Boolean algebra A , then the following
conditions are equivalent:

(i) H is an ultrafilter;

(ii) H is prime;

(iii) x ∈ H ∨ −x ∈ H, for each x ∈ A;

(iv) A /H is two-element.

The operation of addition

Constructions of new algebras from given ones play a very important role in al-
gebraic considerations. Two methods of constructing new algebras (lattices) have
been already discussed: namely the construction of subalgebras and that of forming
quotient algebras. Some further methods are discussed below.

Let A1 = 〈A1, →̇1,∪1,∩1,−1〉 be a Heyting algebra and A2 = 〈A2, →̇2,
∪2,∩2〉 be an implicative lattice. The order relations in A1 and A2 are denoted by
�1 and �2, respectively. We assume that A1 ∩A2 = ∅. The operations →̇,∪,∩,−
are determined on the set A1 ∪ A2 in the following way:

x ∪ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∪i y if x, y ∈ Ai

y if x ∈ A1 and y ∈ A2

x otherwise,

x ∩ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∩i y if x, y ∈ Ai

x if x ∈ A1 and y ∈ A2

y otherwise,
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x→̇y =

⎧⎪⎪⎨
⎪⎪⎩

y if x ∈ A2 and y ∈ A1

x→̇iy if x, y ∈ Ai and x→̇iy �= 1Ai

1A2 otherwise,

−x =

⎧⎪⎪⎨
⎪⎪⎩

−1x if x ∈ A1 and x �= 0A1

0A1 if x ∈ A2

1A2 if x = 0A1 .

The algebra 〈A1 ∪ A2, →̇,∪,∩,−〉 will be denoted by A1 ⊕ A2.

Theorem 1.23. If A1 is a Heyting algebra, A2 is an implicative lattice and
A1 ∩A2 = ∅, then A1 ⊕A2 is a Heyting algebra with the order relation defined by

x � y ⇔ (x ∈ A1 ∧ y ∈ A2) ∨ x �1 y ∨ x �2 y.

The operation ⊕ is a generalization of Jaśkowski’s mast operation (cf. [44],
1936; [127], 1965; [150], 1974). There was defined a more general operation of
gluing for lattices by Herrmann [41], 1973, which was developed and employed by
Grygiel [36], 2004, to analyze the structure of distributive lattices. We will use the
operation ⊕ only when one of the algebras is degenerate (i.e., is one-element). For
these special cases a special notation will be used:

A ⊕ = A ⊕ A2, when A2 is degenerate;
⊕A = A1 ⊕ A , when A1 is degenerate.

It can be said that A ⊕ (or ⊕A ) is obtained from A by the addition of the greatest
(or the least) element. Thus, each implicative lattice A can be extended to the
Heyting algebra ⊕A . Note that A is a substructure of ⊕A , i.e., the operations
in A are the restrictions of the operations from ⊕A . We also get

Lemma 1.24. For all Heyting algebras A and B:

(i) if A is embeddable in B, then A ⊕ is embeddable in B⊕;

(ii) A ⊕ is a prime algebra.

It is also easy to verify that A ∼= A ⊕ /H where H = {1A, 1A⊕}.
Lemma 1.25. Let A be a Heyting algebra such that A \ {1A} contains the greatest
element y. Then H = {y, 1A} is a filter in A and (A /H)⊕ ∼= A .

Proof. Of course, H is the principal filter determined by the element y. Let us
prove that

a ∼H b ⇔ a = b ∨ a, b ∈ H, for each a, b ∈ A.

The implication (⇐) is obvious. Suppose, on the other hand, that a ∼H b for some
a /∈ H and b /∈ H . Then, according to the definition of ∼H , we have y � a→̇b and
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y � b→̇a. Hence, y∩a � b and y∩ b � a. But y is the greatest element in A\ {1A}
and a �= 1A, b �= 1A. Thus, y ∩ a = a and y ∩ b = b. Therefore a � b and b � a
which means that a = b.

If we assume that a ∼H b and a ∈ H (or b ∈ H), then also b ∈ H (or a ∈ H)
and this completes the proof of the above equivalence.

Thus, [a]H = {a} for all a ∈ A \ H and hence the mapping f defined by

f(a) =

{
[a]H if a �= 1A

1 if a = 1A

where 1 is the greatest element in (A /H)⊕, is one-to-one, maps the algebra A
onto (A /H)⊕ and fulfills the condition

a � b ⇔ f(a) � f(b).

Consequently, by Lemma 1.12, the algebras A and (A /H)⊕ are isomorphic. �
Let At, for t ∈ T , be an implicative lattice with �t as the order relation. The

relation � in the product Pt∈T At is determined as

〈xt〉t∈T � 〈yt〉t∈T ⇔ xt �t yt for all t ∈ T.

The algebra Pt∈T At is an implicative lattice with � as the lattice ordering. It is
also evident that 〈1At〉t∈T is the greatest element in the product and that 〈0At〉t∈T

is the least element (provided that 0A occurs in each At). Finally, when At are
Heyting algebras, then Pt∈T At is a Heyting algebra and the product is a Boolean
algebra if {At}t∈T is an indexed family of Boolean algebras.

Jaśkowski algebras

Product and addition operations allow us to construct some family of Heyting
algebras which is (as we shall see later) adequate for intuitionistic propositional
logic. This completeness theorem was first proved by S. Jaśkowski [44], 1936.

Let us define the class of Jaśkowski algebras as the least class of Heyting al-
gebras containing any degenerate algebra and closed with respect to the operation
of addition and finite products. In other words:

a. Degenerate algebras are Jaśkowski algebras.

b. If A is a Jaśkowski algebra, then so is A ⊕.

c. If A1, . . . ,Ak belong to the considered class of algebras, then A1 × . . . × Ak

is also a Jaśkowski algebra.

From the class of Jaśkowski algebras we choose the sequence 〈Jn〉n�1 as follows:
let J1 be any degenerate algebra and let

Jn+1 = (Jn)n ⊕ for each n � 1.
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Lemma 1.26. The algebra Jn is embeddable in Jn+1, for each n � 2.

Proof. By induction on n. First, we observe that J2 is embeddable in each non-
degenerate Heyting algebra. We assume next that Jn is embeddable in Jn+1.
Then, by Corollary 1.8, (Jn)n is embeddable in (Jn+1)n. Moreover, by Lemma
1.9 (iii), (Jn+1)n is embeddable in (Jn+1)n+1, hence (Jn)n is embeddable in
(Jn+1)n+1. Using Lemma 1.24 (i) we conclude that there is an embedding of
Jn+1 into Jn+2. �

Corollary 1.27. If 1 < n � m, then Jn is embeddable in Jm.

Lemma 1.28. For each Jaśkowski algebra A there are integers n, m � 1 such that
A is embeddable in (Jn)m.

Proof. Any Heyting algebra is a Jaśkowski algebra if it can be constructed from
a degenerate algebra by means of the operation of addition and finite products.

a. Obviously, the statement is true for degenerate algebras.

b. Suppose that A is embeddable in (Jn)m. If n = 1, then (Jn)m is degenerate
and hence A is degenerate, too; which implies A ⊕ ∼= J2.
Assume that n > 1 and let k = max{n, m}. It follows from Corollary 1.27
that Jn is embeddable in Jk and hence, by Corollary 1.8 and Lemma 1.9
(iii), (Jn)m is embeddable in (Jk)k. Thus, A is embeddable in (Jk)k which
implies, on the basis of Lemma 1.24, the existence of an embedding from A ⊕
into Jk+1.

c. Suppose that Ai, for 1 � i � k is embeddable in (Jni )
mi . If all algebras Ai

are degenerate, then the product Pi�k Ai is also degenerate and hence the
product is embeddable in J1. Thus, we claim that the set

I = {i � k : Ai is not degenerate}

is not empty. Observe that ni > 1 if i ∈ I. Let n = max{ni : i ∈ I}. By
Corollary 1.27, Jni is embeddable in Jn for all i ∈ I. Hence it follows from
Corollary 1.8 and from our assumption that Ai is embeddable in (Jn)mi

for all i ∈ I. Thus, by Corollary 1.8, the product Pi∈I Ai is embeddable in
Pi∈I(Jn)mi . As (by Lemma 1.9 (iv), (i))

P
i�k

Ai
∼= P

i∈I
Ai and P

i∈I
(Jn)mi ∼= (Jn)m

where m =
∑

i∈I mi, we conclude Pi�k Ai is embeddable in (Jn)m. �

The next lemma paves the way to the mentioned completeness theorem for
the intuitionistic propositional logic.

Lemma 1.29. Each finite Heyting algebra is embeddable in some Jaśkowski algebra.
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Proof. It is obvious that the theorem holds for any degenerate Heyting algebra.
Assume that the theorem is true for all Heyting algebras with less than k + 1
elements and suppose that A = 〈A, →̇,∪,∩,−〉 has exactly k + 1 elements.

Let Y be the set of all maximal elements in A \ {1A}. It is obvious that Y is
non-empty since A is finite. We have to consider the following cases:

(1) Y is one-element, i.e., Y = {y} for some y ∈ A,

(2) Y contains (at least) two elements.

If (1) happens, H = {1A, y} is the principal filter determined by y. By the inductive
hypothesis A /H is embeddable in some Jaśkowski algebra J . Hence (A /H)⊕ is
embeddable in J⊕ (see 1.24 (i)) and, by 1.25, the algebras A and (A /H)⊕ are
isomorphic. Then A is embeddable in the Jaśkowski algebra J⊕.

Assume that Y contains (at least) two elements. The algebra A /Hy, where
Hy = {1A, y} is the principal filter generated by an element y of Y , contains less
than k + 1 elements. Then, by the inductive hypothesis, for every y ∈ Y there
exists a Jaśkowski algebra Jy and a one-to-one homomorphism fy from A /Hy

into Jy. Let hy : A → A/Hy be the canonical mapping. Since the composition
fy ◦ hy is a homomorphism from A into Jy, the mapping h defined by

h(x) = 〈fy(hy(x))〉y∈Y , for each x ∈ A

is a homomorphism from A into Py∈Y Jy — see Lemma 1.6.
The product Py∈Y Jy will be denoted then by J . We shall now prove that

h(y) �= 1J for all y ∈ Y .
Suppose, on the contrary that h(x) = 1J for some x ∈ Y . Then we have

fy(hy(x)) = 1Jy , for every y ∈ Y . Since fy is one-to-one, hy(x) is the unit-element
in A /Hy, that is x ∈ Hy = {1A, y}. We get y = x for each y ∈ Y . Hence Y is
one-element, which contradicts our assumptions.

Let us prove that h is an embedding. Suppose a �= b, i.e., we can assume that
a→̇b �= 1A (if b→̇a �= 1A, the proof is similar). Then there is an element y ∈ Y
such that a→̇b � y, hence h(a)→̇h(b) = h(a→̇b) � h(y) �= 1J , which means that
h(a) �= h(b).

It has been shown that h is an embedding from A into J . Since J is a
finite product of Jaśkowski algebras Jy, we conclude that A is embeddable in
some Jaśkowski algebra. �

Given a formula α which is not valid in a finite Heyting algebra A , we can
find a Jaśkowski algebra Jn such that α is not valid in Jn, either, using the
following corollary of Lemmas 1.28 and 1.29:

Corollary 1.30. For every finite Heyting algebra A there are integers n, m � 1
such that A is embeddable in (Jn)m.
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Linear algebras
Let 〈A, �〉 be a linearly ordered set, i.e., let � be an ordering on A such that

x � y ∨ y � x, for each x, y ∈ A.

Clearly, � is a lattice ordering with the bounds defined by

x ∪ y = max{x, y}, x ∩ y = min{x, y}.
If we assume that 〈A, �〉 contains the unit-element, then the relative pseudo-
complement x→̇y will exist for every x, y ∈ A

x→̇y =

{
1A if x � y

y if y < x.

Hence, any linearly ordered set with the unit- and the zero-element can be con-
sidered as a prime Heyting algebra. Such algebras will be said to be linear. It
should be noticed that each finite linearly ordered set contains the unit- and the
zero-element and then it can be considered as a linear Heyting algebra.

Lemma 1.31. If A , B are non-degenerate linear Heyting algebras, A is finite and
Nc(A) � Nc(B), then A is embeddable in B.

Proof. In order to prove this lemma it suffices to observe that any one-to-one
mapping from A into B which preserves the ordering relation, the unit- and the
zero-element (i.e., h(1A) = 1B, h(0A) = 0B and x � y ⇒ h(x) � h(y)) is an
embedding from A into B. The existence of such a mapping is quite obvious
whenever A is finite and 2 � Nc(A) � Nc(B). �

It is easy to see that any subalgebra and any quotient algebra of a linear
Heyting algebra is also linearly ordered. Moreover, each subset of a linear algebra
containing the zero- and the unit-element is closed under its operations →̇, ∪, ∩,
− (i.e., forms a subalgebra).

Let us define the sequence 〈Gn〉n�1 of Gödel–Heyting algebras. We choose
this sequence from the class of Jaśkowski algebras. Namely, let G1 be a degenerate
algebra and Gn+1 = Gn ⊕ G1. Note that the algebras Gn are finite and linearly
ordered. We will also consider the infinite linear algebra G∞ which is determined
by ordering of real numbers on the set{

1
n

: n is a natural number
}
∪ {0}.

Corollary 1.32.

(i) If 1 < n � m, then Gn is embeddable in Gm;

(ii) Gn is embeddable in G∞ for each n > 1;

(iii) Each finite linear algebra A is isomorphic with the algebra Gn, where n is
the cardinality of A.

This follows directly from Lemma 1.31.
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1.4 Propositional logics
Let S = 〈S, F1, . . . , Fn〉 be the algebra of a fixed propositional language. Any pair
〈R, X〉, where R is a set of rules (i.e., R ⊆ RS) and X ⊆ S, is called a system of
propositional logic (or a propositional logic). We say that X is the set of axioms
(of this logic) and R is the set of its primitive rules.

Consequence operations

A mapping Cn : 2S → 2S is called a consequence operation over S — or a closure
operation — iff

(i) X ⊆ Cn(X),

(ii) X ⊆ Y ⇒ Cn(X) ⊆ Cn(Y ),

(iii) Cn(Cn(X)) ⊆ Cn(X), for each X, Y ⊆ S.

A consequence Cn is said to be finitistic iff

(iv) Cn(X) =
⋃{Cn(Y ) : Y ∈ Fin(X)}, for each X ⊆ S

and it is compact if for each Y ⊆ S there is an X ∈ Fin(Y ) such that

(v) Cn(Y ) = S ⇒ Cn(X) = S.

Let Cn be a finitistic consequence operation. Then, one easily proves that Cn is
compact if and only if Cn({α1, . . . , αk}) = S for some α1, . . . , αk ∈ S.

A trivial example of a consequence operation is the inconsistent operation,
i.e., the consequence Cn such that Cn(X) = S for every X ⊆ S. A consequence
Cn is said to be consistent (Cn ∈ CNS) iff

(vi) Cn(∅) �= S

and Cn is complete (Post-complete) iff

(vii) Cn({α}) = S, for each α /∈ Cn(∅).
Let us define an ordering relation � on the family of all consequence operations
over S. If Cn1, Cn2 are two given consequences, then

Cn1 � Cn2 ⇔ (Cn1(X) ⊆ Cn2(X) , for each X ⊆ S).

It is evident that

Lemma 1.33. The following conditions are equivalent:

(i) Cn1 � Cn2;

(ii) Cn2 ◦ Cn1 = Cn2;

(iii) Cn1 ◦ Cn2 = Cn2.
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Given a family {Cnt : t ∈ T } of consequences, we define the operations∏
t∈T Cnt,

∐
t∈T Cnt as follows:

Definition 1.34.

(i)
(∏

t∈T Cnt

)
(X) =

⋂{Cnt(X) : t ∈ T };
(ii)

(∐
t∈T Cnt

)
(X) =

⋂{Cn(X) : Cnt � Cn for all t ∈ T }, for X ⊆ S.

It is easy to prove that both
∏

t∈T Cnt and
∐

t∈T Cnt are consequence oper-
ations over S and, what is more,

( ∐
t∈T

Cnt

)
(X) =

⋂
{Y : X ⊆ Y = Cnt(Y ) for all t ∈ T }.

Lemma 1.35. The family of all consequences over S is a complete lattice with �
as the lattice-ordering and

inf{Cnt : t ∈ T } =
∏
t∈T

Cnt , sup{Cnt : t ∈ T } =
∐
t∈T

Cnt.

The greatest element of the lattice is the inconsistent operation and the
operation Id such that Id(X) = X for all X ⊆ S is the least consequence over
S. It should be noted that the operator

∏
does not preserve the finiteness of the

consequences (in contrast to
∐

).
Let Cn be a consequence operation over S. A set X ⊆ S is said to be Cn-

closed iff X = Cn(X). The family of all Cn-closed sets is closed under arbitrary
intersections, i.e.,

Cn
( ⋂

{Cn(Xt) : t ∈ T }) =
⋂

{Cn(Xt) : t ∈ T }

for each {Xt : t ∈ T } ⊆ 2S. This family need not be, however, closed under unions.
We can only prove

Lemma 1.36. If Cn is finitistic and if {Xt : t ∈ T } is a chain of sets, then

Cn
( ⋃

{Xt : t ∈ T }) =
⋃

{Cn(Xt) : t ∈ T }.

We conclude that the family of all Cn-closed sets is a closure (or absolutely
multiplicative) system; the relation of inclusion is a lattice ordering on the family
and this lattice is complete with S as the greatest element and Cn(∅) as the least
one. Moreover, we have

inf{Xt : t ∈ T } =
⋂

{Xt : t ∈ T },
sup{Xt : t ∈ T } =Cn

( ⋃
{Xt : t ∈ T }),

if Xt = Cn(Xt) for all t ∈ T.
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A set X ⊆ S is said to be Cn-consistent iff Cn(X) �= S; X is Cn–maximal
provided that X is Cn-consistent and Cn(X ∪ {α}) = S for every α /∈ Cn(X). If
X is Cn-maximal, then Cn(X) is a maximal element in the family of Cn-closed
and Cn-consistent sets. A set X ⊆ S is Cn-axiomatizable provided that there is a
finite set Y such that Cn(X) = Cn(Y ).

Lemma 1.37. If there is a Cn-unaxiomatizable set, then the family of all Cn–
axiomatizable and Cn-closed sets is infinite.

Proof. Assume that X is not Cn-axiomatizable and let us consider the family
{Cn(Y ) : Y ∈ Fin(X)}. Suppose that the family is finite, i.e.,

{Cn(Y ) : Y ∈ Fin(X)} = {Cn(Y1), . . . , Cn(Yk)}
for some Y1, . . . , Yk ∈ Fin(X). Let us take Y0 = Y1 ∪ . . . ∪ Yk. Then Y0 ∈ Fin(X)
and Y ⊆ Cn(Y0) for every Y ∈ Fin(X). Thus, Cn(X) ⊆ Cn(Y0) which contradicts
our assumptions.

It has been shown that {Cn(Y ) : Y ∈ Fin(X)} is infinite. So is the family of
all Cn-axiomatizable and Cn-closed sets. �

Let us observe that the cardinality of all Cn-axiomatizable and Cn-closed
sets is less than the cardinality of S, i.e.,

Nc{Cn(X) : X ∈ Fin(S)} � Nc(S).

A set X is said to be Cn-independent if α /∈ Cn(X \ {α}) for every α ∈ X .
Observe that if Cn is finitistic, then any infinite Cn-independent set is not Cn-
axiomatizable.

Lemma 1.38. If X is Cn-independent, then for each X1, X2 ⊆ X,

X1 ⊆ X2 ⇔ Cn(X1) ⊆ Cn(X2).

As an immediate result of Lemmas 1.37 and 1.38 we obtain

Corollary 1.39. If Cn is finitistic over a countable language S and if there is an
infinite Cn-independent set, then

(i) c = Nc{Cn(X) : X ⊆ S};
(ii) ℵ0 = Nc{Cn(X) : X ∈ Fin(S)};
(iii) c = Nc{Cn(X) : Cn(X) is not Cn-axiomatizable}.

Consequences generated by rules of inference
Let R be a set of rules, i.e., let R ⊆ RS . A set X ⊆ S is said to be closed under
the rules R, in symbols R(X), provided that for every r ∈ R and every 〈Π, α〉 ∈ r,

Π ⊆ X ⇒ α ∈ X.
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Definition 1.40. For every X ⊆ S and R ⊆ RS , let

Cn(R, X) =
⋂

{Y ⊆ S : X ⊆ Y and R(Y )}.

Then Cn(R, X) can be proved to be the least set containing X and closed
with respect to the rules R. We have

Lemma 1.41. For every X ⊆ S and R ⊆ RS,

Cn(R, X) = X ⇔ R(X).

If α ∈ Cn(R, X), then α is said to be derivable from the set X by means of
the rules R. It can be shown that a formula α is derivable from X by means of R
if and only if α has a formal proof on the ground of the system 〈R, X〉, i.e.,

Lemma 1.42 (fin). α ∈ Cn(R, X) iff there is a finite sequence α1, . . . , αn of for-
mulas such that αn = α and for every i � n,

αi ∈ X ∨ 〈Π, αi〉 ∈ r for some r ∈ R and some Π ⊆ {α1, . . . , αi−1}.

The set Cn(R, X) can be considered to be a result of operating some map-
ping Cn on the pair 〈R, X〉. Each system 〈R, X〉 determines thus a consequence
(finitistic consequence if R is a set of finitary rules) over S:

CnRX(Y ) = Cn(R, X ∪ Y ), for each Y ⊆ S.

We will also write CnR if the set X of axioms is empty. It should be noticed that
each finitistic consequence operation over S can be generated in this way by some
propositional system; i.e., (cf. [64], 1958):

Theorem 1.43. For each finitistic consequence operation Cn, there is a set X ⊆ S
and a set R ⊆ RS such that Cn = CnRX .

Proof. Consider the rule r defined as follows:

〈Π, α〉 ∈ r ⇔ α ∈ Cn(Π), for α ∈ S and ∅ �= Π ∈ Fin(S).

Obviously, Cn(Y ) ⊆ Cn
({r}, Cn(∅)∪Y

)
for every Y ⊆ S. As Cn is a consequence,

〈Π, α〉 ∈ r ∧ Π ⊆ Cn(Y ) ⇒ α ∈ Cn(Y ).

Thus, Cn(Y ) is r-closed and hence Cn
({r}, Cn(∅) ∪ Y

) ⊆ Cn(Y ). �
Accepting Definition 1.1 (∞) we can prove — in a similar way to the one

above — that every consequence Cn is generated by some set R ⊆ RS of ‘instruc-
tions’:

Theorem 1.44 (∞). For each consequence operation Cn, there is a set R ⊆ RS

such that C = CnR.
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If Cn = CnRX , then the system 〈R, X〉 is said to be a base for Cn. It should
be noticed, however, that there are plenty of bases for any given consequence
operation; the concept of a base is not uniquely defined. On the other hand,
each propositional system 〈R, X〉 determines the consequence operation CnRX

uniquely. This is the reason why we consider propositional logics as pairs 〈R, X〉
rather than consequence operations.

Obviously, all notions defined in terms of consequence operations can be
reformulated in terms of propositional systems, and vice versa. For example, 〈R, X〉
is said to be consistent, 〈R, X〉 ∈ Cns, provided that CnRX is consistent, i.e.,
Cn(R, X) �= S. The Post-completeness of 〈R, X〉 can be defined now as

〈R, X〉 ∈ Cpl ⇔ (
Cn(R, X ∪ {α}) = S, for every α /∈ Cn(R, X)

)
.

The notion of compactness, axiomatizability and independency can also be
defined in a similar way.

Admissible and derivable rules

For each propositional system 〈R, X〉, where R ⊆ RS and X ⊆ S, one can define
two sets of rules of inference (see [38], 1965).

Definition 1.45. For each R ⊆ RS , r ∈ RS and X ⊆ S:

(i) r ∈ Adm(R, X) ⇔ Cn(R ∪ {r}, X) ⊆ Cn(R, X);

(ii) r ∈ Der(R, X) ⇔ (
Cn(R∪{r}, X∪Y ) ⊆ Cn(R, X∪Y ) , for all Y ⊆ S

)
.

The set Der(R, X) contains all rules derivable from R and X , Adm(R, X) is
the set of all rules admissible in the system 〈R, X〉. By Lemma 1.41, we easily get

Lemma 1.46. For each R ⊆ RS, r ∈ RS and X ⊆ S:

(i) r ∈ Adm(R, X) ⇔ r
(
Cn(R, X)

)
;

(ii) r ∈ Der(R, X) ⇔ (
r(Cn(R, X ∪ Y )) , for all Y ⊆ S

)
.

Therefore, r ∈ Adm(R, X) iff the rule r does not change the set of the
formulas provable on the ground of 〈R, X〉 and r ∈ Der(R, X) iff r is admissible
in every oversystem of 〈R, X〉, i.e.,

Der(R, X) =
⋂

{Adm(R, X ∪ Y ) : Y ⊆ S}.

Hence Der(R, X) ⊆ Adm(R, X). To show that this inclusion is not reversible, let
us consider the following rule over S2:

r :
α → (α → α)

α
; for all α ∈ S2
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and let X = {α → α : α ∈ S2}. It is easy to observe that the set X is closed under
the rules r and r0 (modus ponens). Thus, X = Cn({r}, X) = Cn({r0}, X) =
Cn({r, r0}, X). Hence we get r ∈ Adm({r0}, X) and r0 ∈ Adm({r}, X). But
r /∈ Der({r0}, X) since, for p ∈ At, the set X1 = X∪{p → (p → p)} is closed under
r0 and is not closed with respect to r: X1 = Cn({r0}, X1) �= Cn({r0, r}, X1). Simi-
larly, it can be shown that r0 /∈ Der({r}, X) because Cn({r0, r}, X∪{p, p → q}) �=
Cn({r}, X ∪ {p, p → q}) = X ∪ {p, p → q} for p, q ∈ At. Thus, Der({r0}, X) �=
Adm({r0}, X) = Adm({r}, X) �= Der({r}, X) and Der({r0}, X) �= Der({r}, X).

Some more interesting examples of rules which are 〈R, X〉 admissible but
which are not 〈R, X〉 derivable will be given later.

Lemma 1.47. For every R ⊆ RS, r ∈ RS and X ⊆ S:

(i) r ∈ Adm(R, X) ⇔ (
[Π ⊆ Cn(R, X) ⇒ α ∈ Cn(R, X)], for each 〈Π, α〉 ∈ r

)
;

(ii) r ∈ Der(R, X) ⇔ (
α ∈ Cn(R, X ∪ Π), for each 〈Π, α〉 ∈ r

)
.

Using the above lemma, one can show that Cn(Adm(R, X), X) = Cn(R, X)
and Cn(Der(R, X), X ∪Y ) = Cn(R, X ∪Y ). It should be noticed, however, that
Cn(Adm(R, X), X ∪ Y ) = Cn(R, X ∪ Y ) need not be true.

The following properties of the operations Adm and Der are immediate from
Lemma 1.47

Corollary 1.48. For every R ⊆ RS, and X ⊆ S:

(i) R ⊆ Adm(R, X);

(ii) Adm(Adm(R, X), X) = Adm(R, X).

Let us remark that the operation Adm is not monotonic, see the above ex-
ample.

Corollary 1.49. For every R, R1 ⊆ RS, and X, Y ⊆ S

(i) R ⊆ Der(R, X);

(ii) R ⊆ R1 ⇒ Der(R, X) ⊆ Der(R1, X);

(iii) X ⊆ Y ⇒ Der(R, X) ⊆ Der(R, Y );

(iv) Der(Der(R, X), X) = Der(R, X).

Both the operations Adm and Der are not finitistic, cf. [78], 1969.

Comparison of systems

Let 〈R, X〉, 〈R1, X1〉 be two propositional systems over S, i.e., let R, R1 ⊆ RS

and X, X1 ⊆ S.

Lemma 1.50. If X, X1 are non-empty, then

(i) Adm(R, X) = Adm(R1, X1) ⇔ Cn(R, X) = Cn(R1, X1);
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(ii) Der(R, X) = Der(R1, X1) ⇔ ∀Y ⊆S Cn(R, X ∪ Y ) = Cn(R1, X1 ∪ Y ).

Proof. (i): The implication (⇐) follows immediately from Lemma 1.46 (i). Now,
assume that Adm(R, X) = Adm(R1, X1) and let α ∈ Cn(R, X). We have to
prove that α ∈ Cn(R1, X1). Suppose that β ∈ X1 and let us consider the one-
element rule r = {〈{β}, α〉}. Obviously the rule r is admissible for 〈R, X〉 —
see Lemma 1.47 (i) — because α ∈ Cn(R, X). According to our assumptions
r ∈ Adm(R1, X1). But {β} ⊆ X1 ⊆ Cn(R1, X1) and hence, by 1.47 (i), α ∈
Cn(R1, X1).

It has been shown that Cn(R, X) ⊆ Cn(R1, X1). The proof of the reverse
inclusion is quite similar.

(ii): Assume that 〈R, X〉, 〈R1, X1〉 generate the same consequence operation
and let r ∈ Der(R, X). Thus, by Lemma 1.47 (ii),

α ∈ Cn(R, X ∪ Π) = Cn(R1, X1 ∪ Π) for all 〈Π, α〉 ∈ r.

We conclude that r ∈ Der(R1, X1) and hence Der(R, X) ⊆ Der(R1, X1). The
reverse inclusion can be shown by a similar argument.

Let us assume, on the other hand, that Der(R, X) = Der(R1, X1) and suppose
α ∈ Cn(R, X ∪ Y ) for some α ∈ S, Y ⊆ S (some finite Y ⊆ S).

Let β ∈ X1 and consider the one-element rule r = {〈Y ∪ {β}, α〉}. Since α ∈
∈ Cn(R, X∪Y ) ⊆ Cn(R, X∪Y ∪{β}), we infer that the rule r is derivable in 〈R, X〉
— see Lemma 1.47 (ii). Hence r ∈ Der(R1, X1), which yields α ∈ Cn(R1, X1∪Y ∪
{β}) =
= Cn(R1, X1 ∪ Y ). Thus, Cn(R, X ∪ Y ) ⊆ Cn(R1, X1 ∪ Y ) for each Y ⊆ S
(each finite Y ⊆ S). The proof of the reverse inclusion is analogous. �

The assumption that X , X1 are non-empty is necessary for the implications
(⇒). This is a result of the exclusion of axiomatic rules — see commentary after
Definition 1.1. The signs of equality can be replaced in Lemma 1.50 (ii) by the
inclusion. Such operation will be, however, forbidden in Lemma 1.50 (i). The
inclusion Adm(R, X) ⊆ Adm(R1, X1) yields neither Cn(R, X) ⊆ Cn(R1, X1) nor
Cn(R1, X1) ⊆ Cn(R, X). The inclusion Cn(R, X) ⊆ Cn(R1, X1) does not yield
any inclusion between Adm(R, X) and Adm(R1, X1).

The pair 〈R, X〉 is a subsystem of 〈R1, X1〉, in symbols 〈R, X〉 � 〈R1, X1〉, if
and only if X ⊆ Cn(R1, X1) and R ⊆ Der(R1, X1).

If 〈R, X〉 is a subsystem of 〈R1, X1〉, then we obtain

(i) Der(R, X) ⊆ Der(R1, X1),

(ii) Cn(R, X) ⊆ Cn(R1, X1);

i.e., all formulas and rules which are derivable from R and X are also derivable in
the system 〈R1, X1〉. It should be noticed that Adm(R, X) ⊆ Adm(R1, X1) is not
brought about by the relation � (nor is the reverse inclusion).
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If we assume additionally that X , X1 are non-empty, then the condition (i)
implies (ii) and hence

〈R, X〉 � 〈R1, X1〉 ⇔ Der(R, X) ⊆ Der(R1, X1).

It is also clear that the relation � is reflexive and transitive and hence

〈R, X〉 ≈ 〈R1, X1〉 ⇔ 〈R, X〉 � 〈R1, X1〉 ∧ 〈R1, X1〉 � 〈R, X〉
is an equivalence relation. The equivalence of 〈R, X〉 and 〈R1, X1〉 yields:

(i) Der(R, X) = Der(R1, X1);

(ii) Cn(R, X) = Cn(R1, X1);

(iii) Adm(R, X) = Adm(R1, X1).

Assuming that X , X1 are non-empty, one can prove

〈R, X〉 ≈ 〈R1, X1〉 ⇔ Der(R, X) = Der(R1, X1).

Using some properties of Adm and Der, we can state now

〈R, X〉 ≈ 〈Der(R, X), X〉 ≈ 〈R, Cn(R, X)〉 ≈ 〈Der(R, X), Cn(R, X)〉
� 〈Adm(R, X), X〉 ≈ 〈Adm(R, X), Cn(R, X)〉.

We will write 〈R, X〉 ≺ 〈R1, X1〉 when 〈R, X〉 � 〈R1, X1〉 and 〈R, X〉 �≈ 〈R1, X1〉.
It should be noted that in most cases

〈R, X〉 ≺ 〈Adm(R, X), Cn(R, X)〉.
The relations �, ≈ can also be defined in terms of consequence operations.

Lemma 1.51. For every X, X1 ⊆ S and every R, R1 ⊆ RS:

(i) 〈R, X〉 � 〈R1, X1〉 ⇔ CnRX � CnR1X1 ;

(ii) 〈R, X〉 ≈ 〈R1, X1〉 ⇔ CnRX = CnR1X1 .

One can say that the lattice ordering � on the family of all consequence
operations is induced by the relation �. Similarly, other definitions as introduced
for pairs 〈R, X〉 can also be formulated for consequence operations, e.g., the rule r
is said to be derivable (admissible) with respect to a consequence Cn, in symbols
r ∈ DER(Cn) (r ∈ ADM(Cn)) iff α ∈ Cn(Π) (iff Π ⊆ Cn(∅) ⇒ α ∈ Cn(∅)) for
every 〈Π, α〉 ∈ r.

From the family of all systems 〈R, X〉 generating a given consequence ope-
ration Cn we choose the pair 〈DER(Cn), Cn(∅)〉, which will be called a closed
system of a propositional logic. Any such system can also be considered in the
form 〈Der(R, X), Cn(R, X)〉 for some R ⊆ RS and X ⊆ S. Obviously,

〈R, X〉 ≈ 〈Der(R, X), Cn(R, X)〉.
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Given an indexed family {〈Rt, Xt〉 : t ∈ T } of propositional systems we define∏
t∈T

〈Rt, Xt〉 = 〈
⋂
t∈T

Der(Rt, Xt),
⋂
t∈T

Cn(Rt, Xt)〉,
∐
t∈T

〈Rt, Xt〉 = 〈
⋃
t∈T

Rt,
⋃
t∈T

Xt〉.

Note that
∏

t∈T 〈Rt, Xt〉 is a closed system, i.e.,

Lemma 1.52.

(i) Der
( ∏

t∈T 〈Rt, Xt〉
)

=
⋂

t∈T Der(Rt, Xt);

(ii) Cn
( ∏

t∈T 〈Rt, Xt〉
)

=
⋂

t∈T Cn(Rt, Xt).

The operations
∐

,
∏

correspond to the lattice-theoretical operations of
supremum and infimum in the family of all consequences (finitistic consequences).

Structurality

Any e : At → S can be uniquely extended to an endomorphism he : S → S, see
Lemma 1.4. The mapping e is usually called a substitution. Let α = α(p1, . . . , pk),
that is At(α) ⊆ {p1, , . . . , pk}, and e(pi) = γi for each i. The result of the sub-
stitution in the formula α (i.e., the formula he(α)) depends in fact on the values
the substitution takes on the variables occurring in α. For this reason, the result
of the substitution is sometimes noted in the form α[p1/γ1 . . . pk/γk] or even as
α(γ1, . . . , γk). We have

he(α) = α[p1/γ1 . . . pk/γk] = α(γ1, . . . , γk).

The substitution rule over S is defined by

〈{α}, β〉 ∈ r∗ ⇔ (β = he(α), for some e : At → S)

or by the scheme

r∗ :
α

he(α)
for all α ∈ S and all e : At → S

and the consequence operation based on the substitution rule is denoted by Sb.
We have, for each X ⊆ S,

Sb(X) = Cn({r∗}, X) = {α : α ∈ he(X), for some e : At → S}.

A rule r ∈ RS is said to be structural, in symbols r ∈ Struct, iff

〈Π, α〉 ∈ r ⇒ 〈he(Π), he(α)〉 ∈ r, for all e : At → S.
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The definition of structurality is due to J. Łoś and R. Suszko [64], 1958. One could
say that any reasoning based on structural rules preserves its validity in any similar
situation (which means, is preserved under substitutions). All propositional rules
occurring in formal logic (e.g., modus ponens) are structural — the only exception
is the substitution rule!

A system 〈R, X〉, where R ⊆ RS and X ⊆ S, is called invariant, in symbols
〈R, X〉 ∈ Inv, if R ⊆ Struct and X = Sb(X). If R ⊆ Struct, then 〈R ∪ {r∗}, X〉 is
said to be substitutional.

A sequent 〈Π, α〉 is called a basic sequent of a structural rule r′ iff

r′ = {〈he(Π), he(α)〉 : for all substitutions e }.

If r′ has a basic sequent, then it is said to be a standard rule. Let us observe that
〈{p → q, p}, q〉 is a basic sequent of the modus ponens rule. One could always
replace any structural rule, say r, with its standard subrules as

r =
⋃

{r′ : r′ ⊆ r and r′ is standard}.

Obviously, any standard rule is structural but not conversely. As an important
example of a structural rule without basic sequent, let us introduce the so-called
‘big rule’, denoted by rX , for each X ⊆ S.

Definition 1.53. For each X, Π ⊆ S and each α ∈ S,

〈Π, α〉 ∈ rX ⇔ (
he(Π) ⊆ X ⇒ he(α) ∈ X, for all substitutions e

)
.

It is easily seen that rX is structural but it need not be standard. For example,
〈{p + q}, p〉 ∈ r{p}, 〈{p → q}, p〉 ∈ r{p} but 〈{q}, p〉 /∈ r{p}.

The concept of structurality (and that of invariantness) is in some sense too
restricted. For example, the rule

r :
α(p)
α(q)

where α contains one variable and p, q ∈ At

is not structural. It is, however, preserved under all substitutions e : At → S such
that e(At) ⊆ At. It proves to be useful to have a concept of structurality restricted
to a certain set Γ ⊆ S. Thus, let us define

r∗|Γ :
α

he(α)
for all α ∈ S and all e : At → Γ.

Then we take SbΓ(X) = Cn
({r∗|Γ}, X)

. Of course, r∗|S = r∗, SbS = Sb and
r∗|∅ = ∅, Sb∅(X) = X for every X ⊆ S. It is also easy to see that

SbΓ(X ∪ Y ) = SbΓ(X) ∪ SbΓ(Y ), for each X, Y ⊆ S.
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Definition 1.54. A rule r is said to be Γ-structural, in symbols r ∈ Struct(Γ), if

〈Π, α〉 ∈ r ⇒ 〈he(Π), he(α)〉 ∈ r, for all e : At → Γ.

We say that a system 〈R, X〉 is Γ-invariant, in symbols 〈R, X〉 ∈ Γ − Inv,
iff R ⊆ Struct(Γ) and X = SbΓ(X). Obviously, the concept of S-structurality
(S-invariantness) coincides with structurality (invariantness), i.e.,

Struct = Struct(S) and Inv = S − Inv.

On the other hand, all rules over S are ∅-structural and hence 〈R, X〉 ∈ ∅ − Inv
for every R ⊆ RS and X ⊆ S.

Lemma 1.55. For every Γ1, Γ2 ⊆ S:

(i) Γ1 ⊆ Γ2 ⇒ Struct(Γ2) ⊆ Struct(Γ1);

(ii) Γ1 ⊆ Γ2 ⇒ Γ2 − Inv ⊆ Γ1 − Inv.

The proof is very easy. It follows from Lemma 1.55 that for every Γ ⊆ S,

Struct ⊆ Struct(Γ) ⊆ RS and Inv ⊆ Γ − Inv ⊆ ∅ − Inv.

Lemma 1.56. If R ⊆ Struct(Γ) and X ⊆ S, then

he
(
Cn(R, X)

) ⊆ Cn
(
R, he(X)

)
, for every e : At → Γ.

We have left this lemma without proof.

Corollary 1.57. If R ⊆ Struct(Γ) and X, Y ⊆ S, then

he
(
Cn(R, SbΓ(X) ∪ Y )

) ⊆ Cn
(
R, SbΓ(X) ∪ he(Y )

)
, for every e : At → Γ.

With the help of Lemma 1.56, we obtain also the following theorem on the
reduction of the substitution rule to the set of axioms:

Theorem 1.58. If R ⊆ Struct(Γ) and X ⊆ S, then

Cn
(
R ∪ {r∗|Γ}, X

)
= Cn

(
R, SbΓ(X)

)
.

Proof. We have, of course, Cn
(
R, SbΓ(X)

) ⊆ Cn
(
R∪{r∗|Γ}, X

)
. To prove the re-

verse inclusion let α∈Cn
(
R, SbΓ(X)

)
. By Lemma 1.56, he(α)∈Cn

(
R, he(SbΓ(X))

)
if e : At → Γ. Since he(SbΓ(X)) ⊆ SbΓ(X), we conclude that β ∈ Cn

(
R, SbΓ(X)

)
for each β ∈ S such that 〈{α}, β〉 ∈ r∗|Γ. It shows that the set Cn

(
R, SbΓ(X)

)
is

closed under the rule r∗|Γ. Since the same set is closed under the rules R, then
Cn

(
R ∪ {r∗|Γ}, X

) ⊆ Cn
(
R, SbΓ(X)

)
on the basis of Definition 1.40. �

From the above it follows that, for every X ⊆ S and R ⊆ Struct(Γ),

SbΓ

(
Cn(R, X)

) ⊆ Cn
(
R, SbΓ(X)

)
.

Thus, each Γ-invariant system 〈R, X〉 is closed under the rule r∗|Γ, which also
means that r∗|Γ ∈ Adm(R, SbΓ(X)).
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Corollary 1.59. If X ⊆ S, r ∈ RS and R ⊆ Struct(Γ), then

r ∈ Der(R ∪ {r∗|Γ}, X) ⇔ (
r ∈ Adm(R, SbΓ(X) ∪ SbΓ(Y )), for all Y ⊆ S

)
.

Let us refer to our remark on non-structurality of the substitution rule. It
appears that r∗ is not only non-structural but also non-derivable in any consistent
system 〈R, Sb(X)〉 with structural rules R and with non-empty X . However, the
rule r∗ will be admissible in any such system.

Theorem 1.60. For every R ⊆ Struct and every X ⊆ S:

(i) r∗ ∈ Adm(R, Sb(X));

(ii) r∗ /∈ Der(R, Sb(X)) if ∅ �= Cn
(
R, Sb(X)

) �= S.

Proof. By Corollary 1.59 it suffices to show (ii) only. Let us notice that 〈{p}, q〉 ∈ r∗
for every p, q ∈ At. If e : At → S is a substitution such that e(p) ∈ Cn

(
R, Sb(X)

)
and e(q) /∈ Cn

(
R, Sb(X)

)
, then he(q) /∈ Cn

(
R, Sb(X) ∪ {he(p)}) and hence, by

Lemma 1.56, q /∈ Cn
(
R, Sb(X) ∪ {p}). Then, according to Lemma 1.47 (ii), r∗ /∈

Der(R, Sb(X)). �

The addition of the substitution rule to an invariant system 〈R, X〉 does not
change the set of formulas derivable in 〈R, X〉. The systems 〈R, X〉, 〈R∪ {r∗}, X〉
will be, however, non-equivalent. Some propositional logics, as for example the
classical logic, will be further considered in two non-equivalent versions: invariant
〈R, Sb(X)〉, where R ⊆ Struct, and substitutional 〈R ∪ {r∗}, X〉.

Let us proceed to the consequence formalism of propositional logics. Instead
of Γ-structurality of rules and Γ-invariantness of propositional systems we can
speak about Γ-structurality of consequence operations.

A consequence Cn is said to be Γ-structural, in symbols Cn ∈ STRUCT(Γ),
provided that he(Cn(X)) ⊆ Cn(he(X)) for each e : At → Γ and each X ⊆ S.

Similarly, Cn is called structural, Cn ∈ STRUCT (cf. [64], 1958) if and only
if he(Cn(X)) ⊆ Cn(he(X)) for each X ⊆ S and each e : At → S.

On the basis of Corollary 1.57 any Γ-invariant system 〈R, X〉 determines a
Γ-structural consequence CnRX . On the other hand, any Γ-structural consequence
is generated by some Γ-invariant system (see the proof of Theorem 1.43).

Without any proof let us note that the family of all structural consequences
(Γ-structural consequences) forms a complete sublattice of the lattice of all con-
sequences over S, see [140], 1970, i.e.,

Lemma 1.61. If {Cnt : t ∈ T } is an indexed family of Γ-structural (structural)
consequences, then the operations

∏
t∈T Cnt and

∐
t∈T Cnt are also Γ-structural

(structural).
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1.5 Brief exposition of the most important propositional
logics

To make some of the notions introduced in this chapter more familiar, we discuss
in this section concrete examples of propositional logics.

Intuitionistic logic

This logic is formalized in the standard language S2 = 〈S2,→, +, ·,∼〉. Let Ai be
the set of the following axioms,

(1) p → (q → p)

(2) (p → (p → q)) → (p → q)

(3) (p → q) → [(q → s) → (p → s)]

(4) p → p + q

(5) q → p + q

(6) (p → s) → ((q → s) → (p + q → s))

(7) p · q → p

(8) p · q → q

(9) (p → q) → [(p → r) → (p → q · r)]
(10) p → (∼ p → q)

(11) (p →∼ p) →∼ p

and let R0∗ = {r0, r∗}, where r0 is the modus ponens and r∗ is the substitution
rule over S2. Then 〈R0∗, Ai〉 is a system of intuitionistic propositional logic. This
logic will also be considered in the invariant version 〈R0, Sb(Ai)〉, where R0 = {r0}
and Sb(Ai) contains all substitutions of the formulas from Ai. By Theorem 1.58,

Cn(R0∗, Ai) = Cn
(
R0, Sb(Ai)

)
.

Let Cni be the consequence operation generated by 〈R0, Sb(Ai)〉, i.e.,

Cni(X) = Cn
(
R0, Sb(Ai) ∪ X

)
for each X ⊆ S2.

One of the most important properties of intuitionistic logic (and many other
systems) is the deduction theorem:

Theorem 1.62. For every X ⊆ S2 and every α, β ∈ S2,

β ∈ Cni(X ∪ {α}) ⇔ (α → β) ∈ Cni(X).
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The deduction theorem can also be viewed as a characterization of the intu-
itionistic implication. The other connectives of intuitionistic logic can be charac-
terized in a similar way.

Theorem 1.63. For every X ⊆ S2 and every α, β ∈ S2:

(i) Cni(X ∪ {α · β}) = Cni(X ∪ {α, β});
(ii) Cni(X ∪ {α + β}) = Cni(X ∪ {α}) ∩ Cni(X ∪ {β}).

The easy proof based on the axioms (4)–(9) and on the deduction theorem
is left to the reader. Observe that the inclusion (⊆) in (i) states derivability, on
the ground of 〈R0, Sb(Ai)〉, of the adjunction rule

ra :
α, β

α · β for all α, β ∈ S2.

We recall that α ≡ β is the abbreviation for (α → β) · (β → α). From Theorems
1.62 and 1.63 we derive

Corollary 1.64. For every X ⊆ S2 and every α, β ∈ S2,

(α ≡ β) ∈ Cni(X) ⇔ Cni(X ∪ {α}) = Cni(X ∪ {β}).
The characterization of the intuitionistic negation is as follows.

Theorem 1.65. For every X ⊆ S2 and every α ∈ S2,

∼ α ∈ Cni(X) ⇔ Cni(X ∪ {α}) = S2.

On the grounds of 1.62–1.65, we get

Corollary 1.66. For every X ⊆ S2 and every α, β ∈ S2:

(i) α → β ∈ Cni(X) ⇔ Cni

(
X ∪ {β}) ⊆ Cni

(
X ∪ {α});

(ii) α + β ∈ Cni(X) ⇔ Cni

(
X ∪ {α}) ∩ Cni

(
X ∪ {β}) ⊆ Cni(X);

(iii) α · β ∈ Cni(X) ⇔ Cni

(
X ∪ {α}) ∪ Cni

(
X ∪ {β}) ⊆ Cni(X);

(iv) ∼ α ∈ Cni(X) ⇔ S2 ⊆ Cni

(
X ∪ {α}).

One can show (see [87], 1960) that Cni is the least consequence operation
over S2 satisfying the above conditions (i)–(iv), i.e., Cni fulfills conditions (i)–(iv)
and if a consequence operation Cn fulfills (i)–(iv) then Cni � Cn.

Assume that S is an implicational sublanguage of S2. Wajsberg’s separation
theorem says that

S ∩ Cni(∅) = Cn
(
R0, S ∩ Sb(Ai)

)
.

We pay special attention to the positive fragment of the intuitionistic logic, i.e., to
the logic of Hilbert. The set of axioms of Hilbert’s logic will be further denoted by
AH , that is AH = S1 ∩ Ai. We will also consider the pure implicational fragment
of intuitionistic logic, that is the pure implicational logic of Hilbert. This logic
is determined by the modus ponens and the substitution rule formalized in the
language S → = 〈S→,→〉 and by the formulas A→

H = Ai ∩ S→ = AH ∩ S→.
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Classical logic

Let A2 = Ai ∪ {∼∼ p → p} where Ai is the set of axioms for intuitionistic
propositional logic. The system 〈R0, Sb(A2)〉 (or 〈R0∗, A2〉) is called the classical
propositional logic. Obviously

Cn
(
R0∗, Ai

) ⊆ Cn
(
R0∗, A2

)
.

Let Cn2 be the consequence operation generated by 〈R0, Sb(A2)〉, i.e.,

Cn2(X) = Cn
(
R0, Sb(A2) ∪ X

)
, for each X ⊆ S2.

The system of classical logic will play a privileged role in our considerations. This
system enjoys many specific properties. In particular, it follows from Corollary
1.66 that

Corollary 1.67. For each X ⊆ S2 and each α, β ∈ S2:

(i) (α → β) ∈ Cn2(X) ⇔ β ∈ Cn2(X ∪ {α});
(ii) Cn2(X ∪ {α · β}) = Cn2(X ∪ {α, β});
(iii) Cn2(X ∪ {α + β}) = Cn2(X ∪ {α}) ∩ Cn2(X ∪ {β});
(iv) ∼ α ∈ Cn2(X) ⇔ Cn2(X ∪ {α}) = S2;

(v) α ∈ Cn2(X) ⇔ Cn2(X ∪ {∼ α}) = S2.

One can show (see [77], 1969) that the operation determined by 〈R0, Sb(A2)〉
is the greatest structural and consistent consequence operation satisfying the above
conditions (i)–(iv). Since, on the other hand, 〈R0, Sb(A2)〉 is the least system
satisfying the conditions (i)–(v), Corollary 1.67 determines uniquely the classical
propositional logic: a system 〈R, A〉 ∈ Inv ∩ Cns fulfills (i)–(v) if and only if
〈R, A〉 ≈ 〈R0, Sb(A2)〉 Conditions (i)–(v) have been formulated for the classical
consequence operation by A. Tarski [117], 1930.

It should be remembered that the axioms A2 of the classical logic that we
have presented are not separable, since

S ∩ Cn
(
R0, Sb(A2)

) �= Cn
(
R0, Sb(A2) ∩ S

)
for any proper implicational sublanguage S of S2. The formula ((p → q) → p) → p,
for example, is not derivable in Hilbert’s logic and hence it cannot be deduced by
means of r0 from the positive axioms of 〈R0, Sb(A2)〉.

We can axiomatize all implicative fragments of classical logic by adjoining to
the axioms A2 ∩ S the formula ((p → q) → p) → p. Sets of axioms that are thus
obtained will be denoted by A→·

2 , A→
2 , A→+

2 respectively.
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The modal system S5

The modal system S5, can be defined over S2 by the following set of axioms,

AS5: (1) (p → (q → s)) → ((p → q) → (p → s))

(2) (s → t) → (q → (s → t))

(3) p · q → p

(4) p · q → q

(5) (p → q) → ((p → s) → (p → q · s))
(6) p → p + q

(7) q → p + q

(8) (p → s) → ((q → s) → (p + q → s))

(9) ∼ (s → t) → ((s → t) → q)

(10) p· ∼ p → q

(11) (p →∼ p) →∼ p

(12) p· ∼ (p · q) →∼ q

(13) (p →∼∼ p) · (∼∼ p → p)

and rules: r0 (modus ponens), r∗ (substitution), ra (adjunction). Let us take
R0a∗ = {r0, ra, r∗} and R0a = {r0, ra}. Obviously, according to Theorem 1.58,

Cn
(
R0a∗, AS5

)
= Cn

(
R0a, Sb(AS5)

)
.

We shall now write down the deduction theorem for S5.

Theorem 1.68. If X ⊆ {ϕ → ψ : ϕ, ψ ∈ S2}, then for every α, β ∈ S2,

β ∈ Cn
(
R0a, Sb(AS5) ∪ X ∪ {α}) ⇒ (α → β) ∈ Cn

(
R0a, Sb(AS5) ∪ X

)
.

Proof. Let α ∈ S2 and consider the set

Y = {β ∈ S2 : α → β ∈ Cn
(
R0a, Sb(AS5) ∪ X

)}.
First, we prove that Sb(AS5)∪X ∪{α} ⊆ Y . If β ∈ Sb(AS5)∪X , then by (2) and
r0 we obtain α → β ∈ Cn

(
R0, Sb(AS5) ∪ X

)
, hence β ∈ Y . If α = β, then

α → β ∈ Sb(p → p) ⊆ Cn
(
R0a, Sb(AS5)

) ⊆ Cn
(
R0a, Sb(AS5) ∪ X

)
.

Thus, Sb(AS5) ∪ X ∪ {α} ⊆ Y .
Now, let us try to show that the set Y is closed under the rule r0, i.e.,

β , β → γ ∈ Y ⇒ γ ∈ Y.



1.5. Brief exposition of the most important propositional logics 35

Assume that α → β and α → (β → γ) belong to Cn
(
R0a, Sb(AS5) ∪ X

)
. Since

(α → (β → γ)) → ((α → β) → (α → γ)) is a substitution of the first axiom
and since Cn

(
R0a, Sb(AS5) ∪ X

)
is closed under r0, it follows that α → γ ∈

Cn
(
R0a, Sb(AS5) ∪ X

)
. Thus, γ ∈ Y which was to be proved.

Similarly, it can be shown that Y is closed under ra since, by (5),

α → β, α → γ ∈ Cn
(
R0a, Sb(AS5)∪X

) ⇒ (α → β · γ) ∈ Cn
(
R0a, Sb(AS5)∪X

)
.

Then, in the light of Definition 1.40, we have

Cn
(
R0a, Sb(AS5) ∪ X ∪ {α}) ⊆ Y,

i.e., if β ∈ Cn
(
R0a, Sb(AS5)∪X∪{α}), then α → β ∈ Cn

(
R0a, Sb(AS5)∪X

)
. �

Observe that the reverse implication holds for every X ⊆ S2. From Theorem
1.68 it immediately follows that the following formulas are derivable in S5.

(14) (p → q) → ((q → s) → (p → s))

(15) (q → s) → ((p → q) → (p → s))

(16) ((p → p) → p) → p

(17) q → (p → p)

Let β1 · . . . · βk denote the formula (. . . (β1 · β2) · . . .) · βk. The deduction
theorem for S5 can also be formulated as follows.

Corollary 1.69. For every X ⊆ S2 and every α ∈ S2,

α ∈ Cn
(
R0a, Sb(AS5) ∪ X

)
⇔ (β1 · . . . · βk → α) ∈ Cn

(
R0a, Sb(AS5)

)
, for some β1, . . . , βk ∈ X.

The characterization of negation in S5 is similar to that in classical logic.

Theorem 1.70. For every X ⊆ S2 and every α ∈ S2:

(i) ∼ α ∈ Cn
(
R0a, Sb(AS5) ∪ X

) ⇔ Cn
(
R0a, Sb(AS5) ∪ X ∪ {α}) = S2;

(ii) α ∈ Cn
(
R0a, Sb(AS5) ∪ X

) ⇔ Cn
(
R0a, Sb(AS5) ∪ X ∪ {∼ α}) = S2.

Proof. We will prove (i) only since (ii) follows from (i) and axiom (13). Moreover,
let us observe that the implication (⇒) in (i) is a simple consequence of the
adjunction rule and (10).

Assume that Cn
(
R0a, Sb(AS5) ∪ X ∪ {α}) = S2. Then

p· ∼ p ∈ Cn
(
R0a, Sb(AS5) ∪ {β1, . . . , βk} ∪ {α})

for some β1, . . . , βk ∈ X . Hence, by (10),

Cn
(
R0a, Sb(AS5) ∪ {β1, . . . , βk, α}) = S2.
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Using the deduction theorem Corollary 1.69 we obtain then

(β1 · . . . · βk · α) →∼ (β1 · . . . · βk · α) ∈ Cn
(
R0a, Sb(AS5)

)
and hence, by (11) and ra,

(β1 · . . . · βk)· ∼ (β1 · . . . · βk · α) ∈ Cn
(
R0a, Sb(AS5) ∪ X

)
.

Then it follows from (12) that ∼ α ∈ Cn
(
R0a, Sb(AS5) ∪ X

)
. �

Then, using Theorems 1.68 and 1.70, we can derive the following formulas.

(18) (p → q) → (∼ q →∼ p)

(19) (p →∼ q) → (q →∼ p)

(20) (∼ p → q) → (∼ q → p)

(21) (∼ p →∼ q) → (q → p)

(22) ∼ (s → t) → (q →∼ (s → t)) by (9) and (19) .

Theorem 1.71. For every X ⊆ S2 and every α, β ∈ S2:

(i) Cn
(
R0a, Sb(AS5) ∪ X ∪ {α · β}) = Cn

(
R0a, Sb(AS5) ∪ X ∪ {α, β});

(ii) Cn
(
R0a, Sb(AS5) ∪ X ∪ {α + β}) = Cn

(
R0a, Sb(AS5) ∪ X ∪ {α})

∩ Cn
(
R0a, Sb(AS5) ∪ X ∪ {β}).

Proof. (i) and the inclusion ⊆ in (ii) are obvious. If X is empty, then also the
inclusion ⊇ in (ii) holds on the basis of Theorem 1.68 and (8).

Assume that X �= ∅ and let

ϕ ∈ Cn
(
R0a, Sb(AS5) ∪ X ∪ {α}) ∩ Cn

(
R0a, Sb(AS5) ∪ X ∪ {β}).

Then ϕ ∈ Cn
(
R0a, Sb(AS5)∪{γ1, . . . , γk, α})∩Cn

(
R0a, Sb(AS5)∪{γ1, . . . , γk, β})

for some γ1, . . . , γk ∈ X and hence, by Theorem 1.70 (ii),

S2 = Cn
(
R0a, Sb(AS5) ∪ {γ1, . . . , γk, α,∼ ϕ})

= Cn
(
R0a, Sb(AS5) ∪ {γ1, . . . , γk, β,∼ ϕ}).

Using Theorem 1.70 (i) we obtain next

∼ (γ1 · . . . · γk· ∼ ϕ) ∈ Cn
(
R0a, Sb(AS5) ∪ {α}) ∩ Cn

(
R0a, Sb(AS5) ∪ {β}).

By the deduction theorem and by (8), we have then

∼ (γ1 · . . . · γk· ∼ ϕ) ∈ Cn
(
R0a, Sb(AS5) ∪ {α + β})

and hence — see (12) —

∼∼ ϕ ∈ Cn
(
R0a, Sb(AS5) ∪ X ∪ {α + β}). �
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The above results allow us to derive in S5 the following formulas.

(23) ∼ (p + q) ≡ (∼ p· ∼ q)

(24) ∼ (p · q) ≡ (∼ p+ ∼ q)

(25) p · (∼ p + q) → q

(26) p · q ≡ q · p
(27) p · (q · s) ≡ (p · q) · s
(28) p + q ≡ q + p

(29) p + (q + s) ≡ (p + q) + s

(30) p · (q + s) ≡ (p · q) + (p · s)
(31) p + (q · s) ≡ (p + q) · (p + s)

(32) p+ ∼ p

(33) (p → p) · q ≡ q

(34) ∼ (p → p) · q ≡∼ (p → p)

(35) (p → (q ≡ s)) → (p · q ≡ p · s).
Next, let us observe that 〈R0a, Sb(AS5)〉 is a system with equivalence.

(36) p ≡ p

(37) (p ≡ q) → (q ≡ p)

(38) (p ≡ q) · (q ≡ s) → (p ≡ s)

(39) (p ≡ q) · (s ≡ t) → (p → s ≡ q → t)

(40) (p ≡ q) · (s ≡ t) → (p + s ≡ q + t)

(41) (p ≡ q) · (s ≡ t) → (p · s ≡ q · t)
(42) (p ≡ q) → (∼ p ≡∼ q).

The easy proofs of (36)–(42) are left to the reader. From (36)–(42) immedi-
ately follows

Lemma 1.72. If e : At → S2, f : At → S2 and α ∈ S2, then

he(α) ≡ hf (α) ∈ Cn
(
R0a, Sb(AS5) ∪ {e(γ) ≡ f(γ) : γ ∈ At}).

The proof is by induction on the length of α.
Let us introduce the abbreviation

�α = (α → α) → α, for α ∈ S2.

It can be easily shown that �α ≡ (β → β) → α ∈ Cn
(
R0a∗, AS5

)
, see (17), for

every α, β ∈ S2. Moreover,
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(43) �p → p by (16)

(44) (p → q) → �(p → q) by (2)

(45) ∼ �p → � ∼ �p by (22)

(46) �p + �q → �(p + q) by 1.68, 1.71 (ii)

(47) �p · �q → �(p · q) by 1.68, 1.71 (i).

Next we define the ‘�-closed’ formulas of S2,

α ∈ S� iff α → �α ∈ Cn
(
R0a∗, AS5

)
or equivalently,

α ∈ S� iff α ≡ �α ∈ Cn
(
R0a∗, AS5

)
.

We list the following properties of �-closed formulas.

Lemma 1.73. For every α, β ∈ S2:

(i) α → β ∈ S�;

(ii) α ∈ S� ⇒∼ α ∈ S�;

(iii) α, β ∈ S� ⇒ α · β, α + β ∈ S�;

(iv) Cn
(
R0a∗, AS5

) ⊆ S�.

Proof. Properties (i)–o-(iii) follow from (44)–o-(47). To prove (iv) assume that
α ∈ ∈ Cn

(
R0a∗, AS5

)
, then also α ∈ Cn

(
R0a, Sb(AS5) ∪ {p → p}) and hence, by

Theorem 1.68, �α ∈ Cn
(
R0a, Sb(AS5)

)
. �

As an immediate consequence of Theorem 1.68 we obtain

Corollary 1.74. For every X ⊆ S� and every α, β ∈ S2,

β ∈ Cn
(
R0a, Sb(AS5) ∪ X ∪ {α}) ⇔ (α → β) ∈ Cn

(
R0a, Sb(AS5) ∪ X

)
.

Let us note that S� is a proper subset of S2 since γ /∈ S� for any atomic
formula γ. Hence, the rule

r� :
α

�α
for α ∈ S2

is not derivable in 〈R0a, Sb(AS5)〉. In the light of Lemma 1.73 (iv) this rule is,
however, admissible in 〈R0a, Sb(AS5)〉, i.e.,

α ∈ Cn
(
R0a, Sb(AS5)

) ⇒ �α ∈ Cn
(
R0a, Sb(AS5)

)
.

Without proof we state that the rule r� is derivable in 〈R0a∗, AS5〉 (see [113],
1951):
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Theorem 1.75. �α ∈ Cn
(
R0a∗, AS5 ∪ {α}), for every α ∈ S2.

S5 was the name given by C.I. Lewis [60], 1932 to a system equivalent with
〈R0a∗, AS5〉. In Kurt Gödel’s paper [26], 1933, the term S5 had another mean-
ing; there was considered a system equivalent with 〈R0�∗, AS5〉, where R0�∗ =
{r0, r�, r∗}. Further in [59], 1957, S5 was in turn equivalent with 〈R0∗, AS5〉. The
above list of systems named as S5 is far from being complete (see, e.g., [23], 1965).
It does not matter which rules are combined with a standard set of axioms as long
as we speak only about formulas derivable in S5, since

Cn
(
R0∗, AS5

)
= Cn

(
R0a∗, AS5

)
= Cn

(
R0�∗, AS5

)
.

However, it can be shown that

〈R0∗, AS5〉 �≈ 〈R0a∗, AS5〉 ≈ 〈R0�∗, AS5〉
which means, in particular, that Gödel’s rule r� is not derivable in 〈R0∗, AS5〉
— see [135], 1982. Thus, derivability of rules as well as some metalogical prop-
erties, as for example the deduction theorem, are dependent upon the choice of
primitive rules for S5. There is no difference in properties between 〈R0a∗, AS5〉
and 〈R0�∗, AS5〉 since both systems are equivalent (though 〈R0a, Sb(AS5)〉 and
〈R0�, Sb(AS5)〉 are not equivalent). But Meredith’s version of S5, i.e., 〈R0∗, AS5〉
is essentially weaker than those of Lewis and Gödel.

The fact that there are non-equivalent systems which have the same name S5
is apt to generate terminological confusion. To minimize such confusion the term
S5 is used here only for 〈R0a∗, AS5〉 (or 〈R0a, Sb(AS5)〉 — the invariant version
of S5). The reader can clearly see that we have described the system S5 more
extensively and more precisely than the remaining systems. It is so just because
of the ambiguities mentioned above.

Łukasiewicz’s logics

The many-valued logics of Łukasiewicz are usually defined by use of logical ma-
trices — we take up this subject matter in the next chapter. Our approach to
these systems is a bit non-standard as we define them syntactically. The ∞-valued
Łukasiewicz logic is meant as the system 〈R0∗, Ł∞〉 (or 〈R0, Sb( Ł∞)〉 — the
invariant version) where the set Ł∞ contains the following formulas:

(1) (p → q) → ((q → s) → (p → s))

(2) p → (q → p)

(3) ((p → q) → q) → ((q → p) → p)

(4) p · q → p

(5) p · q → q

(6) (p → q) → ((p → s) → (p → q · s))
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(7) p → p + q

(8) q → p + q

(9) (p → s) → ((q → s) → (p + q → s))

(10) (∼ p →∼ q) → (q → p).

The n-valued logic of Łukasiewicz 〈R0∗, Łn〉 (or 〈R0, Sb( Łn)〉) , where n � 2,
contains the above 10 axioms supplemented by the following two axioms (wherein
we use the abbreviation p →0 q = q and p →k+1 q = p → (p →k q):

(11) (p →n q) → (p →n−1 q)

(12) (p ≡ (p →k∼ p)) →n−1 q

for each k � n such that k + 2 is not a divisor of n − 1. It is known that

Cn(R0∗, Ł∞) =
⋂

{Cn(R0∗, Łn) : n � 2}.

Łukasiewicz’s many-valued logics possess many non-standard properties. For
instance, we get the following variant of the deduction theorem, see [73], 1964;

Theorem 1.76. For every X ⊆ S2 and every α, β ∈ S2:

(i) β ∈ Cn
(
R0, Sb(Łn) ∪ X ∪ {α}) ⇔ (α →n−1 β) ∈ Cn

(
R0, Sb(Łn) ∪ X

)
;

(ii) β ∈ Cn
(
R0, Sb(Ł∞) ∪ X ∪ {α}) ⇔ ∃n (α →n β) ∈ Cn

(
R0, Sb(Ł∞) ∪ X

)
.

Corollary 1.77. For every X ⊆ S2 and every α ∈ S2:

(i) Cn
(
R0, Sb(Łn) ∪ X ∪ {α}) = S2 ⇔ (α →n−2∼ α) ∈ Cn

(
R0, Sb(Łn) ∪ X);

(ii) Cn
(
R0, Sb(Ł∞)∪X ∪{α}) = S2 ⇔ ∃n (α →n∼ α) ∈ Cn

(
R0, Sb(Ł∞)∪X).

Properties of the disjunction and conjunction in Łukasiewicz logics are pretty
standard and quite similar to those of other systems, see Theorem 1.63, Corollary
1.67 and Theorem 1.71.



Chapter 2

Semantic methods in propositional
logic

In the first chapter we have introduced syntactic notions concerning propositional
logics. The purpose of the present chapter is to give a semantic approach to the
further study of formal systems. This approach is algebraic in its nature and
therefore we will use elementary notions and results of the theory of abstract
algebra. Our discussion is based on the notion of the consequence operation ge-
nerated by a given relational system. (Pre)ordered algebras are examined first
and next we consider logical matrices. Then these structures are applied to define
propositional logics. In Section 2.5 some relationships between propositional logics
and lattice theory are presented.

2.1 Preordered sets

An attempt is made to adopt for (pre)ordered sets some concepts used in lattice
theory. Special attention is given to the notion of a filter.

Preorderings

Let A be a non-empty set. A binary relation � on A is said to be a preorder relation
(or quasi-order in the terminology due to H. Rasiowa and R. Sikorski [107], 1963)
iff the following conditions hold for all x, y, z ∈ A:

(i) x � x (reflexivity),

(ii) x � y ∧ y � z ⇒ x � z (transitivity).

Any order relation fulfills, additionally, the condition

(iii) x � y ∧ y � x ⇒ x = y (weak asymmetry).
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A preordered (ordered) set is any pair 〈A, �〉, where � is a preorder (order)
relation on A.

Lemma 2.1. Let 〈A, �〉 be a preordered set. Then

(i) the relation ≈ defined on A as

x ≈ y ⇔ x � y ∧ y � x

is an equivalence on A;

(ii) the relation � defined on A/≈ by

[x] � [y] ⇔ x � y

is an ordering on A/≈.

Assume that 〈A, �〉 is a preordered set and let X ⊆ A, a ∈ A. Then a is an
upper bound of X , in symbols a ∈ Bu(X), iff y � a for each y ∈ X . Similarly, a
is called a lower bound of X , a ∈ Bl(X), iff a � y for each y ∈ X . Moreover, we
assume the following definitions:

(i) Great(X) = X ∩ Bu(X),

(ii) Least(X) = X ∩ Bl(X),

(iii) Sup(X) = Least
(
Bu(X)

)
,

(iv) Inf(X) = Great
(
Bl(X)

)
.

If � is an ordering, then the sets Sup(X), Inf(X), Great(X), Least(X) con-
tain at most one element — this element is the supremum of the set X , the infimum
of the set X , the greatest element of X , the least element of X respectively. In case
of preorderings, these sets may contain more than one element.

Lemma 2.2. If 〈A, �〉 is a preordered set and if X, Y ⊆ A, then

(i) X ⊆ Y ⇒ Bu(Y ) ⊆ Bu(X) ∧ Bl(Y ) ⊆ Bl(X);

(ii) X ⊆ Bl

(
Bu(X)

) ∩ Bu

(
Bl(X)

)
.

Lemma 2.3. If 〈A, �〉 is a preordered set, then

(i) Bu(∅) = Bl(∅) = A;

(ii) Bu(A) = Great(A) and Bl(A) = Least(A).

Both these lemmas are obvious.
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Filters
If 〈A, �〉 is a preordered set, then a non-empty set H ⊆ A is a filter in 〈A, �〉 iff
Bu

(
Bl(X)

) ⊆ H for each X ∈ Fin(H).
Our definition is not a literal translation of the usual definition of a filter in

lattice theory. The reason is that we define the counterpart of the ordinary notion
in preordered sets generally, not in a kind of pre-lattices. Moreover, we want to
preserve somewhat more advanced properties of lattice filters whereas the faithful
copy of the lattice definition, written down in Lemma 2.4, does not do it.

Lemma 2.4. If H is a filter in 〈A, �〉, then

(i) x � y ∧ x ∈ H ⇒ y ∈ H ;

(ii) X ∈ Fin(H) ⇒ Inf(X) ⊆ H.

Easy proof of this lemma can be omitted. It should be emphasized, however,
that from (i) and (ii) it does not follow that H is a filter in 〈A, �〉. For instance,
let A = {2, 3, 12, 18, 30} and let

x � y ⇔ x is a divisor of y.

Then Inf{12, 18} = ∅, Inf{12} = {12} and Inf{18} = {18}, hence the set {12, 18}
fulfills the conditions (i) and (ii) from Lemma 2.4. But {12, 18} is not a filter since
Bu

(
Bl({12, 18})) = {12, 18, 30}.
Now we can prove some lemmas which show the soundness of the accepted

definition of a filter.

Lemma 2.5. If 〈A, �〉 is a lattice ordered set and if H ⊆ A is non-empty, then H
is a filter in 〈A, �〉 iff

(i) x � y ∧ x ∈ H ⇒ y ∈ H ;

(ii) x, y ∈ H ⇒ x ∩ y ∈ H.

Proof. Let H be a lattice filter (i.e., fulfills (i) and (ii) above), X ∈ Fin(H) and
a ∈ Bu

(
Bl(X)

)
. Then x � a for every x ∈ Bl(X), hence a1 ∩ . . . ∩ an � a where

X = {a1, . . . , an}. But a1 ∩ . . . ∩ an ∈ H by (ii), thus a ∈ H by (i).
Let H be a filter in 〈A, �〉, By Lemma 2.4 (i) we need to prove (ii) only.

Assume that x, y ∈ H . We have, of course, x ∩ y ∈ Inf{x, y} for every x, y ∈ A.
Then, by 2.4 (ii), we get x ∩ y ∈ Inf{x, y} ⊆ H . �
Lemma 2.6. If 〈A, �〉 is a preordered set, then Bu

(
Bl(X)

)
is a filter in 〈A, �〉 for

every non-empty X ⊆ A.

Proof. Let X0 be a finite subset of Bu

(
Bl(X)

)
. By Lemma 2.2 (i),

Bu

(
Bl(X0)

) ⊆ Bu

(
Bl

(
Bu

(
Bl(X)

)))
and by 2.2 (ii),

Bl(X) ⊆ Bl

(
Bu

(
Bl(X)

))
.

Thus, by Lemma 2.2 (i), Bu

(
Bl(X0)

) ⊆ Bu

(
Bl(X)

)
. �
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Since Bu

({x}) = Bu

(
Bl({x})

)
for every x ∈ A, we obtain from Lemma 2.6:

Corollary 2.7. If 〈A, �〉 is a preordered set, then Bu

({x}) is a filter in 〈A, �〉 for
every x ∈ A.

The set Bu

({x}) = {z ∈ A : x � z} will be called the principal filter
generated by the element x.

Lemma 2.8. If 〈A, �〉 is a preordered set, then

(i) the intersection of any family of filters in 〈A, �〉 is a filter provided it is not
empty;

(ii) the union of any (non-empty) chain of filters is a filter.

Proof. (i): Assume that L is a family of filters in 〈A, �〉 such that
⋂

L �= ∅ and
let X be a finite subset of

⋂
L . Then X ⊆ H for each H ∈ L and, since H is a

filter, Bu

(
Bl(X)

) ⊆ H.

Thus, Bu

(
Bl(X)

) ⊆ ⋂{H : H ∈ L } =
⋂

L which was to be proved.
(ii): Let L be a chain of filters in 〈A, �〉. Then, for every finite X ⊆ ⋃

L
there exists H ∈ L such that X ⊆ H . Thus Bu

(
Bl(X)

) ⊆ H ⊆ ⋃
L , hence

⋃
L

is a filter. �
The family of all filters in 〈A, �〉 can be regarded as an ordered set with

the order relation being the set-theoretical inclusion. Let us prove a lemma from
which it immediately follows that 〈A, �〉 need not contain the least filter.

Lemma 2.9. In any preordered set 〈A, �〉,
Great(A) =

⋂
{H : H is a filter in A}.

Proof. We have Bu

(
Bl(∅)

)
= Great(A) by Lemma 2.3. Hence Great(A) ⊆ H if H

is a filter.
To prove the inclusion (⊇) it suffices to consider all principal filters, i.e., the

sets Bu

({x}) for x ∈ A, see Corollary 2.7. If y is an element of all filters, then
y ∈ Bu

({x}) for each x ∈ A. Thus x � y for each x ∈ A and hence y ∈ Great(A)
by the definition. �

The family of all filters in 〈A, �〉 contains the least element iff Great(A) �= ∅
and this least element, if it exists, is equal to Great(A). A filter H in 〈A, �〉 is
said to be proper provided that H �= A. A proper filter is called maximal iff it is
a maximal element in the family of all proper filters.

Theorem 2.10. If 〈A, �〉 is a preordered set and Least(A) �= ∅, then any proper
filter is contained in a maximal filter.

An easy proof based on Zorn’s lemma will be omitted.
A general definition of an ideal in ordered sets was given by [24], 1954. The

dual definition of a filter can be found in R. Suszko [116], 1977. However, that
notion is not equivalent to the just defined notion of a filter in a preordered set;
these two notions coincide only in lattices.
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Filters generated by sets
Let 〈A, �〉 be a preordered set. A filter H in 〈A, �〉 is called the filter generated
by a (non-empty) set X ⊆ A if H is the least, with respect to inclusion, filter
containing X . Since the family of all filters is closed under arbitrary non-empty
intersections (see Lemma 2.8 (i)), the filter generated by X can be constructed as
the intersection of all filters containing X .

Let us define the filter operation F : 2A → 2A. Take X ⊆ A and set

F (X) =
⋂

{H : H is a filter containing X}.

If X is non-empty, then obviously F (X) is the filter generated by X . It is
easy to prove

Corollary 2.11. For every non-empty H ⊆ A, H �= A:

(i) H is a filter iff F (H) = H ;

(ii) H is a maximal filter iff H = F (H) and F (H ∪ {x}) = A for every x /∈ H.

The next result is an easy consequence of the introduced definitions.

Corollary 2.12. For every X, Y ⊆ A:

(i) X ⊆ F (X);

(ii) X ⊆ Y ⇒ F (X) ⊆ F (Y );

(iii) F
(
F (X)

) ⊆ F (X);

(iv) F (X) =
⋃{F (Y ) : Y ∈ Fin(X)}.

Lemma 2.13. In every preordered set 〈A, �〉:
(i) F (∅) = F

(
Great(A)

)
= Great(A) = Bu

(
Bl(∅)

)
;

(ii) F (X) = Bu

(
Bl(X)

)
, for each finite set X ⊆ A;

(iii) F ({a}) = A if a ∈ Least(A).

Proof. (i): By Lemma 2.9 and Lemma 2.3 we get immediately

F (∅) = Great(A) = Bu

(
Bl(∅)

)
.

Moreover, it immediately follows from Corollary 2.12 that F
(
F (∅)) = F (∅) and

hence F
(
Great(A)

)
= F

(
F (∅)) = F (∅).

(ii): The case that X is empty is proved by (i). Assume that ∅ �= X ∈ Fin(A).
Then Bu

(
Bl(X)

) ⊆ F (X), since X ⊆ F (X) and F (X) is a filter. On the other
hand, F (X) ⊆ Bu

(
Bl(X)

)
by Lemma 2.6.

(iii): Let us assume that a ∈ Least(A). Then a � x for all x ∈ A. The set
F ({a}) is a filter, thus it follows from Lemma 2.4 (i) that x ∈ F ({a}) for all
x ∈ A. �
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Induced preorderings

Given a preordered set 〈A, �〉 and a non-empty subset B ⊆ A, we can induce on
B the relation �B by

x �B y ⇔ x � y, for all x, y ∈ B.

The relation �B is called the restriction of � to the set B. If there is no danger
of confusion we shall omit the subscript B. Note that the restriction of a preorder
relation is always a preorder relation.

Lemma 2.14. If 〈A, �〉 is a preordered set and if ∅ �= B ⊆ A, then for each filter
H in 〈B, �B〉 there is a filter G in 〈A, �〉 such that

H = G ∩ B.

Proof. Assume that H is a filter in 〈B, �B〉 and let G be the filter in 〈A, �〉
generated by the set H . Obviously H ⊆ G ∩ B and we have to prove only that
G ∩ B ⊆ H .

Let us agree that Bl(X) and Bu(X), for X ⊆ A, will denote the sets of
bounds in 〈A, �〉 and that B1

l (X), B1
u(X) (for X ⊆ B) will be the subsets of B

determined by the relation �B.
It is easy to verify that

B1
l (X) = B ∩ Bl(X) and B1

u(X) = B ∩ Bu(X)

for each X ⊆ B.
Suppose that x ∈ G ∩ B. Since G is the filter in 〈A, �〉 generated by H , it

follows from Corollary 2.12 (iv) and Lemma 2.13 (ii) that x ∈ B ∩Bu

(
Bl(X)

)
for

some finite set X ⊆ H . By Lemma 2.2 (i),

Bu

(
Bl(X)

) ⊆ Bu

(
B ∩ Bl(X)

)
and hence

x ∈ B ∩ (
Bu

(
B ∩ Bl(X)

))
= B1

u

(
B1

l (X)
)
.

But H is a filter in 〈B, �B〉 and X ∈ Fin(H), then x ∈ H . �

Let us note that there is a preordered set 〈A, �〉 such that G ∩ B is not a
filter in 〈B, �B〉 for some filter G in 〈A, �〉 and non-empty B ⊆ A. For instance,
let A = {2, 4, 8, 12, 48} and let

x � y ⇔ x is a divisor of y.

Then G = {4, 8, 12, 48} is a filter in 〈A, �〉 but G∩B is not a filter in 〈B, �〉 where
B = {2, 8, 12, 48}.



2.1. Preordered sets 47

Products of preordered sets
Let {〈At, �t〉}t∈T be an indexed family of preordered sets. The product of this
family will be considered as the pair

〈 P
t∈T

At, �〉

where the preordering � is defined as

〈xt〉t∈T � 〈yt〉t∈T ⇔ (
xt �t yt, for each t ∈ T

)
.

The relation � can also be defined by

x � y ⇔ (
πt(x) �t πt(y), for each t ∈ T

)
where x, y are elements of the product and πt is the projection onto the t-axis.

The symbols Bt
u( ), Bt

l ( ), Greatt( ), . . . stand for the subsets of At in relation
to �t. The appropriate subsets of the product will be denoted by Bu( ), Bl( ),
Great( ), . . . and so on.

Let X ⊆ P
t∈T

At be a set which is kept fixed in the next three statements.

Lemma 2.15.

(i) Bu(X) = P
t∈T

Bt
u

(
πt(X)

)
;

(ii) Bl(X) = P
t∈T

Bt
l

(
πt(X)

)
.

Proof. (i): If a ∈ Bu(X), then πt(x) �t πt(a) for every x ∈ X and every t ∈ T ,
hence πt(a) ∈ Bt

u

(
πt(X)

)
for all t ∈ T .

On the other hand, if a ∈ P
t∈T

Bt
u

(
πt(X)

)
, then πt(a) ∈ Bt

u

(
πt(X)

)
for each

t ∈ T . Thus πt(x) �t πt(a) for all t ∈ T and for all x ∈ X , therefore a ∈ Bu(X).
The proof of (ii) is similar. �

Corollary 2.16.

(i) πt

(
Bu(X)

)
= Bt

u

(
πt(X)

)
, if Bu(X) �= ∅;

(ii) πt

(
Bl(X)

)
= Bt

l

(
πt(X)

)
, if Bl(X) �= ∅.

Lemma 2.17.

(i) Great(X) = X ∩ P
t∈T

Greatt
(
πt(X)

)
;

(ii) Least(X) = X ∩ P
t∈T

Leastt
(
πt(X)

)
;

(iii) Sup(X) = P
t∈T

Supt
(
πt(X)

)
;

(iv) Inf(X) = P
t∈T

Inft
(
πt(X)

)
.



48 Chapter 2. Semantic methods in propositional logic

Proof. It will be only shown that (i), (iv) hold because the proofs of (ii), (iii) are
quite similar.

(i): If a ∈ Great(X) = X ∩ Bu(X), then if follows from Corollary 2.16 that
πt(a) ∈ Bt

u

(
πt(X)

)
for every t ∈ T and hence πt(a) ∈ πt(X) ∩ Bt

u

(
πt(X)

)
=

Greatt
(
πt(X)

)
for every t ∈ T . On the other hand,

X ∩ P
t∈T

Greatt
(
πt(X)

) ⊆ X ∩ P
t∈T

Bt
u

(
πt(X)

)
= X ∩ Bu(X) = Great(X).

(iv): We have

Inf(X) = Great
(
Bl(X)

)
= Bl(X) ∩ P

t∈T
Greatt

(
πt(Bl(X))

)
2.16= Bl(X) ∩ P

t∈T
Greatt

(
Bt

l (πt(X))
)

= P
t∈T

Bt
l

(
πt(X)

) ∩ P
t∈T

Inft
(
πt(X)

)
= P

t∈T

(
Bt

l (πt(X)) ∩ Inft(πt(X))
)

= P
t∈T

Inft
(
πt(X)

)
.

�
The following theorem describes some properties of filters in products.

Theorem 2.18. Assume that Bt
l (Y ) �= ∅ for all t ∈ T and all finite Y ⊆ At. Then:

(i) if Ht, for each t ∈ T , is a filter in 〈A, �t〉, then P
t∈T

Ht is a filter in the

product;

(ii) if H is a filter in the product, then πt(H) is a filter in 〈At, �t〉.
Proof. (i): Let X be a finite subset of P

t∈T
Ht. Then, obviously, πt(X) ∈ Fin(Ht)

for each t ∈ T and Bt
u

(
Bt

l (πt(X))
) ⊆ Ht as Ht is a filter. Hence by Lemma 2.15

and Corollary 2.16,

Bu

(
Bl(X)

)
= P

t∈T
Bt

u

(
Bt

l (πt(X))
) ⊆ P

t∈T
Ht.

(ii): Let X0 be a finite subset of πt(H) for some t ∈ T . Then there exists
X ∈ Fin(H) such that X0 = πt(X). Since H is a filter, we obtain

P
s∈T

Bs
u

(
Bs

l (πs(X))
)

= Bu

(
Bl(X)

) ⊆ H

on the basis of 2.15 and 2.16 and hence

Bt
u

(
Bt

l (X0)
)

= Bt
u

(
Bt

l (πt(X))
) ⊆ πt(H). �

It should be remarked that filters in the product need not be of the form
P

t∈T
Ht where Ht, for any t ∈ T , is a filter in At. For instance, let T be an infinite

set and At = {0, 1} for every t ∈ T and the ordering �t is induced from the set of
natural numbers, i.e., 0 �t 1, 0 �t 0, 1 �t 1. Take

H = {x : πt(x) = 0 for a finite number of t’s }
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and note that H is a filter in the product. Moreover, πt(H) = {0, 1} for each t ∈ T
and hence H �= P

t∈T
At = P

t∈T
πt(H).

According to our convention the symbol F t( ) stands for the filter operation
in 〈At, �t〉; the operation in the product is denoted by F( ).

Theorem 2.19. Assume that Bt
l (Y ) �= ∅ for all t ∈ T and all finite Y ⊆ At. Then

(i) F(X) ⊆ P
t∈T

F t
(
πt(X)

)
, for every X ⊆ P

t∈T
At;

(ii) F(X) = P
t∈T

F t
(
πt(X)

)
, for every finite X ⊆ P

t∈T
At.

Proof. (i): If X is empty, then according to Lemma 2.13 (i) we need to show

Great
(

P
t∈T

At

) ⊆ P
t∈T

Greatt(At).

This inclusion, however, follows immediately from Lemma 2.17 (i).
Let X �= ∅. Note that X ⊆ P

t∈T
πt(X) ⊆ P

t∈T
F t

(
πt(X)

)
. Moreover, by The-

orem 2.18 (i), the set P
t∈T

F t
(
πt(X)

)
is a filter in the product. Thus F(X) ⊆

P
t∈T

F t
(
πt(X)

)
since F(X) is the least filter in the product containing X .

(ii): If X is finite, then πt(X) ∈ Fin(At) for every t ∈ T . Hence, by
Lemma 2.13 (ii), F t

(
πt(X)

)
= Bt

u

(
Bt

l (πt(X))
)

and F(X) = Bu

(
Bl(X)

)
. Thus,

it follows from Lemma 2.15 and Corollary 2.16 that F(X) = Bu

(
Bl(X)

)
=

P
t∈T

Bt
u

(
πt(Bl(X))

)
= P

t∈T
Bt

u

(
Bt

l (πt(X))
)

= P
t∈T

F t
(
πt(X)

)
. �

The next result gives some further information on filters in finite products.

Theorem 2.20. Assume that the set T is finite and let Bt
l (Y ) �= ∅ for all t ∈ T

and for all finite Y ⊆ At. Then H is a filter in the product if and only if for every
t ∈ T there is a filter Ht in 〈At, �t〉 such that H = P

t∈T
Ht.

Proof. By Theorem 2.18 it suffices to show that

H = P
t∈T

πt(H)

for each filter H in the product.
The inclusion (⊆) is obvious. To prove (⊇) assume that 〈xt〉t∈T ∈ P

t∈T
πt(H).

Since the set T is finite, there exists then a finite set X ⊆ H such that xt ∈ πt(X)
for every t ∈ T .

The set H is a filter, hence Bu

(
Bl(X)

) ⊆ H . Thus, by Lemma 2.15 and
Corollary 2.16,

〈xt〉t∈T ∈ P
t∈T

πt(X) ⊆ P
t∈T

Bt
u

(
Bt

l (πt(X))
)

⊆ P
t∈T

Bt
u

(
πt(Bl(X))

) ⊆ Bu

(
Bl(X)

) ⊆ H. �
Corollary 2.21. If T is finite, then F(X) = P

t∈T
F t

(
πt(X)

)
for every set X ⊆ P

t∈T
At,

provided that Bt
l (Y ) �= ∅ for all t ∈ T and all finite Y ⊆ At.
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2.2 Preordered algebras
A preordered algebra is a system 〈A , �〉 where A is an abstract algebra and � is
a preorder relation on A (as we agreed A denotes the universe of A ). Preordered
algebras will be denoted by German capital letters A, B, C, . . . .

As an example of the notion let us mention any system 〈A, →̇,∪,∩,−, �〉
where →̇,∪,∩,− are Heyting (or Boolean) operations defined in the standard way
by means of the order relation � on A. Let us note that any Heyting order relation
� can also be defined by use of →̇,∪,∩,−. In the general case of a preordered (or
ordered) algebra, any relationships between the operations and the preordering
need not appear.

Consequence operations

Let S be the algebra of a fixed propositional language based on the infinite set At
of propositional variables and let A = 〈A , �〉 be a preordered algebra such that
A and S are similar. We define in a standard way (see [115], 1962, [86], 1974)
the consequence operation generated by A:

−→
A : 2S → 2S.

Definition 2.22. For every X ⊆ S and every α ∈ S,

α ∈ −→
A (X) ⇔ (

hv(α) ∈ F
(
hv(X)

)
, for every v : At → A

)
where F : 2A → 2A is the filter operation determined by the preordering � and
hv : S → A is the homomorphism generated by the valuation v : At → A.

Since F
(
hv(X)

)
is the least filter, provided it is non-empty, containing hv(X),

we can equivalently reformulate Definition 2.22 as follows.

Lemma 2.23. α ∈ −→
A (X) if and only if hv(X) ⊆ H ⇒ hv(α) ∈ H for every

filter H in 〈A, �〉 and every valuation v : At → A.

As an immediate result of 2.22 and 2.12 we obtain

Corollary 2.24. For every X, Y ⊆ S:

(i) X ⊆ −→
A (X);

(ii) X ⊆ Y ⇒ −→
A (X) ⊆ −→

A (Y );

(iii)
−→
A

(−→
A (X)

) ⊆ −→
A (X);

(iv) he
(−→
A (X)

) ⊆ −→
A

(
he(X)

)
, for every e : At → S.

Thus,
−→
A is a structural consequence operation over S. Let us note that

−→
A

need not be finitistic. Some examples of non-finitistic operations
−→
A are presented

in Section 2.5.
Next we define the set E(A) of all formulas valid (or true) in A.
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Definition 2.25. α ∈ E(A) ⇔ (hv(α) ∈ Great(A), for every v : At → A).

Since Great(A) = F (∅) — see Lemma 2.13 (i) — we conclude that a formula
α is A-valid if and only if α is derivable by means of

−→
A from the empty set, i.e.,

E(A) =
−→
A (∅).

Let A = 〈A , �〉 and B = 〈B, �1〉 be two similar preordered algebras. If
there is an isomorphism h between the algebras A and B such that

x � y ⇔ h(x) �1 h(y), for all x, y ∈ A,

then A and B are called isomorphic. We will write A ∼= B for ‘A and B are isomor-
phic’. Further we will examine only those properties of preordered algebras which
are invariant under isomorphism. Therefore, we will not distinguish isomorphic
structures.

B = 〈B, �1〉 is called a substructure of A = 〈A , �〉, in symbols B ⊆ A, iff
B is a subalgebra of A and �1 is the restriction of � to B.

Lemma 2.26. For every pair of preordered algebras A and B:

(i) if A ∼= B, then
−→
A =

−→
B;

(ii) if B ⊆ A, then
−→
A � −→

B.

Proof. The property (i) is obvious. To show (ii) let us assume that B ⊆ A and let
α /∈ −→

B(X) for some X ⊆ S, α ∈ S.
From Lemma 2.23 it follows that hv(X) ⊆ H and hv(α) /∈ H for some

valuation v : At → B and some filter H in B. But the preordering in B is induced
from A and hence, by Lemma 2.14, H = B ∩ G for some filter G in A. We have
hv(X) ⊆ B∩G and hv(α) ∈ B \H . Thus, hv(X) ⊆ G and hv(α) /∈ G which yields,
on the basis of 2.23, α /∈ −→

A (X). �

Finite preordered algebras

As it was mentioned, the operation
−→
A need not be finitistic. It can be shown,

however, that finite preordered algebras generate finitistic consequence operations.

Theorem 2.27. If A = 〈A , �〉 is a finite preordered algebra and X ⊆ S, then

−→
A (X) ⊆

⋃
{−→A (Y ) : Y ∈ Fin(X)}.

Proof. Assume that α /∈ −→
A (Y ) for each Y ∈ Fin(X). The symbol V stands for

the family of all valuations v : At → A and let V (Y ), for each Y ∈ Fin(X), be
defined by

(i) v ∈ V (Y ) ⇔ hv(α) /∈ F
(
hv(Y )

)
.
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From the assumptions it immediately follows that V (Y ) is non-empty for
each Y ∈ Fin(X). Moreover, it is easy to observe that

(ii) Y1 ⊆ Y2 ⇒ V (Y2) ⊆ V (Y1), for all Y1, Y2 ∈ Fin(X).

We will consider the Boolean algebra determined by 〈2V ,⊆〉 where ⊆ is the
set-theoretical relation of inclusion. By (ii), we have ∅ �= V (Y1 ∪ . . . ∪ Yn) ⊆
V (Y1) ∩ . . . ∩ V (Yn) and hence the set V (Y1) ∩ . . . ∩ V (Yn) is non-empty for
every Y1, . . . , Yn ∈ Fin(X). Thus, the subset {V (Y ) : Y ∈ Fin(X)} of the Boolean
algebra 〈2V ,⊆〉 has the finite intersection property. Then there exists an ultrafilter
H in 2V such that V (Y ) ∈ H for each finite set Y ⊆ X (see Theorem 1.18). Of
course, V ∈ H because V is the greatest element in 2V . Moreover,

(iii)
⋃

a∈A

{v ∈ V : v(p) = a} = V , for every p ∈ At.

But H is a prime filter — see Corollary 1.22 — and A is a finite set, hence by (iii)
we get

(iv) For every p ∈ At there is an element a ∈ A such that

{v ∈ V : v(p) = a} ∈ H.

Moreover, it is obvious that

(v) {v ∈ V : v(p) = a} ∩ {v ∈ V : v(p) = b} = ∅ /∈ H if a �= b.

Let us define a valuation w : At → A by putting

(vi) w(p) = a ⇔ {v ∈ V : v(p) = a} ∈ H , for every p ∈ At.

From (iv) and (v) it follows that the definition is correct. Obviously,

(vii) {v ∈ V : v(p) = w(p)} ∈ H , for every p ∈ At.

Consider Y ∈ Fin(X) and let M = At(Y ) ∪ At(α). Since M is finite and H is a
filter, by (vii) we get

(viii) {v ∈ V : v|M = w|M} =
⋂

p∈M{v ∈ V : v(p) = w(p)} ∈ H .

Thus, we conclude that the set V (Y ) ∩ {v ∈ V : v|M = w|M} is non-empty
as an element of H . Then, by (i), there is a v ∈ V such that v|M = w|M and
hv(α) /∈ F

(
hv(Y )

)
. But it has been assumed that M = At(Y ) ∪ At(α), hence

hw(α) /∈ F
(
hw(Y )

)
for any finite set Y ⊆ X . By Corollary 2.12 (iv), hw(α) /∈

F
(
hw(X)

)
, which completes the proof. �

The above theorem is a version of the known result by J. Łoś and R. Suszko
[64], 1958. In the above proof we have used the technique of ultraproducts.
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A-valid and A-normal rules
In the previous chapter we defined admissible and derivable rules of a given syn-
tactical system 〈R, X〉, see Definition 1.45. If we turn to semantic treatment of
propositional logic the situation changes. We can admittedly take an arbitrary
set X ⊆ S as the set of axioms (or premises) and the set of primitive rules is
replaced by the consequence operation

−→
A generated by a given semantics A. Now,

the counterparts of admissible and derivable rules, namely the valid (unfailing)
and normal rules, are defined as follows:

Definition 2.28. For each X ⊆ S and r ∈ RS:

(i) r ∈ V (A, X) ⇔ (
Π ⊆ −→

A (X) ⇒ α ∈ −→
A (X), for each 〈Π, α〉 ∈ r

)
;

(ii) r ∈ N(A, X) ⇔ α ∈ −→
A (X ∪ Π), for each 〈Π, α〉 ∈ r.

If X = ∅, then instead of V (A, ∅) (or N(A, ∅)) we will write down V (A) (or
N(A)). The rule r is A-valid iff r ∈ V (A), and r is A-normal iff r ∈ N(A). Of course,
V (A, X) = Adm(N(A), X) = Adm(V (A, X), X) and N(A, X) = Der(N(A), X)
for each set X . The connections between validity and normality of rules can be
stated by the equations

N(A, X) =
⋂

{V (A, Y ) : X ⊆ Y },
N(A) =

⋂
{V (A, X) : X ⊆ S}.

The analogy between admissible and valid rules as well as between derivable
and normal rules is quite clear. It is obvious that

N(A) = Der(
−→
A ) = Der

(
N(A), E(A)

)
,

V (A) = Adm(
−→
A ) = Adm

(
N(A), E(A)

)
.

From the structurality of
−→
A it follows that r∗ ∈ V (A). We have N(A) ⊆ V (A)

and, moreover, the reverse inclusion V (A) ⊆ N(A) does not hold in general; we
have r∗ /∈ N(A) if ∅ �= E(A) �= S.

Products of preordered algebras

Let {At}t∈T , where T �= ∅, be an indexed family of similar preordered algebras
(At = 〈At, �t〉 for t ∈ T ) such that Bt

l (Y ) �= ∅ for all t ∈ T and all finite Y ⊆ At.
The product of this family is the preordered algebra

P
t∈T

At = 〈 P
t∈T

At, �t〉

with the relation � defined as

〈xt〉t∈T � 〈yt〉t∈T ⇔ (
xt �t yt, for all t ∈ T

)
.
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Theorem 2.29.
−−−→
P

t∈T
At(X) ⊆ ⋂

t∈T

−→
At(X), for every X ⊆ S.

Proof. Assume that α ∈ −−−→
P

t∈T
At(X) and let {ht}t∈T be a family of homomorphisms

such that ht : S → At for each t ∈ T . The mapping h defined as

h(ϕ) = 〈ht(ϕ)〉t∈T for ϕ ∈ S

is a homomorphism from S into P
t∈T

At — see Lemma 1.6. Thus, by the definition

of the consequence operation
−→
A , we get h(α) ∈ F(h(X)) where F denotes the

filter operation in the product. Now, we apply Theorem 2.19 to get

h(α) ∈ P
t∈T

F t
(
πt(h(X))

)
where F t stands for the filter operation in At for each t ∈ T . Hence, we have
ht(α) = πt

(
h(α)

) ∈ F t
(
ht(X)

)
for each t ∈ T . Since the above holds for any family

{ht}t∈T of homomorphisms, we conclude that α ∈ −→
At(X) for every t ∈ T . �

It can be shown that the inclusion
⋂

t∈T

−→
At(X) ⊆ −−−→

P
t∈T

At(X) need not be true.

Let us observe, however, that this inclusion is implied by

(	) F
(
hv(X)

)
= P

t∈T
F t

(
πt(hv(X))

)
, for every v : At → P

t∈T
At.

Indeed, assume (	) and let α ∈ −→
At(X) for each t ∈ T . Since πt ◦ hv, for every

v : At → P
t∈T

At, is a homomorphism from S into At, we have

hv(α) = 〈πt ◦ hv(α)〉t∈T ∈ P
t∈T

F t
(
πt ◦ hv(X)

)
and hence, by (	), we get hv(α) ∈ F

(
hv(X)

)
for every v.

Using the above observation together with Theorem 2.19 and Corollary 2.21,
we obtain

Corollary 2.30.

(i)
−−−→
P

t∈T
At(X) =

⋂
t∈T

−→
At(X), for every finite X ⊆ S;

(ii) If the set T is finite, then

−−−→
P

t∈T
At(X) =

⋂
t∈T

−→
At(X), for every X ⊆ S.

Now, let us assume that At = A for every t ∈ T . The symbol AT will stand for
the product of the family {At}t∈T , i.e., for the T -power of the preordered algebra
A. Let us prove
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Theorem 2.31. If Nc(S) � Nc(T ), then
−→
AT is a finitistic consequence operation.

Proof. It follows from Corollary 2.30 that
−→
AT (Y ) =

−→
A (Y ) for every finite Y ⊆ S.

Thus, in order to prove the theorem it suffices to show that

−→
AT (X) ⊆

⋂
{−→A (Y ) : Y ∈ Fin(X)}, for each infinite X ⊆ S.

Assume that α /∈ −→
A (Y ) for every Y ∈ Fin(X). Since Nc

(
Fin(X)

)
� Nc(T ),

there exists a mapping f from T onto Fin∗(X) = Fin(X) \ {∅}. In the sequel we
will write Xt instead of f(t).

It has been assumed that α /∈ −→
A (Xt) for every t ∈ T . Hence, we can choose

(by the Axiom of Choice) for each t ∈ T a homomorphism ht : S → A such that

(	) ht(α) /∈ F
(
ht(X)

)
.

Let h be the product of the homomorphisms {ht}t∈T — see Lemma 1.6 — i.e., let
h : S → A T and

h(ϕ) = 〈ht(ϕ)〉t∈T , for every ϕ ∈ S.

It is easy to observe that for every t ∈ T ,

h(Xt) ⊆ P
s∈T

πs

(
h(Xt)

)
= P

s∈T
πs ◦ h(Xt) = P

s∈T
hs(Xt) ⊆ P

s∈T
F

(
hs(Xt)

)
and h(α) /∈ P

s∈T
F

(
hs(Xt)

)
by (	).

But P
s∈T

F
(
hs(Xt)

)
is a filter in AT by Theorem 2.18 (i). Thus, h(α) /∈

F
(
h(Xt)

)
for every t ∈ T where F is the filter operation in AT . Since {Xt :

t ∈ T } = Fin∗(X), we conclude that h(α) /∈ ⋃{F(
h(Y )

)
: Y ∈ Fin∗(X)} and

hence h(α) /∈ F
(
h(X)

)
on the basis of Corollary 2.12 (iv). �

The above theorem suggests that some properties of the consequence oper-
ation determined by the product of preordered algebras may depend upon the
number of components in the product.

2.3 Logical matrices

This section deals with logical matrices which will be defined as abstract algebras
with distinguished elements. As it will appear, matrices can also be understood as
a special case of preordered algebras. Despite these connections we will preserve
the traditional terminology referring to the work of J. Łukasiewicz and A. Tarski
[66], 1930 and their followers.
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Matrix consequences
A logical matrix is a pair M = 〈A , A∗〉, where A is an abstract algebra and A∗ is
a subset of the universe of A , i.e., A∗ ⊆ A. Any a ∈ A∗ is called a distinguished
element of the matrix M.

The set of M-valid formulas (M-tautologies) is defined in the standard way:

α ∈ E(M) ⇔ (
hv(α) ∈ A∗, for every v : At → A

)
.

The following definition of the matrix consequence
−→
M is due to J. Łoś and R.

Suszko [64], 1958.

Definition 2.32. For every X ⊆ S and every α ∈ S,

α ∈ −→
M(X) ⇔ (

hv(X) ⊆ A∗ ⇒ hv(α) ∈ A∗, for every v : At → A
)
.

Observe that E(M) =
−→
M(∅). We shall compare the just defined notion of the

matrix consequence with the notion of the consequence operation generated by a
preordered algebra.

Consider any abstract algebra A with the universe A. Let us recall that we
deal only with algebras similar to the algebra S of a fixed propositional language.
Distinguishing a set A∗ ⊆ A we get the matrix M = 〈A , A∗〉. First, let us consider
the case when A∗ is empty or when A∗ = A. It is easy to notice that the matrix
〈A , A〉 generates the inconsistent consequence operation, i.e.,

−→
M(X) = S for every

X ⊆ S and the matrix-consequence of M = 〈A , ∅〉 is

−→
M(X) =

{ ∅ if X = ∅
S if X �= ∅.

Both operations are trivial examples of matrix-consequences.
Let us assume that ∅ � A∗ � A and define a preorder relation � on A by

x � y ⇔ x /∈ A∗ ∨ y ∈ A∗, for x, y ∈ A.

Let us prove that A∗ is the only proper filter in the preordered set 〈A, �〉. First
observe that

(i) Great(A) = A∗,

(ii) Least(A) = A \ A∗.

Therefore, by Lemma 2.13 (i) and (iii), we conclude that

F (X) =

{
A∗ if X ⊆ A∗

A otherwise

and hence A∗ is the only proper filter in 〈A, �〉.
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Thus, by Lemma 2.23 and Definition 2.32 we get
−→
M(X) =

−→
A (X), where

A = 〈A , �〉 is the preordered algebra generated by the set A∗. This is the very
connection between preordered algebras and matrices. It means, in particular,
that all notions and results concerning preordered algebras can also be applied to
logical matrices. For example, it follows from Corollary 2.24 that

−→
M is a structural

consequence operation.
Moreover, analogously as for algebras, one may define rules normal in a

matrix M and rules valid in M:

r ∈ N(M) ⇔ (
α ∈ −→

M(Π), for each 〈Π, α〉 ∈ r
)
;

r ∈ V (M) ⇔ (
Π ⊆ E(M) ⇒ α ∈ E(M), for each 〈Π, α〉 ∈ r

)
.

We quote without proof the following simple lemma:

Lemma 2.33.

(i) N(M) = Der(
−→
M);

(ii) V (M) = Adm(
−→
M);

(iii) r∗ ∈ V (M) \ N(M) if ∅ � A∗ � A.

Finite matrices
Let M = 〈A , A∗〉 be a logical matrix and let A∗ �= ∅. It has been proved above
that there exists a preorder � on S such that

−→
M =

−→
A , where A = 〈A , �〉. Hence,

as an immediate corollary of Theorem 2.27 we obtain the following result due to
J. Łoś and R. Suszko [64], 1958

Corollary 2.34. If M is a finite matrix, then
−→
M is a finitistic consequence operation.

Let us introduce the following definition:

Definition 2.35. A set X ⊆ S is said to be satisfiable in M = 〈A , A∗〉, in symbols
X ∈ Sat(M), if and only if there is a valuation v : At → A such that

hv(X) ⊆ A∗.

We prove now the following theorem.

Theorem 2.36. If M is a finite matrix and X ⊆ S, then

X ∈ Sat(M) ⇔ (
Y ∈ Sat(M), for each Y ∈ Fin(X)

)
.

Proof. The implication (⇒) is obvious. Assume now that M = 〈A , A∗〉 and that
Y ∈ Sat(M) for each Y ∈ Fin(X). Let V be the family of all valuations v : At → A
and define

(i) V (Y ) = {v ∈ V : hv(Y ) ⊆ A∗}.
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It is obvious that

(ii) Y ⊆ Y0 ⇒ V (Y0) ⊆ V (Y ).

It follows from the assumption that V (Y ) is non-empty for every Y ∈ Fin(X).
Hence, by (ii),

∅ �= V (Y1 ∪ . . . ∪ Yk) ⊆ V (Y1) ∩ . . . ∩ V (Yk)

for every Y1, . . . , Yk ∈ Fin(X). Thus, the family {V (Y ) : Y ∈ Fin(X)} has the
finite intersection property and then there is a maximal filter H in 2V containing
all sets V (Y ) for Y ∈ Fin(X) — see Theorem 1.18.

Since V is the greatest element in 2V , we have V ∈ H and hence⋃
a∈A

{v ∈ V : v(p) = a} = V ∈ H

for every variable p ∈ At. But H is a prime filter as an ultrafilter (see Corollary
1.22) and A is finite; therefore

(iii) for every p ∈ At there is an element a ∈ A such that

{v ∈ V : v(p) = a} ∈ H.

Moreover,

(iv) {v ∈ V : v(p) = a} ∩ {v ∈ V : v(p) = b} = ∅ /∈ H if a �= b.

We define a valuation w : At → A by taking

w(p) = a ⇔ {v ∈ V : v(p) = a} ∈ H.

From (iv), (iii) it follows that the valuation w is well defined and what is more,

(v) {v ∈ V : v(p) = w(p)} ∈ H for every p ∈ At.

Let us consider Y ∈ Fin(X). Since At(Y ) is finite and since H is a filter, we
obtain by (v),

{v ∈ V : v|At(Y ) = wAt(Y )} =
⋂

p∈At(Y )

{v ∈ V : v(p) = w(p)} ∈ H.

Thus,

(vi) {v ∈ V : v|At(Y ) = w|At(Y )} ∩ V (Y ) ∈ H .

By (vi) and (i) there is a valuation v : At → A such that v|At(Y ) = w|At(Y )

and hv(Y ) ⊆ A∗. Hence, hw(Y ) ⊆ A∗ for each finite set Y ⊆ X , which yields
hw(X) ⊆ A∗. �

The method of proving Theorem 2.36 (and also Theorem 2.27) can be gen-
eralized. If one wants to prove that

−→
M is finitistic, it is enough to verify that for

every ultrafilter H in 2V the condition (iii) from the proof of 2.36 is fulfilled.
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Constructions of matrices
Let M = 〈A , A∗〉 and N = 〈B, B∗〉 be two similar matrices. N is called a sub-
matrix of M (N ⊆ M) if and only if B is a subalgebra of A and B∗ = B ∩ A∗.

The matrices M, N are said to be isomorphic (M ∼= N) iff there is an iso-
morphism h from A onto B such that

x ∈ A∗ ⇔ h(x) ∈ B∗, for each x ∈ A.

It is a trivial fact that

Corollary 2.37.

(i) N ⊆ M ⇒ −→
M � −→

N;

(ii) N ∼= M ⇒ −→
M =

−→
N.

In the next theorem all
−→
M ◦ Sb closed sets are characterized by means of

submatrices of M (see [131], 1978).

Theorem 2.38. For every X ⊆ S,
−→
M

(
Sb(X)

)
=

⋂
{E(N) : N ⊆ M ∧ X ⊆ E(N)}.

Proof. The inclusion (⊆) follows immediately from Corollary 2.37 (i). To prove
(⊇) assume that α /∈ −→

M
(
Sb(X)

)
and let M = 〈A , A∗〉. We have to show that

X ⊆ E(N) and α /∈ E(N) for some submatrix N of M.
If X = ∅, then X ⊆ E(M) and α /∈ −→

M
(
Sb(∅)) = E(M). Now let X �= ∅.

There exists a homomorphism h from S into A such that h
(
Sb(X)

) ⊆ A∗ and
h(α) /∈ A∗. Let B be the subalgebra of A generated by the set h(S). It follows
from Lemma 1.2 that h(S) is the universe of B since h(S) is closed under the
operation of A .

We define N = 〈B, h(S)∩A∗〉; clearly N ⊆ M. Let us prove that X ⊆ E(N).
Suppose that v : At → h(S). Using the axiom of choice we can choose a substitution
e : At → S such that

e(γ) ∈ h−1
({v(γ)}), for every γ ∈ At.

Thus hv = h ◦ he and hence hv(X) = h
(
he(X)

) ⊆ h
(
Sb(X)

) ⊆ A∗. This proves
that X ⊆ E(N). Moreover, h(α) /∈ A∗ and h : S → h(S), hence α /∈ E(N). �

A binary relation R on A is called a congruence on the matrix M = 〈A , A∗〉
if and only if R is a congruence on the algebra A satisfying the condition

xRy ∧ x ∈ A∗ ⇒ y ∈ A∗.

Every congruence R on M determines the quotient matrix

M/R = 〈A /R, A∗/R〉
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where A /R is the quotient algebra and A∗/R = {[a]R : a ∈ A∗}. The next theorem
can be found in [142], 1973.

Theorem 2.39. If R is a congruence of the matrix M, then

−→
M =

−−−→
M/R.

Proof. (�): Suppose that α /∈ −−−→
M/R(X). Then there exists a homomorphism h

from S into A /R such that h(X) ⊆ A∗/R and h(α) /∈ A∗/R. By the axiom of
choice, there is a mapping v : At → A such that v(γ) ∈ h(γ) for each variable
γ ∈ At. Let us extend the mapping v to the homomorphism hv : S → A . Then
hv(ϕ) ∈ h(ϕ) for every ϕ ∈ S and hence hv(X) ⊆ A∗ and hv(α) /∈ A∗.

(�): Assume that α /∈ −→
M(X). Then hv(X) ⊆ A∗ and hv(α) /∈ A∗ for

some v : At → A. Let hR : A → A/R be the canonical homomorphism from A
onto A /R, i.e., hR(a) = [a]R for a ∈ A. The composition h = hR ◦ hv is a
homomorphism from S into A /R and, moreover, we have h(X) = hR

(
hv(X)

) ⊆
A∗/R and h(α) = [hv(α)]R /∈ A∗/R. Thus α /∈ −−−→

M/R(X). �

Let {Mt}t∈T , where T �= ∅, be an indexed family of similar matrices

Mt = 〈At, A
∗
t 〉.

The matrix
P

t∈T
Mt = 〈 P

t∈T
At, P

t∈T
A∗

t 〉

is called the product of the family {Mt}t∈T .
It will be additionally assumed that A∗

t is non-empty for every t ∈ T . Let �t

be the preorder on At (the universe of At) determined by the set A∗
t , i.e.,

x �t y ⇔ x /∈ A∗
t ∨ y ∈ A∗

t , for x, y ∈ At.

It has been proved that A∗
t is the only proper (if A∗

t �= At) filter in 〈At, �t〉. The
product P

t∈T
〈At, �t〉 may contain, however, more than one filter.

The product P
t∈T

〈At, A
∗〉 is a logical matrix and P

t∈T
〈At, �t〉 is a preordered

algebra. Some connections between both structures, clearly, occur. Namely, observe
that P

t∈T
A∗

t is the least filter in P
t∈T

〈At, �t〉. In other words,

(	) P
t∈T

A∗
t = F(∅)

where F is the filter operation in the product. Thus, as an immediate result of
Corollary 2.30 (i), we obtain (see Jaśkowski [44], 1936)

Corollary 2.40. E( P
t∈T

Mt) =
⋂{E(Mt) : t ∈ T }.
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Proof. By 2.30 (i),
−−−→
P

t∈T
At(∅) =

⋂{−→At(∅) : t ∈ T } where At = 〈At, �t〉. But
−→
Mt =

−→
At and hence E(Mt) =

−→
At(∅) for every t ∈ T . On the other hand, according

to Definition 2.22, α ∈ −−−→
P

t∈T
At(∅) iff hv(α) ∈ F

(
hv(∅)) for every v : At → P

t∈T
At.

Thus, by (	),
−−−→
P

t∈T
At(∅) = E( P

t∈T
Mt), which completes the proof. �

The above theorem can be strengthened to the following one, see [67], 1973.

Theorem 2.41. For every X ⊆ S,

−−−−→
P

t∈T
Mt(X) =

{ ⋂{−→Mt(X) : t ∈ T } if X ∈ Sat(Mt) for each t ∈ T

S otherwise.

Proof. (⊇): Let us assume that α /∈ −−−−→
P

t∈T
Mt(X). Then there exists a homomor-

phism h from S into the product such that

h(X) ⊆ P
t∈T

A∗
t and h(α) /∈ P

t∈T
A∗

t .

Hence πt

(
h(X)

) ⊆ A∗
t for each t ∈ T and πs

(
h(α)

)
/∈ A∗

s for some s ∈ T . But the
mapping πt ◦ h, for t ∈ T , is a homomorphism from S into At, so X ∈ Sat(Mt)
for each t ∈ T and α /∈ −→

Ms(X) for some s ∈ T . Thus α /∈ ⋂
t∈T

−→
Mt(X).

(⊆): Assume that X ∈ Sat(Mt) for each t ∈ T and let α /∈ ⋂
t∈T

−→
Mt(X).

From these assumptions it follows that there exists a family {ht}t∈T of homomor-
phisms such that ht : S → At, ht(X) ⊆ A∗

t for each t ∈ T and hs(α) /∈ A∗
s for

some s ∈ T . Then the mapping h defined by

h(ϕ) = 〈ht(ϕ)〉t∈T for ϕ ∈ S

is a homomorphism from S into P
t∈T

At (see Lemma 1.6) and, clearly, h(X) ⊆
P

t∈T
A∗

t and h(α) /∈ P
t∈T

A∗
t . This means that α /∈ −−−−→

P
t∈T

Mt(X). �

Lindenbaum matrices

Let 〈R, X〉 be a system of propositional logic, i.e., let R ⊆ RS and X ⊆ S. Then

MR,X = 〈S , Cn(R, X)〉
is called the Lindenbaum matrix of the system 〈R, X〉.
Lemma 2.42. For every X ⊆ S and R ⊆ RS,

E(MR,X) = {α : Sb(α) ⊆ Cn(R, X)}.
This lemma follows immediately from the involved definitions.
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Corollary 2.43. If r∗ ∈ Adm(R, X), then E(MR,X) = Cn(R, X).

The next lemma states some connections between rules normal and valid in
the Lindenbaum matrix.

Lemma 2.44. If r∗ ∈ Adm(R, X), then

V (MR,X) ∩ Struct ⊆ N(MR,X).

Proof. Assume that r is a structural rule and that r ∈ V (MR,X). Let 〈Π, α〉 ∈ r
and suppose that he(Π) ⊆ Cn(R, X) for some e : At → S.

We need to show that he(α) ∈ Cn(R, X).
By Corollary 2.43, he(Π) ⊆ E(MR,X). Moreover, 〈he(Π), he(α)〉 ∈ r since

r is structural. Then, by the definition of V (M) and by 2.43, we obtain he(α) ∈
E(MR,X) = = Cn(R, X). �

The just defined Lindenbaum matrix MR,X , though related to, should not
be mixed with the so-called Lindenbaum–Tarski algebra, defined below, which
usually appears in proofs of completeness theorems for various propositional logics.
First of all, the Lindenbaum matrix is defined for arbitrary logical system whereas
the construction of the Lindanbaum–Tarski algebra requires certain assumptions.

Suppose that 〈R, X〉 is a propositional logic formalized over the standard
language S2 = 〈S2,→, +, ·,∼〉 (or any of its implicative sublanguage). We define
a binary relation on S2 by

α ∼R,X β iff α → β , β → α ∈ Cn(R, X)

and we will write ∼ (or ∼X) instead of ∼R,X if there is no danger of confusion. If
we assume that the rule r0 and the following formulas are derivable in 〈R, X〉,

(p → q) → ((q → s) → (p → s))
(q → s) → ((p → q) → (p → s))
p → p

p · q → p

p · q → q

(p → q) → ((p → s) → (p → q · s))
p → p + q

q → p + q

(p → s) → ((q → s) → (p + q → s))
(p → q) → (∼ q →∼ p),

then the relation ∼R,X turns out to be a congruence relation on the Lindenbaum
matrix MR,X (we leave this known theorem without proof). Then the quotient
algebra

S2/∼= 〈S2/∼, →̇,∪,∩,−〉
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is called the Lindenbaum–Tarski algebra of the system 〈R, X〉 where

[α] ∪ [β] = [α + β]
[α] ∩ [β] = [α · β]
[α]→̇[β] = [α → β]

−[α] = [∼ α].

Next, it can also be proved that 〈S/∼,∪,∩〉 is a lattice with the lattice ordering
� defined as

[α] � [β] ⇔ (α → β) ∈ Cn(R, X).

If we assume additionally that q → (p → p) ∈ Cn(R, X), then the unit element
exists in the Lindenbaum–Tarski algebra. Moreover, if p → (q → p) ∈ Cn(R, X),
then

[α] = 1 ⇔ α ∈ Cn(R, X).

The existence of the zero element will be guaranteed by ∼ (p → p) → q ∈
Cn(R, X). From the assumptions that ∼ (p → p) → q , p → (q → p) ,
(p →∼ q) → (q →∼ p) are in Cn(R, X) it will follow that

[α] = 0 ⇔ ∼ α ∈ Cn(R, X).

The above concerns, as well, all systems defined in implicative sublanguages of
S2. For instance, it concerns S1 if we reject from axioms the formula containing
negation and remove the above fragment about the existence of the zero-element.

2.4 Adequacy
The present section is concerned with connections between a propositional logic
and its semantics. Our interest in algebraic structures such as preordered algebras,
matrices, lattices, . . . etc. stems from some problems which arise in the theory of
formal systems. The notion of abstract algebra has proved to be a useful tool in the
investigations of non-classical logics. The algebraic approach to logic originated in
the efforts of logicians to find some new connections between algebra and logic
and to enrich the proof-theoretical tools of logic. Adequacy consists in showing a
parallelism between some algebraic structures on the one hand, and a certain logic
on the other. For this purpose, however, different kinds of structures have been
used. In the sequel we will discuss some of them. A special attention will be given
to the matrix semantics of the most important propositional logics.

Adequacy of matrices
Let 〈R, X〉 be a system of a propositional logic formalized in a fixed propositional
language and let M be a logical matrix similar to the algebra of the language. Com-
pleteness of 〈R, X〉 with respect to the matrix M (M-completeness) is understood
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as the equality
E(M) = Cn(R, X) = CnRX(∅).

If the system 〈R, X〉 fulfills this condition, then the matrix M is said to be (weakly)
adequate for 〈R, X〉.

Since E(M) is closed with respect to the substitution rule r∗ (see Lemma
2.33), the problem of M-adequacy of a logic can be put forward only if r∗ ∈
Adm(R, X). A general solution of this problem is given by the well-known Lin-
denbaum theorem which states that Cn(R, X) = E(MR,X) for every propositional
logic 〈R, X〉 such that r∗ ∈ Adm(R, X) — see Corollary 2.43. We also get

Corollary 2.45. For each propositional logic 〈R, X〉 with r∗ ∈ Adm(R, X) and
R \ {r∗} ⊆ Struct there is a matrix M such that:

(i) Cn(R, X) = E(M);

(ii) R \ {r∗} ⊆ N(M).

The above Lindenbaum theorem seems to prove that the whole question
is quite trivial. However, it is not so since logicians are not looking for adequate
matrices of any kind but for adequate matrices which fulfill some special conditions.
For example, one may postulate that the universe of the adequate matrix ought to
be built up from a special kind of objects, such as, e.g., subsets of some topological
space, sequences of some natural numbers, . . . etc. One may also look for a finite
adequate matrix M (if such exists) and what is more one may render M to be a
minimal matrix, i.e.,

E(M) = E(N) ⇒ Nc(M) � Nc(N).

As an illustration let us mention the classical logic 〈R0∗, A2〉 and the well-known
theorem by Post which says that 〈R0∗, A2〉 is complete with respect to the ordinary
two-element matrix

M2 = 〈〈{0, 1}, f→
2 , f+

2 , f ·
2, f

∼
2 〉, {1}〉.

M2 is, of course, a minimal adequate matrix for classical logic. Note that the
above characterization of classical logic gives a method of deciding whether a
given formula α is (or is not) derivable on the grounds of 〈R0∗, A2〉.

In the case of the modal system S5, an adequate matrix was defined by M.
Wajsberg. Let MS5 = 〈〈{0, 1}N, g→, g+, g·, g∼〉, {1}〉 where N is the set of natural
numbers and

1 = 〈xn〉n∈N ⇔ xn = 1 for all n ∈ N

g·(〈xn〉n∈N, 〈yn〉n∈N) = 〈min{xn, yn}〉n∈N

g+(〈xn〉n∈N, 〈yn〉n∈N) = 〈max{xn, yn}〉n∈N

g∼(〈xn〉n∈N) = 〈1 − xn〉n∈N

g→(〈xn〉n∈N, 〈yn〉n∈N) =
{

1 if xn � yn for all n ∈ N
g∼(1) otherwise.
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It should be observed that g+, g·, g∼ are the operations of the product of
matrices M2 (more specifically, the operations of the power matrix (M2)

N).
The just defined matrix MS5 is adequate for the modal system S5, i.e.,

E(MS5) = Cn(R0a∗, AS5). Let us add that 〈R0a∗, AS5〉 has no finite adequate
matrix.

On the other hand, another approach to the whole problem is also possible. A
propositional logic can be defined with the help of a logical matrix M and we may
be looking for a M-complete system 〈R, X〉. Of course, the pair 〈N(M), E(M)〉
is M-complete. Our aim, however, is not to reduce the notion of M-validity to
syntactic framework but to get a characterization of E(M). For example, we may
be looking for a finite set X and for a finite set R of standard rules such that
Cn(R ∪ {r∗}, X) = E(M).

The work of M. Wajsberg [129], 1935, contains a result concerning finite axio-
matizability (in the above sense) of a broad class of finite matrices. The proof of
this theorem contains an algorithm for searching of a finite set of axioms for any
given finite matrix. But the algorithm is very difficult and practically useless. Let
us remark that it is not true that for every logical matrix there exist a finite set X
of formulas and a finite set R of standard rules such that Cn(R∪{r∗}, X) = E(M),
even if we assume that M is finite. The best counterexample is due to K. Pałasińska
[72], 1974. She showed a 3-element matrix, in the pure implicational language
{→}, with one distinguished element which is not finitely axiomatizable in any
reasonable way. The matrix is given by the following table

→ 0 1 2
0 1(2) 2 2
1 2 2 2
2 1 2 2

where 2 is distinguished and 1(2) in the first row means that one can put either
1 or 2 there. So, there are given in fact two 3-element matrices with the required
property. The counterexample is optimal as it follows from certain results in W.
Rautenberg [108], 1981 that all propositional logics characterized by two-element
matrices enjoy the finite axiomatizabilty property.

The class of matrices considered in Wajsberg’s paper [129], 1935 contains all
finite Łukasiewicz matrices, i.e., all systems

Mn = 〈〈An, f→, f+, f ·, f∼〉, {1}〉 for n ∈ N

where An =
{

k

n − 1
: k = 0, 1, . . . , n − 1

}
and

f→(x, y) = min{1 − x + y, 1}
f+(x, y) = max{x, y}
f ·(x, y) = min{x, y}
f∼(x) = 1 − x.
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It should be observed that M2 is the classical matrix. In the first chapter we
provided the n-valued Łukasiewicz logic with a set of axioms, i.e.,

Cn(R0∗, Łn) = E(Mn).

For the proof of the above equality see [128], 1988. The n-valued Łukasiewicz
matrix Mn is thus adequate for the n-valued Łukasiewicz logic 〈R0∗, Łn〉; it is in
fact a minimal adequate matrix for this logic.

Wajsberg also confirmed Łukasiewicz’s conjecture and showed the complete-
ness theorem for the infinite valued logic

E(M∞) = Cn(R0∗, Ł∞)

where the infinite valued matrix M∞ is defined — just as the finite ones — on
the real interval [0, 1]. (NB. In Łukasiewicz’s original conjecture the set Ł∞ was
extended with the formula ((p → q) → (q → p)) → (q → p), which was shown to
be dependent by D. Meredith.) Unfortunately, Wajsberg’s proof has never been
published and the first (non-elementary) proof of this theorem was given by C.C.
Chang [10], 1955. An elementary and easy proof of this theorem can be found in
R. Cignoli, D. Mundici [11], 1997.

In the opinion of many logicians in the first half of the 20th century the
problem of M-adequacy where M fulfills some special conditions had been the main
question in the methodology of sentential logics and it was not generalized before
1958 (J. Łoś and R. Suszko). This generalization will be considered later. Now we
will pay attention to the fundamental sets of rules determined by 〈R, X〉. Namely,
we will consider connections between sets of rules determined by propositional
system 〈R, X〉 and by the matrix M adequate for 〈R, X〉. Let us observe, for
instance, that

Lemma 2.46. If Cn(R, X) = E(M), then

(i) Adm(R, X) = V (M);

(ii) Der(R, X) ⊆ V (M);

(iii) N(M) ⊆ Adm(R, X).

These apparent connections need no proofs, and the only thing worth noticing
is that the inclusions (ii) and (iii) are not reversible. Completing this observation,
let us notice that M-adequacy of 〈R, X〉 yields none of the inclusions

Der(R, X) ⊆ N(M) , N(M) ⊆ Der(R, X),
Adm(R, X) ⊆ N(M) , V (M) ⊆ Der(R, X).

To show that the first inclusion is not valid for some 〈R, X〉 and M, let us take
〈R0∗, A2〉 and the two–valued matrix M2 : r∗ ∈ Der(R0∗, A2)\N(M2). The second
inclusion can be refuted with the help of MS5 and 〈R0a, Sb(AS5)〉; we have r� ∈
N(MS5) \ Der(R0a, Sb(AS5)).
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Strong adequacy

The above examination shows that it is possible to find some stronger connections
between matrices and logics than adequacy. Let us consider the notion of strong
adequacy as introduced by [64], 1958:

Definition 2.47. A matrix M is strongly adequate for a propositional logic 〈R, X〉
( or the consequence operation CnRX) iff

Cn(R, X ∪ Y ) =
−→
M(Y ), for all Y ⊆ S.

It is easy to verify that the notion of strong adequacy can also be expressed
by the following equality between two sets of rules:

Lemma 2.48 (∞). M is strongly adequate for 〈R, X〉 iff N(M) = Der(R, X).

To get the proof it suffices to analyze the definitions of the involved notions
(see also Lemma 2.33). For finitary, non-axiomatic rules it can be proved that

Lemma 2.48 (fin). N(M) = Der(R, X) iff Cn(R, X ∪ Y ) =
−→
M(Y ) for every finite

non-empty Y ⊆ S.

It is visible that the equivalence 2.48 (∞) is rather some kind of translation
of the notion of strong adequacy from the language of formulas into the language
of rules. It does not resolve the question whether a given propositional logic has
or does not have a strongly adequate matrix.

Definition 2.47 states that M is strongly adequate for 〈R, X〉 iff the con-
sequences

−→
M and CnRX are equal. This is the reason (see Corollary 2.24 (iv))

why the investigations concerning the notion are restricted to invariant calculi
(R ⊆ Struct and X = Sb(X)) or, in other words, to structural consequence opera-
tions. Let us note, moreover, that it is possible to give some examples of structural
consequences (invariant systems 〈R, X〉) which do not have any strongly adequate
matrix. For instance, consider the pair 〈{r}, ∅〉 where r is the rule over S2 defined
by

r :
α → α

β → β
for all α, β ∈ S2.

Of course, 〈{r}, ∅〉 ∈ Inv. Suppose, on the contrary, that there exists a matrix M =
= 〈A , A∗〉 such that

−→
M(Y ) = Cn({r}, Y ) for every Y ⊆ S2. From this assumption

it follows that
q /∈ −→

M(p → p) and q → q /∈ −→
M(∅)

for some p, q ∈ At (p �= q). Hence, by the definition of
−→
M, h1(p → p) ∈ A∗ and

h2(q → q) /∈ A∗ for some homomorphisms h1 and h2 from S2 into A . Take a
valuation v : At → A such that v(p) = h1(p) and v(q) = h2(q). Then hv(p → p) =
= h1(p → p) ∈ A∗ and hv(q → q) = h2(q → q) /∈ A∗. Hence q → q /∈ −→

M(p → p),
which contradicts our assumptions.
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The operation Cn(X) =
−→
M3(X) ∩ −→

M4(X), where Mi’s are Łukasiewicz’s
matrices, is another example of a structural consequence without any strongly
adequate matrix. To prove this fact, let us consider two formulas α, β such that
At(α) ∩ At(β) = ∅ and {α} ∈ Sat(M3) \ Sat(M4) and {β} ∈ Sat(M4) \ Sat(M3)
(e.g., p ≡∼ p and q ≡ (q →∼ q)). Thus Cn(α, β) =

−→
M3(α, β) ∩ −→

M4(α, β) = S2,
but Cn(α) =

−→
M3(α) �= S2 and Cn(β) =

−→
M4(β) �= S2. Suppose that Cn =

−→
M for

some matrix M. Then {α, β} /∈ Sat(M) and {α} ∈ Sat(M), {β} ∈ Sat(M), which
is impossible since it has been assumed that At(α) ∩ At(β) = ∅.

By a similar argument we can show that
−−→
Mn ∩ −→

Mk is a matrix consequence
iff

−−→
Mn � −→

Mk or
−→
Mk � −−→

Mn, see J.Hawranek and J.Zygmunt [39], 1981.
Let us also mention that the minimal logic of Johanson as well as Lewis sys-

tems S1−S3 are also systems without strongly adequate matrices, see J. Hawranek
and J. Zygmunt [39], 1981; many facts concerning the notion of strong adequacy
can be found in R.Wòjcicki [147], 1988.

On the other hand, there are many logics with strongly adequate matrices.
First of all,

Cn
(
R0, Sb(A2) ∪ X

)
=

−→
M2(X), for every X ⊆ S2.

Thus, the two-valued matrix M2 is strongly adequate for the classical logic. To
generalize this fact let us note that for each natural number n � 2,

Cn
(
R0, Sb(Łn) ∪ X

)
=

−−→
Mn(X) for each X ⊆ S2.

This is a simple conclusion from the adequacy theorem for the n-valued Łukasie-
wicz logic and the deduction theorem for

−−→
Mn, see Theorem 1.62.

There is a strongly adequate matrix for the modal system 〈R0a, Sb(AS5)〉
(however, this is not the matrix MS5) and for every invariant strengthening of the
intuitionistic logic 〈R0, Sb(Ai)〉. Some general result concerning strong adequacy
has been proved in [2], 1982: let X0 be the set of the following formulas:

p → p

(p → q) → ((q → s) → (p → s))
(q → s) → ((p → q) → (p → s))
((p → p) → (p → p)) → (p → p)
p · q → p

p · q → q

(p → q) → ((p → s) → (p → q · s))
p → p + q

q → p + q

(p → s) → ((q → s) → (p + q → s)).
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Theorem 2.49. If 〈R, X〉 is an invariant system over S1 with r0 ∈ Der(R, X) and
X0 ⊆ Cn(R, X), then there is a matrix M strongly adequate for 〈R, X〉.
Proof. Let f : At → S1 be the substitution such that f(γ) = p0 → p0 for each
γ ∈ At. From the assumptions it easily follows that

(p0 → p0) → hf (α), hf (α) → (p0 → p0) ∈ Cn(R, X)

for each α ∈ S1 and hence each formula is satisfiable in the Lindenbaum matrix
〈S1, Cn(R, X ∪ Y )〉, where Y ⊆ S1, by the valuation f . Let M be the product of
the Lindenbaum matrices, i.e.,

M = P
Y ⊆S

MR,X∪Y .

We are going to show that
−→
M(Y ) = Cn(R, X ∪ Y ) for each Y ⊆ S1. If α ∈ −→

M(Y ),
then by Theorem 2.41 we obtain α ∈ −−−−−−→

MR,X∪Y (Y ) hence:

he(Y ) ⊆ Cn(R, X ∪ Y ) ⇒ he(α) ∈ Cn(R, X ∪ Y ),

for each e : At → S1 which yields α ∈ Cn(R, X ∪ Y ).
Assume, on the other hand, that α /∈ −→

M(Y ). Then, also by 2.41, there exists
Z ⊆ S1 such that

α /∈
−−−−−−→
MR,X∪Z(Y )

and therefore

he(α) /∈ Cn(R, X ∪ Z) ∧ he(Y ) ⊆ Cn(R, X ∪ Z)

for some e : At → S1. Thus he(α) /∈ Cn
(
R, X∪he(Y )

)
,which implies, on the basis

of the invariantness of 〈R, X〉 (see 1.57), that α /∈ Cn(R, X ∪ Y ). �
A general criterion on the existence of a strongly adequate matrix for a given

logic was provided by [64], 1958 (and improved in [140], 1970). This criterion
states that the existence of a strongly adequate matrix is equivalent to some kind
of separability condition:

Theorem 2.50. Let Cn be a structural consequence operation (i.e., let Cn = CnRX

for some invariant system 〈R, X〉). Then there is a matrix strongly adequate for Cn
(or 〈R, X〉) if and only if the following condition is satisfied for all K ⊆ 2S, Z ⊆ S
and α ∈ S: if K is a family of Cn-consistent sets such that At(X) ∩ At(Y ) = ∅
for all X, Y ∈ K ( X �= Y ) and if At(

⋃
K) ∩ At(Z ∪ {α}) = ∅, then

α ∈ Cn(
⋃

K ∪ Z) ⇒ α ∈ Cn(Z).

Corollary 2.51. Let Cn be a finitistic structural consequence operation. Then there
exists a matrix strongly adequate for Cn if and only if

α ∈ Cn(Z ∪ Y ) ∧ At({α} ∪ Z) ∩ At(Y ) = ∅ ⇒ α ∈ Cn(Z)

for all α ∈ S, Z ⊆ S and all Cn-consistent Y ⊆ S.
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As an application of this criterion consider Maksimova’s theorem, which
states that the separability condition from Corollary 2.51 is satisfied by the rel-
evant logics E and R (see [69], 1976). This leads immediately, by 2.51, to the
theorem on the existence of strongly adequate matrices for these logics, see [125],
1979.

Some variants of the matrix semantics

It has been shown that some invariant logics (structural consequences) do not have
any strongly adequate matrix. Hence the notion of strong adequacy is not similar
to that of M-adequacy. This fact forced logicians to introduce some variants of
the matrix semantics. We will now consider some of them.

Generalized (or ramified matrices) — as introduced in [140], 1970 — are the
structures

GM = 〈A , {At}t∈T 〉
where A is an algebra and At, for every t ∈ T , is a subset of the universe of A .
The consequence operation determined by this structure is

α ∈ −−→
GM(X) ⇔ (

hv(X) ⊆ At ⇒ hv(α) ∈ At, for all t ∈ T, v : At → A
)
.

Classes of matrices may also be considered as semantics for propositional
logics. For a given class K of similar matrices one can define the structural conse-
quence

−→
K (see [142], 1973) by

−→
K(X) =

⋂
{−→M(X) : M ∈ K}.

In other words,
−→
K =

∏{−→M : M ∈ K}. The next theorem is a version of the
Lindenbaum result ([142], 1973):

Theorem 2.52. For every structural consequence operation Cn there is a class K
of matrices (or a generalized matrix GM) such that

Cn =
−→
K (or Cn =

−−→
GM).

Proof. Let us consider the class

K = {〈S , Cn(X)〉 : X ⊆ S}
of Lindenbaum matrices (the so-called bundle of Lindenbaum matrices). This class
can also be regarded as the generalized matrix

GM = 〈S , {Cn(X)}X⊆S〉.
From structurality of Cn and from the involved definitions it easily follows that
Cn =

−→
K =

−−→
GM. �
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Preordered algebras discussed in this chapter can also be regarded as some
semantics for propositional logics.

Theorem 2.53 (fin). If R ⊆ Struct and ∅ �= X = Sb(X), then there exists a
preordered algebra A such that

Cn(R, X ∪ Y ) =
−→
A (Y ), for each Y ⊆ S.

Proof. Let AY = 〈S , �Y 〉, for each Y ⊆ S, be the preordered algebra determined
by the Lindenbaum matrix

MR,X∪Y = 〈S , Cn(R, X ∪ Y )〉
where, for α, β ∈ S, we have

α �Y β ⇔ α /∈ Cn(R, X ∪ Y ) ∨ β ∈ Cn(R, X ∪ Y ).

It has been proved that
−→
AY =

−−−−−−→
MR,X∪Y for each Y ⊆ S and hence, by the

structurality of the consequence operation CnRX , we obtain

CnRX =
∏

{−→AY : Y ⊆ S}.

Let A be the product of the family {AY : Y ⊆ S} of preordered algebras. By
Theorem 2.29, we have

−→
A (Y ) ⊆ Cn(R, X ∪ Y ) for each Y ⊆ S and, by Corollary

2.30 (i), we also get Cn(R, X ∪ Y ) ⊆ −→
A (Y ) for each Y ∈ Fin(S). Since CnRX is

a finitistic consequence operation, then CnRX(Y ) =
−→
A (Y ) for each Y ⊆ S. �

Corollary 2.54. If Cn is a structural, finitistic consequence operation and Cn(∅)
is non-empty, then there exists a preordered algebra A such that Cn =

−→
A .

The assumptions that Cn is finitistic and Cn(∅) �= ∅ cannot be omitted in the
above theorem. We can only replace Cn(∅) �= ∅ with Cn(∅) =

⋂{Cn(α) : α ∈ S}.
The consequence

−→
A , where A is a preordered algebra, can be viewed as a

special case of the consequence determined by a closure operation. Namely let A
be an algebra and let F be an operation on A such that:

(i) X ⊆ F (X),

(ii) X ⊆ Y ⇒ F (X) ⊆ F (Y ),

(iii) F
(
F (X)

) ⊆ F (X); for each X, Y ⊆ A.

The pair 〈A , F 〉 determines a structural consequence operation (see [115], 1962):

α ∈ Cn(X) ⇔ (hv(α) ∈ F
(
hv(X)

)
, for each v : At → A).

It can be easily shown that for any structural consequence operation there
exists a strongly adequate system 〈A , F 〉.
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Sb-adequacy

Let us observe that the notion of strong adequacy (with respect to logical matrices
or generalized matrices or (pre)ordered algebras) has one essential defect. Namely,
it is not as general — in the family of propositional logics — as the notion of weak
adequacy. This is so because of non-normality of the substitution rule in any non-
trivial matrix. This yields immediately that no matrix (generalized matrix . . . etc.)
is strongly adequate to such a propositional system 〈R, X〉 that r∗ ∈ Der(R, X)
and ∅ �= Cn(R, X) �= S. To eliminate this gap, at least for some logics, we introduce
a new notion of Sb-adequacy, similar to the two hitherto assumed and used (i.e.,
weak adequacy and strong adequacy).

Definition 2.55. A matrix M is said to be Sb-adequate with respect to a proposi-
tional logic 〈R, X〉 iff

Cn(R, X ∪ Y ) =
−→
M

(
Sb(Y )

)
, for each Y ⊆ S.

It will be assumed that a rule r is Sb-normal with respect to M = 〈A , A∗〉,
in symbols r ∈ QN(M), if and only if

hv
(
Sb(Π)

) ⊆ A∗ ⇒ hv(α) ∈ A∗

for each sequent 〈Π, α〉 ∈ r and each valuation v : At → A. Of course r∗ ∈ QN(M)
in each matrix M.

Lemma 2.56. For every matrix M,

QN(M) =
⋂

{V (N) : N ⊆ M}.

Proof. If r ∈ QN(M) and if 〈Π, α〉 ∈ r, then it is easily seen that α ∈ −→
M

(
Sb(Π)

)
and hence, by Theorem 2.38,

α ∈
⋂

{E(N) : N ⊆ M ∧ Π ⊆ E(N)}.

This proves the inclusion (⊆). To show the reverse inclusion let us assume that
r /∈ QN(M). Then α /∈ −→

M
(
Sb(Π)

)
for some 〈Π, α〉 ∈ r and hence, by Theorem

2.38, there exists a submatrix N ⊆ M such that

α /∈ E(N) and Π ⊆ E(N).

Therefore, r /∈ V (N) for some N ⊆ M. �

Now we are able to prove the counterpart of Lemma 2.48.

Lemma 2.57 (∞). M is Sb-adequate for 〈R, X〉 iff QN(M) = Der(R, X).
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Note that M2 is Sb-adequate for 〈R0∗, A2〉 and M2 is not Sb-adequate
with respect to 〈R0, Sb(A2)〉. It also appears that Wajsberg’s matrix MS5 is Sb-
adequate for 〈R0a∗, AS5〉, however it is not Sb-adequate for〈R0∗, AS5〉.

If we consider finite, non-axiomatic rules, then the following counterpart of
2.48 can be proved:

Lemma 2.57 (fin). QN(M) = Der(R, X) iff
−→
M

(
Sb(Y )

)
= Cn(R, X ∪ Y ), for

every non-empty Y ∈ Fin(S).

We also write down a simple corollary of Corollary 2.34:

Corollary 2.58. Let M be a finite matrix and let E(M) �= ∅ �= X. Then M is
Sb-adequate for 〈R, X〉 iff QN(M) = Der(R, X).

The main theorem concerning Sb-adequacy is as follows:

Theorem 2.59. If R ⊆ Struct and X ⊆ S, then there is a matrix M which is
Sb-adequate for 〈R ∪ {r∗}, X〉, i.e., Cn(R ∪ {r∗}, X ∪ Y ) =

−→
M

(
Sb(Y )

)
for each

Y ⊆ S.

Proof. In this proof we will use the following notation: the symbol S(α), for α ∈ S,
will denote the sublanguage of S generated by the variables occurring in α, i.e.,

β ∈ S(α) ⇔ At(β) ⊆ At(α).

The following statements are trivial:

(i) β ∈ S(α) ⇒ S(β) ⊆ S(α),

(ii) he
(
S(α)

) ⊆ S
(
he(α)

)
, for every e : At → S.

Let us define an operation C over S,

α ∈ C(Y ) ⇔ α ∈ Cn
(
R, Sb(X) ∪ (Y ∩ S(α))

)
,

for each Y ⊆ S, α ∈ S. We are going to show that C is a structural consequence
operation. Let us prove

(iii) C(Y ) ∩ S(α) ⊆ Cn
(
R, Sb(X) ∪ (Y ∩ S(α))

)
, for each Y ⊆ S, α ∈ S.

Suppose that β ∈ C(Y )∩S(α). Then β ∈ Cn
(
R, Sb(X)∪(Y ∩S(β))

)
and it means

by (i) that β ∈ Cn
(
R, Sb(X) ∪ (Y ∩ S(α))

)
.

(iv) Y ⊆ C(Y ), for each Y ⊆ S.

Let α ∈ Y . Then α ∈ Y ∩ S(α) and hence α ∈ Cn
(
R, Sb(X) ∪ (Y ∩ S(α))

)
.

(v) Y1 ⊆ Y2 ⇒ C(Y1) ⊆ C(Y2), for each Y1, Y2 ⊆ S.

Assume that Y1 ⊆ Y2 and let α ∈ C(Y1). Then α ∈ Cn
(
R, Sb(X)∪ (Y1∩S(α))

) ⊆
⊆ Cn

(
R, Sb(X) ∪ (Y2 ∩ S(α))

)
and hence α ∈ C(Y2).
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(vi) C
(
C(Y )

) ⊆ C(Y ), for each Y ⊆ S.

Suppose that α ∈ C
(
C(Y )

)
. Then α ∈ Cn

(
R, Sb(X) ∪ (C(Y ) ∩ S(α))

) (iii)

⊆
Cn

(
R, Sb(X) ∪ Cn

(
R, Sb(X) ∪ (Y ∩ S(α))

)) ⊆ Cn
(
R, Sb(X) ∪ (Y ∩ S(α))

)
.

(vii) he
(
C(Y )

) ⊆ C
(
he(Y )

)
, for each Y ⊆ S, e : At → S.

If α ∈ C(Y ), then α ∈ Cn
(
R, Sb(X) ∪ (Y ∩ S(α))

)
and from the structurality

of the consequence generated by 〈R, Sb(X)〉 (see Corollary 1.57) it follows that

he(α) ∈ ∈ Cn
(
R, Sb(X)∪he

(
Y ∩S(α)

)) (iii)

⊆ Cn
(
R, Sb(X)∪ (

he(Y )∩S(he(α))
))

.
Statements (iv)–(vii) prove that C is a structural consequence operation. We

shall now verify that

(viii) C
(
Sb(Y )

)
= Cn

(
R, Sb(X) ∪ Sb(Y )

)
, for each Y ⊆ S.

The inclusion (⊆) is obvious. To prove the reverse inclusion let us assume
that α ∈ Cn

(
R, Sb(X)∪Sb(Y )

)
and let e : At → S(α) be a substitution such that

e(p) = p for all p ∈ At(α). Then he(α) = α and hence by 1.57, we get

α ∈ Cn
(
R, Sb(X) ∪ he

(
Sb(Y )

) ⊆ Cn
(
R, Sb(X) ∪ (

Sb(Y ) ∩ he(S)
))

.

But e : At → S(α) and S(α) is a subalgebra of S; thus he(S) ⊆ S(α) and this
yields α ∈ Cn

(
R, Sb(X) ∪ (

Sb(Y ) ∩ S(α)
))

, which was to be proved.
Summarizing: C is a structural consequence operation such that C

(
Sb(Y )

)
=

= Cn(R ∪ {r∗}, X ∪ Y ) for each Y ⊆ S.
Let K ⊆ 2S , Z ⊆ S, α ∈ S and assume that

At(
⋃

K) ∩ At(Z ∪ {α}) = ∅.

If α ∈ C(
⋃

K ∪ Z), then we also have α ∈ Cn
(
R, Sb(X) ∪ (

⋃
K ∪ Z) ∩ S(α)

)
=

Cn
(
R, Sb(X) ∪ (

Z ∩ S(α)
))

and hence α ∈ C(Z).
What we have proved above shows that the separation condition from Theo-

rem 2.50 is satisfied by C. Thus, by 2.50, there exists a matrix M such that
−→
M = C

which implies

−→
M

(
Sb(Y )

)
= C

(
Sb(Y )

)
= Cn(R ∪ {r∗}, X ∪ Y ) for each Y ⊆ S,

completing the whole proof. �

Corollary 2.60. For every structural consequence operation Cn there is a logical
matrix M such that

Cn ◦ Sb =
−→
M ◦ Sb.
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2.5 Propositional logic and lattice theory
In this section we are going to present the most important facts concerning the
relationships between some systems of propositional logics and the theory of im-
plicative lattice with a special stress laid upon the connections between classical
logic and Boolean algebras.

Consequences generated by Heyting algebras
Suppose that 〈A,∪,∩〉 is a lattice with � as the lattice ordering, i.e.,

x � y ⇔ x ∩ y = x , for x, y ∈ A.

The filter operation F : 2A → 2A is defined by

F (X) = {a ∈ A : a1 ∩ . . . ∩ an � a, for some a1, . . . , an ∈ X}.
Obviously, for any non-empty X ⊆ A, the set F (X) is a filter in 〈A, �〉. If A
contains the unit element, then F (∅) = {1} (see Lemma 2.13 (i)) and F ({0}) = A
if 0 is the least element in A.

Theorem 1.18 on ultrafilters can be formulated as follows: if X ⊆ A, F (X) �=
A and if A contains the least element, then there exists Y ⊆ A such that X ⊆
Y = F (Y ) �= A and F (Y ∪ {x}) = A for every x /∈ Y . By Lemma 1.15, we get

Corollary 2.61. In every Heyting algebra 〈A, →̇,∪,∩,−〉:
(i) a, a→̇b ∈ F (X) ⇒ b ∈ F (X);

(ii) b ∈ F (X ∪ {a}) ⇔ a→̇b ∈ F (X);

(iii) −a ∈ F (X) ⇔ F (X ∪ {a}) = A.

Let A be a Heyting (Boolean) algebra. Then the consequence operation
determined by A is defined as follows — see Definition 2.22 —

α ∈ −→
A (X) ⇔ (

hv(α) ∈ F
(
hv(X)

)
, for every v : At → A

)
where α ∈ S, X ⊆ S and F ( ) is the filter operation in A .

Corollary 2.62. A formula α belongs to the set
−→
A (X) iff

hv(X) ⊆ H ⇒ hv(α) ∈ H

for every v : At → A and every filter H in A .

The set E(A ) of A -valid formulas is defined by

α ∈ E(A ) ⇔ (
hv(α) = 1A, for every v : At → A

)
.

Of course, E(A ) =
−→
A (∅). Note that

−→
A is a structural consequence operation over

S2 (see Corollary 2.24). It has been also shown (see Lemma 2.26) that
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Corollary 2.63. For every pair of Heyting algebras A and B:

(i) if A ∼= B, then
−→
A =

−→
B;

(ii) if B ⊆ A (or if B is embeddable in A ), then
−→
A � −→

B.

The next lemma follows directly from Corollary 2.61.

Lemma 2.64. For every X ⊆ S and every α, β ∈ S:

(i) β ∈ −→
A (X) ⇒ (α → β) ∈ −→

A (X);

(ii) β ∈ −→
A (X ∪ {α}) ⇔ (α → β) ∈ −→

A (X).

Therefore, one can easily deduce that
−→
A (X) = Cn

(
R0, E(A )∪X

)
for every

finite set X ⊆ S. It should be noticed, however, that
−→
A need not be a finitistic

operation.

Example. Let us consider the infinite linearly ordered algebra

G∞ = 〈G∞, →̇,∪,∩,−〉

where G∞ =
{

1
n

: n is a natural number
}

∪ {0} and the operations →̇,∪,∩,−
are induced by the natural ordering � of real numbers, i.e.,

x ∪ y = max{x, y}
x ∩ y = min{x, y}

x→̇y =

{
1 if x � y

y if y < x

−x =

{
1 if x = 0

0 if x �= 0.

Suppose that f : G∞ → At is a one-to-one mapping. We will write px (for x ∈ G∞)
instead of f(x). Let q ∈ At be a variable such that q /∈ f(G∞). Take

X = {(py → px) → p1/2 : x < y},
α = (p0 → q) + p1/2.

We have to consider, for any valuation v : At → G∞, the following two cases:

(1) hv(p1/2) ∈ F
(
hv(X)

)
,

(2) hv(p1/2) /∈ F
(
hv(X)

)
.

In the first case we get hv(α) ∈ F
(
hv(X)

)
. So, we assume (2) and prove

(3) x < y ⇒ v(px) < v(py).
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Suppose on the contrary that v(px) � v(py) for some x < y. Then hv(py → px) =
= v(py)→̇v(px) = 1 ∈ F

(
hv(X)

)
. Moreover, (py → px) → p1/2 ∈ X and hence

hv(py → px)→̇hv(p1/2) ∈ F
(
hv(X)

)
.

Thus, by Corollary 2.61 (i), hv(p1/2) ∈ F
(
hv(X)

)
, which contradicts (2).

From (3) it follows that hv({px : x ∈ G∞}) is an infinite subset of G∞ and
hv(p0) < hv(px) for each x ∈ G∞. Consequently, we get hv(p0) = 0 and hence
hv(α) = 1 ∈ F

(
hv(X)

)
.

We conclude that α ∈ −→
G∞(X). Let us prove that α /∈ −→

G∞(Y ) for each finite
set Y ⊆ X . Assume Y ∈ Fin(X). Then At(Y ) is also finite and hence there is a

natural number n such that At(Y ) ⊆ {p0} ∪
{

px : x � 1
n

}
. Take v : At → G∞

such that v(px) = x if x �= 0, v(p0) =
1

n + 1
and v(q) = 0. Then

hv
(
(py → px) → p1/2

)
= 1 if 0 < x < y.

Thus, to get hv(Y ) ⊆ {1} it suffices to show hv
(
(py → p0) → p1/2

)
= 1 if y � 1

n
.

Let us suppose that y � 1
n

. Then hv(py → p0) = y→̇ 1
n + 1

=
1

n + 1
and

hence hv
(
(py → p0) → p1/2

)
=

1
n + 1

→̇1
2

= 1. Therefore, we have hv(α) =
1
2

/∈
F ({1}) = F

(
hv(Y )

)
.

We can only state, on the basis of Theorem 2.27, that

Corollary 2.65. If A is finite, then
−→
A is a finitistic consequence operation.

Therefore,
−→
A (X) = Cn

(
R0, E(A ) ∪ X

)
for each X ⊆ S if A is finite.

The algebra A determines, as a (pre)ordered algebra, the two sets of rules;
rules normal in A , denoted by N(A ), and rules valid in A , denoted by V (A ):

r ∈ N(A ) ⇔ (
hv(α) ∈ F

(
hv(Π)

)
, for every 〈Π, α〉 ∈ r, v : At → A

)
,

r ∈ V (A ) ⇔ (
Π ⊆ E(A ) ⇒ α ∈ E(A ), for every 〈Π, α〉 ∈ r

)
.

General statements concerning the two above notions can be found in Section 2.2.
Let us note additionally that

Lemma 2.66. The following conditions are equivalent:

(i) r is normal in A (i.e., r ∈ N(A ));

(ii) hv(Π) ⊆ H ⇒ hv(α) ∈ H, for every 〈Π, α〉 ∈ r, v : At → A and filter H ;

(iii) α ∈ −→
A (Π), for every 〈Π, α〉 ∈ r.
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From Corollary 2.61 (i) it follows that the modus ponens rule is normal in
A . This can be strengthened by proving that

(fin) N(A ) = Der
(
R0, E(A )

)
.

The above equality concerns only rules with finite sets of premises. Evidently, the
same will be true for arbitrary rules if

−→
A is finitistic; for instance, if A is finite.

Lemma 2.67. If H is a filter in a Heyting algebra A , then
−→
A �

−−−→
A /H.

Proof. Suppose that α /∈ −−−→
A /H(X). Then there is a valuation w : At → A/H and

a filter H1 in A /H (see Corollary 2.62) such that hw(X) ⊆ H1 and hw(α) /∈ H1.
Let h : A → A/H be the canonical homomorphism. Using the Axiom of

Choice we can choose a valuation v : At → A such that h ◦ v = w. Thus, we get
h ◦ hv = hw, which gives hv(X) ⊆ h−1(H1) and hv(α) /∈ h−1(H1). But the set
h−1(H1) is a filter in A — see Theorem 1.16 — and consequently α /∈ −→

A (X) by
Corollary 2.62. �

Since each proper filter is contained in a prime one, see Theorem 1.20, we get

Corollary 2.68. If A is a Heyting algebra and X ⊆ S, then

−→
A (X) =

⋂
{−−−→A /H(X) : H is a prime filter in A .}

Proof. The inclusion (⊆) follows from Lemma 2.67. To prove (⊇) let α /∈ −→
A (X).

Then, by 1.20 and 2.62, there exist a valuation v : At → A and a prime filter
H such that hv(X) ⊆ H and hv(α) /∈ H . Let h : At → A/H be the canonical
homomorphism. Then h

(
hv(X)

) ⊆ {1A/H} and h
(
hv(α)

) �= 1A/H , hence α /∈−−−→
A /H(X). �

So, we get
−→
A =

∏{−−−→A /H : H is a prime filter in A }.
Theorem 2.69. Let A be a Heyting algebra. Then α ∈ −→

A
(
Sb(X)

)
if and only if

X ⊆ E(B) ⇒ α ∈ E(B)

for each filter H in A and each B ⊆ A /H.

Proof. We get one implication by 2.67 and 2.63 (ii). Now, assume α /∈ −→
A

(
Sb(X)

)
.

Then, by 2.62, there exist a valuation v : At → A and a filter H in A such that
hv

(
Sb(X)

) ⊆ H and hv(α) /∈ H . Let B be the subalgebra of A /H generated
by the set h

(
hv(S2)

)
, where h : A → A/H is the canonical homomorphism. Since

the composition h ◦ hv is a homomorphism from S2 into A /H , we conclude that
h
(
hv(S2)

)
is closed under the operations of A /H (see Lemma 1.2) and hence

h
(
hv(S2)

)
is the universe of B, i.e., B = h

(
hv(S2)

)
.



2.5. Propositional logic and lattice theory 79

We shall prove that X ⊆ E(B). Let w : At → h
(
hv(S2)

)
be any valuation.

Using the Axiom of Choice we can define a substitution e : At → S2 such that
w = h ◦ hv ◦ e. Thus hw(X) = h

(
hv

(
he(X)

)) ⊆ h
(
hv

(
Sb(X)

)) ⊆ h(H) ⊆ {1A/H}.
We get hw(X) ⊆ {1A/H} for every w : At → h

(
hv(S)

)
, hence X ⊆ E(B).

Moreover, observe that h ◦ hv : S2 → h
(
hv(S2)

)
and h ◦ hv(α) �= 1A/H . Thus,

X ⊆ E(B) and α /∈ E(B), which was to be proved. �
Since the product of Heyting algebras coincides with the product of ordered

algebras as introduced in Section 2.2, we will use in our considerations some results
obtained there. For instance, it follows from Corollary 2.30 that

Corollary 2.70. For each family {At}t∈T of Heyting algebras:

(i) E( P
t∈T

At) =
⋂{E(At) : t ∈ T };

(ii) if T is finite, then
−−−→
P

t∈T
A t(X) =

⋂{−→At(X) : t ∈ T }, for each X ⊆ S.

The filter consequence operations

In terms of lattice theory we define three consequence operations FCi, FCl and
FC2 over the language S2 and then examine connections between the introduced
operations and some propositional systems. In result, we prove completeness the-
orems for the intuitionistic logic, the linear logic of Dummett and the classical
propositional logic.

(i) The set FCi(X), for X ⊆ S2, is the set of those formulas α ∈ S2 which in
any Heyting algebra A fulfill the condition

hv(α) ∈ F
(
hv(X)

)
, for every v : At → A.

(ii) The set FCl(X), for X ⊆ S2, is the set of those formulas α ∈ S2 which in
any linear Heyting algebra A fulfill the condition

hv(α) ∈ F
(
hv(X)

)
, for every v : At → A.

(iii) The set FC2(X), for X ⊆ S2, is the set of those formulas α ∈ S2 which in
any Boolean algebra A fulfill the condition

hv(α) ∈ F
(
hv(X)

)
, for every v : At → A.

Further results containing symbol FC will concern FCi, FCl as well as FC2,
simultaneously. Directly from the definitions it follows that

Lemma 2.71. For every X, Y ⊆ S2:

(i) X ⊆ FC(X),
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(ii) X ⊆ Y ⇒ FC(X) ⊆ FC(Y ),

(iii) FC
(
FC(X)

) ⊆ FC(X),

(iv) he
(
FC(X)

) ⊆ FC
(
he(X)

)
for all e : At → S2.

Lemma 2.72. FC(X) ⊆ ⋃{FC(Y ) : Y ∈ Fin(X)} for every X ⊆ S2.

Proof. Assume that α /∈ FC(Y ) for each finite Y ⊆ X . Therefore, with each
Y ∈ Fin(X) there can be associated Heyting (or linear or Boolean) algebra AY ,
homomorphism hY : S2 → AY and filter HY in AY such that

hY (Y ) ⊆ HY and hY (α) /∈ HY .

Let A be the product of the algebras AY .
Define the homomorphism h : S2 → A as in Lemma 1.6, i.e.,

h(ϕ) = 〈hY (ϕ)〉Y ∈Fin(X) for all ϕ ∈ S2.

We have to prove that h(α) /∈ F
(
h(X)

)
where F is the filter-operation in A .

Suppose that h(α) ∈ F
(
h(X)

)
. Then, by 2.12 (iv), h(α) ∈ F

(
h(Y )

)
for some

Y ∈ Fin(X) and hence hY (α) = πY

(
h(α)

) ∈ πY

(
F

(
h(Y )

)) ⊆ HY against our
assumptions. Thus, α /∈ FC(X) when FC is FCi or FC2.

Now let us assume that FC = FCl. The algebra A constructed above is not
linear, but by Corollary 2.70 (i), (p → q) + (q → p) ∈ ⋂{E(AY ) : Y ∈ Fin(X)} =
E(A ).

Moreover, we know that α /∈ −→
A (X) and hence by Corollary 2.68, there is

a prime filter H in A such that α /∈ −−−→
A /H(X). It follows now from 1.19 and

2.67 that A /H is prime and (p → q) + (q → p) ∈ E(A /H). Hence x→̇y = 1 or
y→̇x = 1 for each x, y in A /H . Then A /H is a linear algebra and α /∈ −−−→

A /H(X).
Thus α /∈ FCl(X). �

By Lemma 2.72, FC is a finitistic consequence operation. Moreover, as a
simple conclusion from the definitions of FC and Corollary 2.61 we get

Corollary 2.73. For each X ⊆ S2 and each α, β ∈ S2:

(i) β ∈ FC(X) ⇒ (α → β) ∈ FC(X);

(ii) β ∈ FC(X ∪ {α}) ⇔ (α → β) ∈ FC(X);

(iii) α , α → β ∈ FC(X) ⇒ β ∈ FC(X);

(iv) Sb
(
FC(∅)) ⊆ FC(∅).
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Intuitionistic propositional logic

The system 〈R0, Sb(Ai)〉 of intuitionistic logic is introduced in Section 1.5. We
also recall that the filter consequence FCi is defined as

α ∈ FCi(X) ⇔ (
α ∈ −→

A (X), for each Heyting algebra A
)
.

From among all formulas of S2 the subset FCi(∅) is separated:

Corollary 2.74. FCi(∅) is the set of all those formulas α ∈ S2 which in each
Heyting algebra A fulfill the condition

hv(α) = 1A, for all v : At → A.

The symbol Ai has been previously used to denote the axioms of intuitionistic
logic. Evidently we obtain

Lemma 2.75. Ai ⊆ FCi(∅).
The standard proof of the completeness theorem for the intuitionistic logic

is well-known. It is based on the construction of the Lindenbaum–Tarski algebra
which appears to be a (free) Heyting algebra.

Theorem 2.76. Cn
(
R0, Sb(Ai) ∪ X

)
= FCi(X), for each X ⊆ S2.

The relationships between intuitionistic logic and Heyting algebras were
stated by many authors — an exhaustive exposition of this subject is presented in
the monograph [107], 1963. It should be noticed that in Theorem 2.76 the stress
is laid on the relationships between the syntactic notion of consequence operation
based upon the intuitionistic logic and the algebraic notion of filter consequence.
Obviously, as an immediate result of 2.76 we get Cn(R0∗, Ai) = FCi(∅), i.e., the
set Cn(R0∗, Ai) consists of all formulas which are valid in every Heyting algebra
(all intuitionistic tautologies). By Theorems 2.76 and 2.69, we get

Corollary 2.77. For each α ∈ S2 and each X ⊆ S2,

α ∈ Cn(R0∗, Ai ∪ X) ⇔ (
X ⊆ E(A ) ⇒ α ∈ E(A ), for each Heyting algebra A

)
The above results allow us to characterize rules derivable in intuitionistic

logic. Namely, a rule r is derivable in 〈R0∗, Ai〉 (i.e., r ∈ Der(R0∗, Ai)) iff r is valid
in each Heyting algebra A (i.e., r ∈ V (A )). For the invariant system 〈R0, Sb(Ai)〉
one can prove that the following conditions are equivalent:

(i) r ∈ Der
(
R0, Sb(Ai)

)
;

(ii) r ∈ N(A ), for each Heyting algebra A ;

(iii)
(
hv(X) ⊆ {1A} ⇒ hv(α) = 1A

)
, for each 〈X, α〉 ∈ r and every valuation v in

each Heyting algebra A .



82 Chapter 2. Semantic methods in propositional logic

Now, we will try to restrict the class of intuitionistic models (i.e., the class of all
Heyting algebras) to the family of the Jaśkowski algebras {Jn}n�1. First, we shall
prove (by methods from [107], 1963)

Theorem 2.78. For each α ∈ S2 the following conditions are equivalent:

(i) α ∈ Cn(R0∗, Ai);

(ii) α is valid (i.e., α ∈ E(A )) in all finite Heyting algebras.

Proof. The implication (i)⇒(ii) is obvious. For the proof of (ii)⇒(i) we assume
that α /∈ Cn(R0∗, Ai). Then, by Theorem 2.76, there are a Heyting algebra A =
〈A, →̇,∪,∩,−〉 and a valuation v : At → A such that hv(α) �= 1A.

Let 〈K,∪,∩〉 be the sublattice of 〈A,∪,∩〉 generated by {1A} ∪ hv
(
Sf(α)

)
(recall that Sf(α) denotes the set of all subformulas of α, and notice that the
set Sf(α) is finite). Then, by Lemma 1.14, 〈K,∪,∩〉 is a finite distributive lattice
with the lattice ordering � induced from A , i.e.,

x � y ⇔ x �A y, for all x, y ∈ K.

But every distributive lattice ordering on a finite set is a Heyting ordering, hence
we can define the operations →̇1,−1 in such a way that K = 〈K, →̇1,∪,∩,−1〉
will be the Heyting algebra determined by �. Since, on the other hand, the relation
� is induced from A , there are some connections between the operations →̇, −
and →̇1, −1. For instance, it can be easily shown that for x, y ∈ K:

if x→̇y ∈ K, then x→̇1y = x→̇y;
if −x ∈ K, then −1x = −x.

Let us consider a homomorphism h : S2 → K fulfilling the condition

h(γ) = v(γ), for every γ ∈ At(α).

We easily show, by induction on the length of a formula, that h(ϕ) = hv(ϕ) for each
ϕ ∈ Sf(α). This follows immediately from the fact that 〈K,∪,∩〉 is a sublattice
of 〈A,∪,∩〉 and the above mentioned connections between the operations in K
and A . Therefore

h(α) = hv(α) �= 1A = 1K

and then α is not valid in the finite Heyting algebra K . �
The next theorem states that Jaśkowski algebras {Jn}n�1 constitute an

adequate family of algebras for the intuitionistic propositional logic:

Theorem 2.79. Cn(R0∗, Ai) =
⋂{E(Jn) : n � 1}.

Proof. We have to prove the inclusion (⊇) only. Assume that α /∈ Cn(R0∗, Ai).
Then, by 2.78, there is a finite Heyting algebra A such that α /∈ E(A ). Since
A is finite, A is embeddable in algebra (Jn)m for some natural numbers n, m
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(see Corollary 1.30). It follows then from Corollaries 2.70 (ii) and 2.63 (ii) that−−→
Jn =

−−−−→
(Jn)m � −→

A and hence E(Jn) ⊆ E(A ), which means that α /∈ E(Jn)
for some n � 1. �

Using the deduction theorem Corollary 2.73 (ii) we can strengthen the above
result to

Corollary 2.80. For every finite set X ⊆ S2,

Cn
(
R0, Sb(Ai) ∪ X

)
=

⋂
{−−→Jn(X) : n � 1}.

Theorem 2.79 was first stated by S. Jaśkowski [44], 1936. We have presented
here another proof of this fact based on certain results (e.g., Theorem 2.78) estab-
lished by H. Rasiowa and R. Sikorski [107], 1963.

It is worth noticing that the equality stated in Corollary 2.80 does not hold
for arbitrary (non-finite) sets X . Using some results from [148], 1973, we can even
prove that there is a finite set X such that Cn(R0∗, Ai∪X) �= ⋂{−−→Jn

(
Sb(X)

)
: n �

1}. Therefore, Der(R0∗, Ai) �= ⋂{V (Jn) : n � 1}. Corollary 2.80 allows us only
to characterize derivability in 〈R0, Sb(Ai)〉 for rules with finite sets of premises.
Namely, it is easy to observe that such a rule r belongs to Der

(
R0, Sb(Ai)

)
if and

only if r is normal in each algebra Jn.

Linear propositional logic of Dummett
The system 〈R0, Sb(Al)〉 of Dummett’s linear logic is formalized in the language
S2. Let us define

Al = Ai ∪ {(p → q) + (q → p)}.
The filter consequence connected with this logic is FCl, where α ∈ FCl(X) means
that α ∈ −→

A (X), for all linear Heyting algebras A .

Corollary 2.81. FCl(∅) is the set of those formulas α ∈ S2 which in each linear
algebra A fulfill the condition hv(α) = 1A for all v : At → A.

Corollary 2.82. Al ⊆ FCl(∅).
Note that FCi(∅) �= FCl(∅) since the formula (p → q) + (q → p) is not valid

in J3. We shall prove the following completeness theorem for Dummett’s system:

Theorem 2.83. Cn
(
R0, Sb(Al) ∪ X

)
= FCl(X), for each X ⊆ S2.

Proof. The inclusion (⊆) follows from 2.82 and 2.73. To prove the reverse inclusion
let us assume that α /∈ Cn

(
R0, Sb(Al)

)
. Then, by Corollary 2.77,

(p → q) + (q → p) ∈ E(A ) and α /∈ E(A )

for some Heyting algebra A . Thus, by Corollary 2.68, there exists a prime filter
H in A such that

(p → q) + (q → p) ∈ E(A /H) and α /∈ E(A /H).
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Since the algebra A /H is prime (see Theorem 1.19) and (a→̇b)∪ (b→̇a) = 1
for each a and b in A/H , we conclude that A /H is linearly ordered. Thus, α /∈
FCl(∅).

It has been proved that FCl(∅) = Cn
(
R0, Sb(Al)

)
. To prove the inclusion

FCl(X) ⊆ Cn
(
R0, Sb(Al)∪X

)
for each X , it suffices now to use the finiteness of

the consequence FCl and the deduction theorem (see Lemma 2.72 and Corollary
2.73 (ii)).

In fact, if α ∈ FCl(X), then α1 → (
. . . (αn → α) . . .

) ∈ FCl(∅) =
= Cn

(
R0, Sb(Al)

)
for some α1, . . . , αn ∈ X . Thus α ∈ Cn

(
R0, Sb(Al) ∪ X

)
. �

Now we will try to restrict the family of all linear algebras to Gödel–Heyting’s
algebras {Gn}n�1 defined in Section 1.3.

Lemma 2.84. If A is an infinite linear Heyting algebra, then

E(A ) =
⋂

{E(Gn) : n � 1}.

Proof. The inclusion (⊆) follows from Lemma 1.31 and Corollary 2.63 (ii). To
prove the inclusion (⊇) let us assume that α /∈ E(A ). Then hv(α) �= 1A for some
valuation v in A. Since A is linearly ordered, each subset of A containing 1A and
0A is closed under the operations of A , i.e., is a subalgebra. The set hv

(
At(α)

) ∪
{1A, 0A} determines thus a finite subalgebra B of A such that α /∈ E(B). By
Corollary 1.32, B is isomorphic with some algebra Gn and hence α /∈ E(Gn). �

On the basis of Lemma 2.84 and Theorem 2.83 we conclude that each infinite
linear Heyting algebra A (e.g., algebra G∞) is adequate (weakly) for Dummett’s
system, i.e.,

Cn(R0∗, Al) = E(A ) =
⋂

{E(Gn) : n � 1}.
Moreover, observe that 2.84 and the deduction theorem allow us to prove

Cn
(
R0, Sb(Al) ∪ X

)
=

−→
G∞(X) =

⋂
{−→Gn(X) : n � 1} =

−→
A (X)

for each finite set X and each infinite algebra A . Hence,

r ∈ Der
(
R0, Sb(Al)

) ⇔ (r ∈ N(Gn) for each n � 2).

It should be noticed, however, that this equivalence concerns only rules with finite
sets of premises. It is easy to observe that the above equalities do not hold for any
(infinite) sets X . In order to show that Cn

(
R0, Sb(Al)∪X

) �= −→
G∞(X) for some X it

suffices to make a use of the example on page 76 where it has been shown that the
consequence

−→
G∞ is not finitistic. Observe, moreover, that Cn

(
R0, Sb(Al) ∪ X

) �=
�= ⋂{−→Gn(X) : n � 1} for the same set X . For arbitrary (finite or infinite) rules we
can only prove the equivalence of the following conditions:

(i) r ∈ Der
(
R0, Sb(Al)

)
;
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(ii) r ∈ N(A ) in each linear algebra A ;

(iii) hv(X) ⊆ {1A} ⇒ hv(α) = 1A, for each 〈X, α〉 ∈ r and each valuation v in
each linearly ordered algebra A .

The counterpart of Theorem 2.83 for the system 〈R0∗, Al〉 will be as follows:

Theorem 2.85. For each X, α ⊆ S2 the following conditions are equivalent:

(i) α ∈ Cn
(
R0∗, Al ∪ X

)
;

(ii) X ⊆ E(A ) ⇒ α ∈ E(A ), for each linear algebra A ;

(iii) α ∈ −→
A

(
Sb(X)

)
, for some infinite linear algebra A ;

(iv) X ⊆ E(Gn) ⇒ α ∈ E(Gn), for each n � 1.

Proof. The implication (i)⇒(iii) is obvious — see Theorem 2.83.
(iii)⇒(iv): By Lemma 1.31, Gn is embeddable in A and hence

−→
A � −→

Gn (see
Corollary 2.63 (ii)) which means in particular that

−→
A

(
E(Gn)

) ⊆ E(Gn). So, if
α ∈ −→

A
(
Sb(X)

)
and if X ⊆ E(Gn), then also α ∈ E(Gn).

(iv)⇒(ii): According to Corollary 1.32 (iii) each finite linearly ordered alge-
bra A is isomorphic with some algebra Gn and hence E(A ) = E(Gn). Thus, if we
assume (iv), then

X ⊆ E(A ) ⇒ α ∈ E(A )

for each finite linearly ordered algebra A . Moreover, from (iv) it results that

if X ⊆ E(Gn) for each n, then α ∈ E(Gn) for each n.

By Lemma 2.84, the condition (ii) is fulfilled for each infinite linear algebra A .
(ii)⇒(i): Assume (ii) for some X , α. Since each subalgebra and each quotient

algebra of a linear Heyting algebra A is also a linear Heyting algebra, we conclude
by Theorem 2.69 that α ∈ −→

A
(
Sb(X)

)
. Thus, by 2.83, α ∈ Cn(R0∗, Al ∪ X). �

From the above theorem it immediately follows that for each set X ⊆ S2:

Cn(R0∗, Al ∪ X) =

{
E(G∞) if X ⊆ E(G∞)

E(Gn) if X ⊆ E(Gn) ∧ X \ E(Gn+1) �= ∅.
Moreover, we conclude that r ∈ Der(R0∗, Al) provided that r is valid in each
algebra Gn, i.e., r ∈ V (Gn) for each n. Obviously, each rule derivable in 〈R0∗, Al〉
is valid in each linear algebra.

Some of the above results can also be used to characterize the so-called Gödel–
Heyting’s propositional logic, i.e., the logics determined by the algebras {Gn}n�1.
Let us prove that the consequences

−→
G n,

−→
G n ◦Sb can be axiomatized with the help

of the formulas ϕn defined as

ϕ1 = (p1 ≡ p2),
ϕn+1 = ϕn + (p1 ≡ pn+2) + . . . + (pn+1 ≡ pn+2).
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The formulas can be also be written down in the form

ϕn = ⊕{pi ≡ pj : 1 � i < j � n + 1}.

The set Al ∪ {ϕn} is denoted by Hn. The completeness theorem for the system
〈R0, Sb(Hn)〉 with respect to the algebra Gn will be formulated as follows:

Theorem 2.86. Cn
(
R0, Sb(Hn) ∪ X

)
=

−→
Gn(X), for each X ⊆ S2.

Proof. The algebra Gn, for n � 1, is prime and contains exactly n elements. Then
the formula ⊕{pi ≡ pj : 1 � i < j � n + 1} is valid in Gn and is not valid in Gn+1,
hence ϕn ∈ E(Gn) \ E(Gn+1). By Theorem 2.85 (i), (iv), we get

Cn
(
R0, Sb(Hn)

)
= Cn

(
R0, Sb(Al) ∪ Sb(ϕn)

)
= E(Gn).

Obviously, the inclusion Cn
(
R0, Sb(Hn)∪X

) ⊆ −→
Gn(X) holds for each X ⊆ S2 (see

2.64 (ii)). On the other hand, it follows from the finiteness of
−→
Gn (2.65) and from

the deduction theorem Lemma 2.64 (ii) that
−→
Gn(X) ⊆ Cn

(
R0, Sb(Hn) ∪ X

)
. �

Instead of the algebra Gn = 〈Gn, →̇,∪,∩,−〉, one could take the matrix
Gn = 〈〈Gn, →̇,∪,∩,−〉, {1}〉. The completeness theorem for 〈R0, Sb(Hn)〉 usually
means adequacy with respect to the matrix Gn that is as the equation

−→
Gn(X) = Cn

(
R0, Sb(Hn) ∪ X

)
, for each X ⊆ S2

or as E(Gn) = Cn(R0∗, Hn). Of course, E(Gn) = E(Gn) and, since {1} is a filter
in Gn, one gets

−→
Gn(X) ⊆ −→

Gn(X) for each X . The reverse inclusion can also be
easily deduced. Namely, if α /∈ −→

Gn(X), then hv(X) ⊆ H and hv(α) /∈ H for some
filter H in Gn and some valuation v. The quotient algebra Gn/H is isomorphic to
some algebra Gm with m � n and obviously α /∈ −→

Gm(X). But Gm is isomorphic
to some submatrix of Gn. Thus

−→
Gn(X) ⊆ −→

Gm(X) and hence α /∈ −→
Gn(X).

Using the completeness (adequacy) theorem we easily deduce

Der
(
R0, Sb(Hn)

)
= N(Gn) = N(Gn).

Similar statements hold for the rules derivable in 〈R0∗, Hn〉.

Corollary 2.87. For each X ⊆ S2,

Cn(R0∗, Hn ∪ X) =
⋂

{E(Gm) : m � n ∧ X ⊆ E(Gm)}.

The above corollary follows directly from 2.85 and 2.86. We also get

Cn(R0∗, Hn ∪ X) = E(Gm) if m = max{i � n : X ⊆ E(Gi)}.
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Thus, Der(R0∗, Hn) =
⋂{V (Gm) : m � n}. It is worth noticing that instead of

⊕ {pi ≡ pj : 1 � i < j � n + 1} one could take, as an axiom of Gödel–Heyting’s
logic, any formula ϕn fulfilling the condition ϕn ∈ E(Gn) \ E(Gn+1). Note that if
ϕn ∈ E(Gn) \ E(Gn+1), then ϕn must contain (at least) n + 1 variables.

Heyting’s matrix G3 was axiomatized by J. Łukasiewicz [65], 1938. The ax-
iomatization of Gn for n > 3 is due to I. Thomas [121], 1962. The linear proposi-
tional logic was defined, and the completeness theorem for this logic was proved
by M.Dummett [16], 1959. In the proof of completeness theorem for 〈R0∗, Al〉 (as
well as for 〈R0∗, Hn〉) we used some ideas from Dunn [17], 1971. 1962).

Classical propositional logic

The system 〈R0, Sb(A2)〉 is formalized in S2 and FC2 is the filter consequence
connected with the system.

Corollary 2.88. The set FC2(∅) of all Boolean tautologies is the set of those for-
mulas α ∈ S2 which in every Boolean algebra B fulfill the condition

hv(α) = 1B, for all v : At → B.

There exist, of course, Boolean tautologies which are not linear tautologies
(which means that they are not Heyting tautologies, either). For instance, note
that

(
(p → q) → p

) → p is not valid in G3 but is valid in each Boolean algebra.

Lemma 2.89. A2 ⊆ FC2(∅).
Theorem 2.90. Cn

(
R0, Sb(A2) ∪ X

)
= FC2(X), for each X ⊆ S2.

Proof. Inclusion Cn
(
R0, Sb(A2) ∪ X

) ⊆ FC2(X) for each X ⊆ S2 follows from
Lemma 2.89 and Corollary 2.73 (iii). The proof of the converse implication runs
as follows. Let

ϕ ≈X ψ iff (ϕ ≡ ψ) ∈ Cn
(
R0, Sb(A2) ∪ X

)
.

The relation is a congruence in the algebra of the language S2. In the quotient
algebra S2/ ≈X we can define the order relation

[ϕ] �X [ψ] iff (ϕ → ψ) ∈ Cn
(
R0, Sb(A2) ∪ X

)
which is the order relation in the Boolean algebra S2/ ≈X . Moreover,

[ϕ] = 1X iff ϕ ∈ Cn
(
R0, Sb(A2) ∪ X

)
.

Now assume that h : S2 → S2/ ≈X is the canonical homomorphism, i.e.,

h(ϕ) = [ϕ] for every ϕ ∈ S2.
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Suppose that α ∈ FC2(X), thus h(α) ∈ F
(
h(X)

)
where F is the filter

operation in S2/ ≈X . But we have

h(X) = {[β] : β ∈ X} = {1X}.
So we get [α] = h(α) ∈ F

(
h(X)

)
= {1X}, hence [α] = 1X , which means that

α ∈ Cn
(
R0, Sb(A2) ∪ X

)
. �

The above proof is carried out without the use of the deduction theorem and
is based only on the construction of the Lindenbaum–Tarski algebra.

The above can be deduced from Corollary 2.77. Namely, we have to prove
the inclusion FC2(∅) ⊆ Cn(R0∗, A2) only. Suppose α /∈ Cn

(
R0, Sb(A2)

)
=

FCi

(
Sb(p+ ∼ p)

)
. By the definition of FCi and by 2.77 we get the existence

of a Heyting algebra A such that p+ ∼ p ∈ E(A ) and α /∈ E(A ). Since
p+ ∼ p ∈ E(A ), A is a Boolean algebra and hence α /∈ FC2(∅).

By a similar argument, one gets the so-called Glivenko’s theorem which states
certain connections between the intuitionistic and classical propositional logics:

Corollary 2.91. α ∈ FC2(X) ⇔ ∼∼ α ∈ FCi(X), for each α, X ⊆ S2.

Now we will prove the completeness theorem for classical propositional logic
with respect to the two-element Boolean algebra

B2 = 〈{0, 1}, →̇,∪,∩,−〉.

Lemma 2.92. If B is a non-degenerate Boolean algebra, then
−→
B =

−→
B2.

Proof. Grounds should be found only for
−→
B2 � −→

B. Assume that α /∈ −→
B(X).

Then, by Corollary 2.68, there exists a prime filter H such that α /∈ −−−→
B/H(X). It

follows now from Corollary 1.22 that H is an ultrafilter and B/H contains exactly
two elements. Since all two-element Boolean algebras are isomorphic, we conclude
α /∈ −→

B2(X). �
The above lemma, founded on the basic theorems and the notions of the

theory of Boolean algebras (cf. 1.20, 1.22, 2.62, 2.68, 2.67), is of course the crucial
point in passing from a rather trivial type of Boolean completeness theorems to
the non-trivial theorem on the B2-completeness of classical propositional logic.
Lemma 2.92 is a generalization of some lemma from [86], 1974, which presents the
very idea of 2.92 but is in less general form.

By Theorem 2.90 and Lemma 2.92 we get immediately

Corollary 2.93. Cn
(
R0, Sb(A2) ∪ X

)
=

−→
B2(X), for each X ⊆ S2.

So, we get decidability of the set of Boolean tautologies:

Cn(R0∗, A2) = E(B2) = FC2(∅).



2.5. Propositional logic and lattice theory 89

Moreover, The reader should notice close connections between

– the completeness theorem for the classical propositional logic with respect to
the two-valued matrix M2,

– the completeness of Gödel–Heyting’s propositional logic 〈R0, Sb(H2)〉 in re-
lation to the algebra G2 (or the matrix G2, see 2.86),

– the completeness of Łukasiewicz’s logic 〈R0, Sb(Ł2)〉 with respect to M2.

Since any quotient algebra of B2 is either degenerate or is isomorphic with B2,
we obtain on the basis of Corollaries 2.93 and 2.69:

Corollary 2.94. For each X ⊆ S2,

Cn(R0∗, A2 ∪ X) =

{
E(B2) if X ⊆ E(B2)

S2 otherwise.

From Corollaries 2.93 and 2.94 it follows that Der
(
R0, Sb(A2)

)
= N(B2) and

Der(R0∗, A2) = = V (B2). It should also be noticed that all above theorems con-
cerning the two-element algebra B2 hold as well for each non-degenerate Boolean
algebra B.





Chapter 3

Completeness of propositional
logics

The purpose of this chapter is to give a systematic treatment of the most important
results concerning different notions of completeness for propositional logics. We
consider, in Section 3.1, the notion of Γ-completeness and Γ-maximality and use
them in the further development of the theory of Post-complete (Section 3.2) and
structurally complete (Section 3.4) systems. Thus, Section 3.1 is rather technical;
we search there for properties which Post-completeness, structural completeness,
maximality and other similar notions have in common.

Sections 3.2–3.4 develop the basic results of this chapter. We discuss there
the constructions, basic properties and several applications of complete systems.
Extensions of a given propositional system to a complete one play the central role
in Section 3.3. We try to determine propositional logics which can be extended
to a Post-complete system only in a unique way. Some related concepts such as
saturation and pseudo-completeness are discussed in Section 3.5. We give also some
results concerning completeness of some concrete propositional logics. However,
these results are limited since the main purpose of this chapter is to present only
methods and ideas that have been used in this part of logic.

3.1 Generalized completeness

Let S = 〈S, F1, . . . , Fm〉 be the algebra of a propositional language based on a
countable set of propositional variables At and the connectives F1, . . . , Fm.

In the next definition the set Γ ⊆ S will be used as a parameter; RS is the set
of all rules over S, the symbol Struct(Γ) stands for the family of all Γ-structural
rules (see Definition 1.54). Recall that a logic 〈R, A〉, where R ⊆ RS , A ⊆ S is
said to be Γ-invariant (in symbols 〈R, A〉 ∈ Inv(Γ)) iff R ⊆ Struct(Γ), A = SbΓ(A)
and that 〈R, A〉 is consistent, 〈R, A〉 ∈ Cns, iff Cn(R, A) �= S.
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Definition 3.1 (a). Let A ⊆ S and R ⊆ RS . Then

(i) 〈R, A〉 ∈ Γ-Cpl ⇔ Adm(R, A) ∩ Struct(Γ) ⊆ Der(R, A);

(ii) 〈R, A〉 ∈ Γ-Max ⇔ (〈R, A〉 ∈ Inv(Γ) and there is no system 〈R1, A1〉 ∈
Inv(Γ) ∩ Cns such that 〈R, A〉 ≺ 〈R1, A1〉

)
.

This definition can be expressed, as well, in the consequence operation for-
malism. Let Cn be a consequence operation over S, then we have:

Definition 3.1 (b).

(i) Cn ∈ Γ-CPL ⇔ ADM(Cn) ∩ Struct(Γ) ⊆ DER(Cn);

(ii) Cn ∈ Γ-MAX ⇔ Cn(∅) = S or Cn is a maximal element in the family of all
consistent Γ-structural consequence operations over S.

Note that the notion of Γ-completeness is defined for arbitrary propositional
logics, whereas only Γ-invariant ones can be Γ-maximal.

Lemma 3.2. Γ-Max ⊆ Γ-Cpl ∩ Inv(Γ).

Proof. It suffices to consider only the case when 〈R, A〉 ∈ Γ-Max ∩ Cns. Let
R1 = Adm(R, A) ∩ Struct(Γ), then 〈R, A〉 � 〈R1, A〉 and 〈R1, A〉 ∈ Cns. By
our assumptions, we get R1 ⊆ Der(R, A), i.e., 〈R, A〉 ∈ Γ-Cpl. �

We have Γ-Cpl ∩ Inv(Γ) �= Γ-Max for some Γ ⊆ S: the pure implicational
Hilbert’s propositional logic 〈R0, Sb(A→

H )〉 belongs to the family S-Cpl ([98], 1972)
but, of course, not to S-Max. For the reader less familiar with such particular
results concerning structural completeness we give a straightforward example:

Example. Let SF = 〈SF , F 〉 be the propositional language built up by means of
one monadic connective F . Let A = Sb({FFp}) and R = Adm(∅, A) ∩ Struct.
We have Cn(R, A) = Cn(∅, A) = A and hence, Adm(R, A) = Adm(∅, A). Thus,
〈R, A〉 ∈ S-Cpl. Let r = {〈ϕ, ψ〉 : ϕ ∈ A ∧ ψ ∈ Sb({Fp})}. It is easy to see
that r ∈ Struct and that Fp /∈ A = Cn(R, A). Thus r /∈ Der(R, A) and hence
〈R, A〉 ≺ 〈R ∪ {r}, A〉. Now we are going to show that 〈R ∪ {r}, A〉 ∈ Cns. Of
course, we have Cn(R ∪ {r}, A) = Cn

(
R, Sb({Fp})). Suppose on the contrary

that p ∈ Cn
(
R, Sb({Fp})). Take e : At → S such that e(γ) = Fp for each γ ∈ At,

we get Fp = e(p) ∈ Cn
(
R, he

(
Sb({Fp}))) ⊆ Cn

(
R, Sb({FFp})) = Cn(R, A) = A

which is impossible. This shows 〈R ∪ {r}, A〉 ∈ Cns and hence 〈R, A〉 /∈ S-Max.

The notions Γ-Max and Γ-Cpl can be defined by similar patterns.

Lemma 3.3. If 〈R, A〉 ∈ Inv(Γ), then

(i) 〈R, A〉 ∈ Γ-Max ⇔ (〈R ∪ {r}, A〉 /∈ Cns,for each r ∈ Struct(Γ) \ Der(R, A)
)
;

(ii) 〈R, A〉 ∈ Γ-Cpl ⇔ (〈R∪{r}, A〉 /∈ Cns, for each r ∈ Struct(Γ)∩Adm(R, A)\
Der(R, A)

)
.
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Easy proofs are omitted. The assumption 〈R, A〉 ∈ Inv(Γ) is superfluous in
the case of Lemma 3.3 (ii).

The next theorem reveals some connections between the rules derivable in
〈R, A〉 ∈ Γ-Cpl and rules valid in any 〈R, A〉-adequate matrix M.

Theorem 3.4. If r∗|Γ ∈ Adm(R, A) and ∅ �= Cn(R, A) �= S, then the following two
conditions are equivalent:

(i) Der(R, A) ∩ Struct(Γ) = V (M) ∩ Struct(Γ);

(ii) 〈R, A〉 ∈ Γ-Cpl ∧ E(M) = Cn(R, A).

Proof. (i)⇒(ii): Let r1 = {〈ψ, ϕ〉 : ψ ∈ Cn(R, A) ∧ ϕ ∈ E(M)}. From the
assumptions it easily follows that E(M) �= ∅. Then we get r1 ∈ V (M)∩Struct(Γ).
Thus r1 ∈ Der(R, A) and hence E(M) ⊆ Cn(R, A).

Now, let us take r2 = {〈ψ, ϕ〉 : ψ ∈ E(M) ∧ ϕ ∈ Cn(R, A)}. Then we easily
get r2 ∈ Der(R, A) ∩ Struct(Γ) and r2 ∈ V (M). Hence Cn(R, A) ⊆ E(M).

Assume that r ∈ Adm(R, A) ∩ Struct(Γ). Since E(M) = Cn(R, A), then
r ∈ V (M) ∩ Struct(Γ), so r ∈ Der(R, A). Thus we get 〈R, A〉 ∈ Γ-Cpl.

(i)⇐(ii): Assume that Cn(R, A) = E(M). We have V (M) = Adm(R, A)
and hence V (M) ∩ Struct(Γ) = Adm(R, A) ∩ Struct(Γ) = Der(R, A) ∩ Struct(Γ)
by Γ-completeness of 〈R, A〉. �
Corollary 3.5. If Cn(R, A) = E(M), then

Der(R, A) ∩ Struct(Γ) = V (M) ∩ Struct(Γ) ⇔ 〈R, A〉 ∈ Γ-Cpl.

The main conclusion we can infer from Theorem 3.4 is that, given any Γ-
incomplete logic and a matrix M adequate for this logic, the set of its derivable
rules is not equal to the set of M-valid rules. This seems to be the very idea of
incompleteness expressed in terms of derivability of inferential rules. From Theo-
rem 3.4 we also get the following characterization of Γ-completeness by use of the
rules normal in the Lindenbaum matrix MR,A, see Corollary 2.43;

Corollary 3.6. If r∗ ∈ Adm(R, A), then

Der(R, A) ∩ Struct(Γ) = V (MR,A) ∩ Struct(Γ) ⇔ 〈R, A〉 ∈ Γ-Cpl.

Let us define now the ‘big Γ-rule’ (see Definition 1.53). Note that hen◦. . .◦he1

means the usual composition of the mappings involved.

Definition 3.7. For each X ⊆ S,

〈Π, α〉 ∈ Γ-rX ⇔ (
hen ◦ . . . ◦ he1(Π) ⊆ X ⇒ hen ◦ . . . ◦ he1(α) ∈ X,

for each n � 0 and each e1, . . . , en : At → Γ
)
.

It should be noticed that the case n = 0 is not excluded in the above definition
and hence, if 〈Π, α〉 ∈ Γ-rX and Π ⊆ X , then also α ∈ X . Observe that for Γ = S
we have S-rX = rX (see Definition 1.53).
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Lemma 3.8. 〈R, A〉 ∈ Γ-Cpl ⇔ Γ-rCn(R,A) ∈ Der(R, A).

Proof. (⇒): Is is easy to see that Γ-rX ∈ Struct(Γ) for every X ⊆ S. Moreover
Γ-rCn(R,A) ∈ Adm(R, A).

(⇐): Let us observe that for every rule r ∈ Adm(R, A) ∩ Struct(Γ) we
have r ⊆ Γ-rCn(R,A): if we assume 〈Π, α〉 ∈ r and e1, . . . , en : At → Γ, then
we get 〈hen . . . he1(Π), hen . . . he1(α)〉 ∈ r ∈ Adm(R, A). Thus, the derivability of
Γ-rCn(R,A) yields the derivability of all Γ-structural and admissible rules. �

Careful examination of Definitions 3.1 leads to the conclusion that the notion
of Γ-Cpl is defined in a manner essentially different from the notion of Γ-Max. Γ-
completeness is defined only by internal properties of 〈R, A〉 expressed by the
operations Adm and Der, whereas Γ-maximality can be treated as a property
determined by the structure of all Γ-invariant logics. We can say then that Γ-Cpl
is an internal property, whilst Γ-Max is an external property (of a propositional
logic). However, Lemma 3.3 shows that the external property Γ-Max, of a Γ-
invariant logic, can also be expressed by internal (local) properties of the logic. On
the other hand, Γ-complete logics may possess some global properties referring to
the structure of the set Inv(Γ).

Theorem 3.9. Let 〈R, A〉 ∈ Inv(Γ). Then

〈R, A〉 ∈ Γ-Cpl ⇔ (
[Cn(R, A) = Cn(R1, A1) ⇒ 〈R1, A1〉 � 〈R, A〉],

for every 〈R1, A1〉 ∈ Inv(Γ)
)
.

Proof. Let 〈R, A〉 ∈ Γ-Cpl and let Cn(R, A) = Cn(R1, A1) for 〈R1, A1〉 ∈ Inv(Γ).
Then R1 ⊆ Adm(R1, A1) ∩ Struct(Γ) = Adm(R, A) ∩ Struct(Γ) ⊆ Der(R, A)
and A1 ⊆ Cn(R, A), that is 〈R1, A1〉 � 〈R, A〉. For the reverse implication: if
R1 = Adm(R, A) ∩ Struct(Γ), then Cn(R, A) = Cn(R1, A) (see Definition 1.45)
and hence Adm(R, A) ∩ Struct(Γ) ⊆ Der(R, A), i.e., 〈R, A〉 ∈ Γ-Cpl. �

A system 〈R, A〉 is Γ-complete iff 〈R, A〉 is maximal in the family of all Γ-
invariant logics with a fixed set of theorems. The assumption 〈R, A〉 ∈ Inv(Γ) (in
the previous proposition) cannot be omitted. It can be only weakened: instead of
it one can assume that r∗|Γ ∈ Adm(R, A) or Cn(R2, A2) = Cn(R, A) for some
〈R2, A2〉 ∈ Inv(Γ).

There can be easily given somewhat different (but similar to 3.9) character-
ization of Γ-completeness:

Lemma 3.10. 〈R, A〉 ∈ Γ-Cpl ⇔ (
[Cn(R, A) = Cn(R1, A1) ⇒ 〈R1, A1〉 � 〈R, A〉],

for every A1 ⊆ S and R1 ⊆ Struct(Γ)
)
.

Thus, Γ-Cpl can be treated as maximality in some family of propositional
logics, in other words, as external property. We will prove now
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Lemma 3.11. Let 〈R, A〉 ∈ Inv(Γ). Then

(i) 〈R, A〉 ∈ Γ-Max ⇔ (
[〈R ∪ {r}, A〉 ∈ Cns

⇒ Adm(R ∪ {r}, A) ∩ Struct(Γ) ⊆ Der(R, A)], for every r ∈ RS

)
;

(ii) if 〈R, A〉 ∈ Γ-Max, then Cn(R, SbΓ{α} ∪ A) = S for each α /∈ Cn(R, A).

Proof. (i): (⇒) Let us assume that 〈R, A〉 ∈ Γ-Max and 〈R ∪ {r}, A〉 ∈ Cns.
Let R1 = Adm(R ∪ {r}, A) ∩ Struct(Γ). Hence 〈R1, A〉 ∈ Inv(Γ), R ⊆ R1 and
Cn(R1, A) ⊆ Cn(R ∪ {r}, A) �= S and therefore 〈R1, A〉 ∈ Cns. We have then
Γ-Max � 〈R, A〉 � 〈R1, A1〉 ∈ Cns ∩ Inv(Γ), which means that 〈R, A〉 ≈ 〈R1, A〉.
This yields the inclusion R1 = Adm(R ∪ {r}, A) ∩ Struct(Γ) ⊆ Der(R, A).

(⇐): Let r ∈ Struct(Γ) \ Der(R, A). If 〈R ∪ {r}, A〉 ∈ Cns, then by the
assumption we get r ∈ Der(R, A) which is impossible. Thus 〈R ∪ {r}, A〉 /∈ Cns
and, by Lemma 3.3 (i), we get 〈R, A〉 ∈ Γ-Max.

(ii): Let 〈R, A〉 ∈ Γ-Max and let α /∈ Cn(R, A). Defining A1 = A∪SbΓ({α})
we get 〈R, A〉 ≺ 〈R, A1〉 and of course 〈R, A1〉 ∈ Inv(Γ). Thus, by Definition 3.1
(ii), we get 〈R, A1〉 /∈ Cns, i.e., Cn

(
R, A ∪ SbΓ({α})) = S. �

From the two considered notions Γ-completeness is more generally defined.
First, it is not restricted to the family of Γ-invariant logics. Second, Γ-maximality
can be defined by use of Γ-completeness.

Theorem 3.12. The following two conditions are equivalent:

(i) 〈R, A〉 ∈ Γ-Max;

(ii) 〈R, A〉 ∈ Γ-Cpl ∩ Inv(Γ) and 〈R ∪ {r∗|Γ}, A〉 ∈ ∅-Cpl.

Proof. (i)⇒(ii): Let us prove that Adm(R ∪ {r∗|Γ}, A) ⊆ Der(R ∪ {r∗|Γ}, A) —
see Lemma 3.2. Let r ∈ Adm(R ∪ {r∗|Γ}, A) = Adm

(
R, SbΓ(A)

)
(see Theorem

1.58). Let us assume 〈Π, α〉 ∈ r and consider the following two possibilities.

a. Π ⊆ Cn
(
R, SbΓ(A)

)
. Then α ∈ Cn

(
R, SbΓ(A)

)
.

b. Π � Cn
(
R, SbΓ(A)

)
. Then by 3.11 (ii) we get S = Cn

(
R, SbΓ(A ∪ Π)

)
.

Therefore α ∈ Cn(R ∪ {r∗|Γ, A ∪ Π).
(ii)⇒(i): This follows immediately from 3.9 and 1.58. �

Let us note that some of the above properties look better if formulated in
consequence operations formalism. As an example, we reformulate Lemma 3.3.
Let Cnr be the consequence operation determined by the sole rule r (that is
Cnr(X) = Cn({r}, X)) for each set X ⊆ S.

Lemma 3.3. If Cn ∈ STRUCT(Γ), then

(i) Cn ∈ Γ-MAX ⇔ ∀r∈Struct(Γ)(r �∈ DER(Cn) ⇒ Cn ∪ Cnr /∈ CNS);

(ii) Cn ∈ Γ-CPL ⇔ ∀r∈Struct(Γ)(r ∈ ADM(Cn)\DER(Cn) ⇒ Cn∪Cnr /∈ CNS).
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We can also reformulate Theorem 3.9 and Lemma 3.10; if Cn ∈ STRUCT(Γ),
then

Cn ∈ Γ-CPL ⇔ ∀Cn1∈STRUCT(Γ)

(
Cn1(∅) = Cn(∅) ⇒ Cn1 � Cn

)
,

Cn ∈ Γ-CPL ⇔ ∀A⊆S ∀Cn1∈STRUCT(Γ)

(
Cn(∅) = Cn1(A) ⇒ Cn1 � Cn

)
.

Of course, not all propositional logics are complete, Γ-complete or Γ-maximal.
As we know, there are many incomplete logics. Then, the problem of extending
an incomplete logic to a complete one seems to be important. It is clear, however,
that we can do such extensions in many various ways. We are interested in ex-
tensions which preserve the fundamental properties of initial logic (except of the
incompleteness).

Theorem 3.13. For every 〈R, A〉 ∈ Cns there is a system 〈R1, A1〉 ∈ Γ-Cpl such
that 〈R, A〉 � 〈R1, A1〉 ∈ Cns.

Proof. Let 〈R, A〉 ∈ Cns and take R1 = R ∪ Adm(R, A) ∩ Struct(Γ). We have
Cn(R, A) = Cn(R1, A) �= S and hence we get Adm(R1, A) ∩ Struct ⊆ R1 as
Adm(R1, A) ∩ Struct(Γ) = Adm(R, A) ∩ Struct(Γ). According to the definition of
Γ-Cpl we have thus 〈R, A〉 � 〈R1, A〉 and 〈R1, A〉 ∈ Γ-Cpl. �

The possibility of extending any consistent logic 〈R, A〉 to a consistent and
Γ-complete logic turns out to be trivial: it suffices to take R1 = Adm(R, A) and
A1 = A. Note that the Γ-complete extension of 〈R, A〉 defined in the proof of
Theorem 3.13 has, additionally, the following properties:

1. Cn(R, A) = Cn(R1, A),

2. 〈R, A〉 ∈ Γ-Cpl ⇒ 〈R, A〉 ≈ 〈R1, A〉,
3. 〈R, A〉 ∈ Inv(Γ) ⇒ 〈R1, A〉 ∈ Inv(Γ),

4. 〈R, A〉 ∈ Inv(Γ) ∧ 〈R ∪ {r∗|Γ}, A〉 ∈ ∅-Cpl ⇒ 〈R1, A〉 ∈ Γ-Max,

5. 〈R1, A〉 /∈ Γ-Max, for some 〈R, A〉 ∈ Inv(Γ) and some Γ ⊆ S.

Let us prove that Γ-maximality, in turn, can be achieved by any compact
logic. We recall that 〈R, A〉 is compact, 〈R, A〉 ∈ Comp, iff for every Y ⊆ S there
is X ∈ Fin(Y ) such that Cn(R, A ∪ X) = S whenever Cn(R, A ∪ Y ) = S.

Theorem 3.14. If 〈R, A〉 ∈ Inv(Γ) ∩ Cns and 〈R ∪ {r∗|Γ}, A〉 ∈ Comp, then there
is 〈R1, A1〉 ∈ Γ-Max such that 〈R, A〉 � 〈R1, A1〉 ∈ Cns.

Proof. Consider the family {Y ⊆ S : S �= Y = Cn
(
R, A ∪ SbΓ(Y )

)}. Any chain
L in this family is bounded by Cn(R, A ∪ ⋃

L ) (the system 〈R ∪ {r∗|Γ}, A〉
is compact). By Zorn’s lemma there exists in the considered family a maximal
element. Thus A ⊆ A1 = SbΓ(A1) and 〈R ∪ {r∗|Γ}, A1〉 ∈ ∅-Cpl ∩ Cns for some
A1 ⊆ S. It follows now from 3.13 (see comments on that theorem) that there is
R1 ⊆ Struct(Γ) such that R ⊆ R1 and 〈R1, A1〉 ∈ Γ-Max ∩ Cpl. �
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In the proof we have used Zorn’s lemma. Let us remark that 3.14 can also be
proved effectively if we use the fact that S is countable. Note, however, that the
assumption 〈R ∪ {r∗|Γ}, A〉 ∈ Comp cannot be omitted:

Example. Let S = 〈SF,G, F, G〉 where F , G are unary connective. Define Fnp by
induction: F 0p = p , F k+1p = FF kp and let αn = FnGp. Let en : At → S be the
mapping such that en(γ) = Fnp for each γ ∈ At and n � 1. We have

(	) Sb({αn}) ∩ Sb({αm}) = ∅, for n �= m.

Denote A = Sb
({hen(αn) : n � 1}) and consider the following structural rules:

r1 = {〈φ, ψ〉 : φ = he(αi+1) ∧ ψ = he(αi) for some i � 1, e : At → S},
r2 = {〈φ, ψ〉 : φ ∈ Sb({Gp}) ∧ ψ ∈ S},
r3 = {〈Π, ψ〉 : Π = he({αi : i � 1}) ∧ ψ ∈ S for some e : At → S}.
Let R = {r1, r2, r3}. We have, of course, 〈R, A〉 ∈ Inv and now we will show

that Cn(R, A) = Sb
({hen(αn) : n � 1}). The inclusion (⊇) is obvious by the

definition of A. Then, it suffices to prove that the set Sb
({hen(αn) : n � 1}) is

closed under the rules r1, r2, r3. Assume that he(αi+1) ∈ Sb
({hen(αn) : n � 1}),

hence by (	) we get he(αi+1) ∈ Sb
({hei+1(αi+1)}

)
. Thus e(p) = F i+1α for some

α ∈ S. This yields, however, that he(αi) = F iGF i+1α ∈ Sb
({hei(αi)}

)
which

means that the considered set is closed under the rule r1; the fact that this set is
closed also under the rule r2 is obvious.

Now assume that he(
⋃{αi : t � 1}) ⊆ Sb

({hen(αn) : n � 1}) and let
i = l

(
e(p)

)
+1. By (	) we have he(αi) ∈ Sb

({hei(αi)}
)

and l
(
he(αi)

)
< l

(
hei(αi)

)
— which is impossible. Thus, the set l

(
he(αi)

)
is closed under the rule r3.

Then 〈R, A〉 ∈ Cns. Let now 〈R, A〉 � 〈R1, A1〉 ∈ Cns ∩ Inv. We will show

(		) Cn(R1, A1 ∪ {αi}) �= S for each i � 1.

Let Gp ∈ Cn(R1, A1∪{αi}), hence Gei(p) = hei(Gp) ∈ Cn
(
R1, A1∪{hei(αi)}

) ⊆
⊆ Cn

(
R1, A1∪Cn(R, A)

) ⊆ Cn(R1, A1). Thus S = Cn
(
R, Gei(p)

) ⊆ Cn(R1, A1),
which is impossible. Then we get Gp �∈ Cn(R1, A1 ∪ {αi}). Moreover, we have
Cn(R1, A1 ∪ {αi : i � 1}) ⊇ Cn(R, A ∪ {αi : i � 1}) = S which means that
αn0 /∈ Cn(R1, A1) for some n0 � 1. Consider the rule r defined as follows:

r = {〈φ, ψ〉 : φ ∈ S ∧ ψ ∈ Sb({αn0})} ∈ Struct.

We have Cn(R1∪{r}, A1) = Cn
(
R1, A1∪Sb({αn0})

) �= S. Hence 〈R1∪{r}, A1〉 ∈
Cns and 〈R1, A1〉 ≺ 〈R1 ∪ {r}, A1〉. Thereby 〈R1, A1, 〉 �∈ S-Max.

3.2 Post-completeness
Let us comment on Definition 3.1. If Γ = ∅, then Inv(Γ) is the set of all propo-
sitional logics because r∗|∅ is the empty rule. Instead of ∅-Max (see 3.1 (ii)) we
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can simply write Max, since any ∅-maximal logic (if inconsistent) is a maximal
element in the (pre)ordered set of all consistent propositional logics.

Compare now the notions of Max, ∅-Cpl with the notion of Post-complete-
ness, Cpl. Let us recall:

〈R, A〉 ∈ Cpl ⇔ (
Cn(R, A ∪ {α}) = S, for each α /∈ Cn(R, A)

)
;

〈R, A〉 ∈ ∅-Cpl ⇔ Adm(R, A) ⊆ Der(R, A);

〈R, A〉 ∈ Max ⇔ ¬(〈R, A〉 ≺ 〈R1, A1〉
)
, for each 〈R1, A1〉 ∈ Cns.

We have, of course;

Theorem 3.15. ∅-Cpl = Cpl = Max.

The above three definitions determine then the same notion, namely that of
Post-completeness. Moreover, we get

Corollary 3.16. 〈R, A〉 ∈ Cpl ⇔ (〈R ∪ {r}, A〉 /∈ Cns, for each r /∈ Der(R, A)
)
.

This follows from Theorem 3.3 (i), whereas Theorem 3.4 enables us to express
simultaneously Post–completeness and matrix adequacy (see [84], 1973):

Theorem 3.17. Let M be a logical matrix and let ∅ �= Cn(R, A) �= S. Then

(i) Der(R, A) = V (M) ⇔ E(M) = Cn(R, A) ∧ 〈R, A〉 ∈ Cpl;

(ii) If Cn(R, A) = E(M), then Der(R, A) = V (M) ⇔ 〈R, A〉 ∈ Cpl.

Thus, all M-valid rules, where M is an 〈R, A〉-adequate matrix, are derivable
in the Post-complete logic 〈R, A〉. That is to say, for such logics, derivability of a
rule is equivalent to its M-validity. Since the Lindenbaum matrix MR,A is adequate
for 〈R, A〉 (if the substitution rule is admissible) we get by 3.6

Corollary 3.18. If r∗ ∈ Adm(R, A), then Der(R, A) = V (MR,A) ⇔ 〈R, A〉 ∈ Cpl.

By Theorem 3.13 we get also

Corollary 3.19. For every 〈R, A〉 ∈ Cns there is a system 〈R1, A1〉 ∈ Cns ∩ Cpl
such that 〈R, A〉 � 〈R1, A1〉.

Every logic can be then extended to a Post–complete one — we obtained
this extension by putting R1 = Adm(R, A). Thus, the logic 〈R1, A1〉 satisfies the
following conditions (besides those stated in 3.19):

1. Cn(R, A) = Cn(R1, A1);

2. 〈R, A〉 ∈ Cpl ⇒ 〈R, A〉 ≈ 〈R1, A1〉.
Complete extensions can be achieved in various ways. We present below a

proof of Lindenbaum’s theorem in which another construction of a complete ex-
tension is exposed.
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Theorem 3.20. If 〈R, A〉 ∈ Comp and Cn(R, A∪X) �= S, then there is a set Y ⊆ S
such that

(i) Cn(R, A ∪ X) ⊆ Cn(R, A ∪ Y ) �= S;

(ii) Cn(R, A ∪ Y ) = Y ;

(iii) Cn(R, A ∪ Y ∪ {α}) = S, for every α /∈ Y .

Proof. Let us assume that Cn(R, A ∪ X) �= S. Since the set S is countable, there
exists an infinite enumeration of all formulas from S:

α0, α1, α2, . . .

Define now an infinite sequence of sets X0, X1, X2, . . .,

a. X0 = Cn(R, A ∪ X)

b., Xk+1 =

{
Xk iff Cn(R, A ∪ Xk ∪ {αk}) = S

Cn(R, A ∪ Xk ∪ {αk}) iff Cn(R, A ∪ Xk ∪ {αk}) �= S.

Note that Xk ⊆ Xk+1 and Xk = Cn(R, A ∪ Xk) �= S. Let Y =
⋃{Xk : k ∈ N}.

Thus X0 ⊆ Y . Assume Cn(R, A ∪ Y ) = S. Then there exist β1, . . . , βn ∈ Y
such that Cn(R, A ∪ {β1, . . . , βn}) = S and β1, . . . , βn ∈ Xi for some i. Thus,
Xi = Cn(R, A ∪ Xi) = S which is impossible. The clause (i) is then proved.
Suppose α /∈ Y . We have α = αi for some i, then αi /∈ Xj , for each j. Let
αi ∈ Cn(R, A ∪ Y ) = Cn(R, A ∪ ⋃{Xi : i ∈ N}). Since {Xn : n ∈ N} is a chain of
sets then αi ∈

⋃{Cn(R, A∪Xi) : i ∈ N} which yields that αi ∈ Cn(R, A∪Xs) for
some s and thus we get to a contradiction. Then (ii) is proved. Suppose that
α /∈ Y and Cn(R, A ∪ Y ∪ {α}) �= S. Then α = αi for some i and we get
Xi+1 = Cn(R, A ∪ Xi ∪ {αi}) �= S, hence αi ∈ Xi+1 which is impossible. Then
(iii) is also proved. �

In the above proof we have assumed that S is countable. Theorem 3.20 can
also be shown for uncountable languages; however, the Axiom of Choice is required.
Notice that the system 〈R, Y 〉, where Y is the superset constructed in the proof of
3.20, is a Post-complete oversystem of the logic 〈R, X〉, that is, 〈R, X〉 � 〈R, Y 〉 ∈
Cns ∩ Cpl. Then, it is clear that the extension of a consistent logic 〈R, X〉 to a
consistent, Post-complete one can be done in at least two ways: by extending the
set R of rules or by extending the set X of axioms. The second method leads to
the notion of the so-called Lindenbaum supersets of the set Cn(R, X); the family
of those supersets is defined as follows:

Definition 3.21.

L (R, X) = {Y : X ⊆ Y = Cn(R, Y ) �= S ∧Cn(R, Y ∪ {α}) = S for each α /∈ Y }.
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Considering the family of R-closed supersets of a given set Cn(R, X) (a set
Y ⊆ S is R-closed iff Cn(R, Y ) = Y ) we are interested in whether there exists a
consistent, maximal element in this family. The positive answer to this question
was given by A. Lindenbaum in 1930 (see Tarski’s paper [118], 1930) and has been
known, since then, as Lindenbaum’s theorem on maximal supersets (Theorem 3.20
or L (R, X) �= ∅, see 3.21). This result plays an important role in foundational
studies. The algebraic counterpart of this theorem, proved in lattice theory by
Stone in 1934 as the ultrafilter theorem, is an important proof-theoretical tool
in contemporary mathematics. At the end of these comments we will write down
Lindenbaum’s theorem in the consequence operation formalism

Theorem 3.22. If Cn ∈ COMP and Cn(X) �= S, then L (Cn, X) �= ∅, where
L (Cn, X) = {Y ⊆ S : X ⊆ Y = Cn(Y ) ∧ Cn(Y ∪ {α}) = S for each α /∈ Y }.

It is clear that for every Y ∈ L (R, X) the system 〈R, Y 〉 is uniquely deter-
mined. One can say that 〈R, Y 〉 is a Lindenbaum oversystem of 〈R, X〉; certainly
〈R, Y 〉 ∈ Cns ∩ Cpl. Then we will use both names: Lindenbaum superset Y and
Lindenbaum oversystem 〈R, Y 〉, if Y ∈ L (R, X).

There are very many Post-incomplete systems but it is intuitively clear that
the incompleteness of some of them is, in a sense, greater (or smaller) than the
incompleteness of other systems. Thus, it it worth introducing a notion which may
be a ‘measure of incompleteness’ for propositional logics. Let us define the global
degree of incompleteness of 〈R, A〉 as the cardinality of the family

{Der(R ∪ R′, A ∪ A′) : A′ ⊆ S ∧ R′ ⊆ RS}.

This is a very general notion; if we restrict this definition by the condition 〈R′, A′〉∈
Inv, which means that R′ ⊆ Struct and A′ = Sb(A′), then we get the degree of
maximality of a given system 〈R, A〉 ∈ Inv.

This is the counterpart of the notion introduced by R.Wójcicki [143], 1974,
in the consequence operation formalism. Namely, given a structural consequence
Cn, the cardinality of the set {Cn′ ∈ Struct : Cn � Cn′} is said to be the degree
of maximality of Cn. On the other hand, for R′ = ∅ and for fixed R and A we get
the notion of degree of completeness as introduced by A.Tarski ([118], 1930):

Definition 3.23. dc(〈R, A〉) = Nc{Cn(R, A ∪ X) : X ⊆ S}.
The latter notion was the first, from the chronological point of view, ‘mea-

sure of incompleteness’ in logic. (NB. We preserve the original name for dc(〈R, A〉,
that is ‘degree of completeness’, though ‘degree of incompleteness’ would be ap-
propriate.) Definition 3.23 can also be formulated in the consequence operation
formalism: dc(Cn) is then the cardinality of the set {Cn(X) : X ⊆ S}. The no-
tion of global degree of incompleteness and the one introduced by Tarski, though
related, are different: for the system 〈R0∗, Ł3〉 of Łukasiewicz the degree of com-
pleteness is equal to 3, but the global degree of incompleteness is equal to 4. Note
that dc(〈R, A〉) � 2 iff 〈R, A〉 ∈ Cpl; the same equivalence holds for the global
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degree of incompleteness. Moreover, let us notice that dc(〈R, A〉) for any invariant
logic 〈R, A〉 is usually an infinite cardinal number.

We draw up the following two assertions (see [141], 1972 and [123], 1973),
which follow directly from Theorem 2.38.

Corollary 3.24. If M is any finite matrix, then dc(
−→
M ◦ Sb) < ℵ0.

Corollary 3.25. If M is any functionally complete matrix, then
−→
M ◦ Sb ∈ CPL,

i.e., dc(
−→
M ◦ Sb) � 2.

For finitistic logics (which are not compact) one can prove the so-called Lin-
denbaum–Asser theorem ([1], 1959, see also Łoś [61], 1951):

Theorem 3.26. If CnRA is finitistic and if α /∈ Cn(R, A ∪ X), then there exists a
set Y ⊆ S such that

a. Cn(R, A ∪ X) ⊆ Y = Cn(R, A ∪ Y ) ∧ α /∈ Y ;

b. α ∈ Cn(R, A ∪ Y ∪ {β}), for every β /∈ Cn(R, A ∪ Y ).

The proof of this theorem is similar to the proof of Theorem 3.20, and is
omitted here. Theorem 3.26 shows that in the family of all oversets of the set
Cn(R, A) we can define relative maximality, in other words, maximality with re-
spect to non-deducibility of a given formula:

Definition 3.27.

L α(R, A) = {Y : X ⊆ Cn(R, Y ) = Y �� α ∈ Cn(R, Y ∪ {β}) for each β /∈ Y }.

The notion of a relative Lindenbaum superset (see Definition 3.27) is weaker
than the notion of Lindenbaum superset (see Definition 3.21), for: if we have
α /∈ Y ∈ L (R, A ∪ X), then Y ∈ L α(R, A ∪ X) but not conversely. Besides,
Theorem 3.26 can also be written down in the following form:

Theorem 3.26 (fin). For every α /∈ Cn(R, A) we have L α(R, A) �= ∅.
It follows from the example on page 97 that the finiteness of a given con-

sequence (logic) cannot be omitted here. Similarly as in the case of the family
L (R, X); for every Y ∈ L α(R, X), the system 〈R, Y 〉 is said to be a relative Lin-
denbaum oversystem of the system 〈R, X〉, and so we will use the name ‘relative
Lindenbaum superset Y ’ as well, as the name ‘relative oversystem’.

Let us apply the introduced notions to oversystems of the classical propo-
sitional logic. Let S2 = 〈S2,→, ·, +,∼〉 be the standard language (algebra of
language) of propositional logics — most of the theorems proved here hold, how-
ever, also for sublanguages of S2. Let us recall that Cn2 denotes the consequence
operation generated by the invariant version of the classical logic 〈R0, Sb(A2)〉,
i.e.,

Cn2(X) = Cn
(
R0, Sb(A2) ∪ X

)
, for each X ⊆ S2.



102 Chapter 3. Completeness of propositional logics

One of the most important theorems on the classical propositional logic is
the well-known deduction theorem which implies Tarski’s lemma on consistency
(see Corollary 1.67 (i),(iv) and (v)). Let us recall these properties.

Lemma 3.28. For each X ⊆ S2 and each α, β ∈ S2

(i) α ∈ Cn2

(
X ∪ {β}) ⇔ (β → α) ∈ Cn2

(
X

)
;

(ii) Cn2

(
X ∪ {∼ α}) �= S2 ⇔ α /∈ Cn2

(
X

)
;

(iii) Cn2

(
X ∪ {α}) �= S2 ⇔ ∼ α /∈ Cn2

(
X

)
.

Using the above properties of classical connectives, we immediately obtain
the following characterization of consistent and complete extensions of classical
(invariant) logic 〈R0, Sb(A2) ∪ X〉 (or the structural consequence Cn2):

Corollary 3.29. For each X ⊆ S2:

(i) 〈R0, Sb(A2) ∪ X〉 ∈ Cns ⇔ (¬(
α,∼ α ∈ Cn2

(
X

)
, for some α ∈ S2

))
;

(ii) 〈R0, Sb(A2)∪X〉 ∈ Cpl ⇔ ((α ∈ Cn2(X)∨ ∼ α ∈ Cn2(X), for each α ∈ S2)).

Moreover, it easily follows from 3.29 that every relative Lindenbaum superset
of Cn

(
R0, Sb(A2)

)
is also a Lindenbaum superset:

Corollary 3.30. L α
(
R0, Sb(A2)

) ⊆ L
(
R0, Sb(A2)

)
, for each α ∈ S2.

By 3.30 and 3.26 we get immediately the so-called Lindenbaum–Łoś’s theo-
rem (see [61], 1951) on complete extensions of the classical logic:

Theorem 3.31. If α /∈ Cn2

(
X

)
, then there is a set Y ⊆ S2 such that

(i) Cn2

(
X

) ⊆ Y = Cn2(Y ) �� α;

(ii) Cn2

(
Y ∪ {β}) = S2, for every β /∈ Y .

Theorem 3.31 can be written down in the following form:

Corollary 3.32. For each X ⊆ S2 and each α ∈ S2:

(i) If α /∈ Cn2

(
X

)
, then there is Y ∈ L

(
R0, Sb(A2)

)
such that X ⊆ Y �� α;

(ii) Cn2

(
X

)
=

⋂{Y ⊆ S2 : X ⊆ Y ∈ L
(
R0, Sb(A2)

)}.
Corollary 3.32 shows that the logic 〈R0, Sb(A2)〉 is determined by all its Lin-

denbaum supersets. Now, we can state the filter-property of Lindenbaum oversets
of the set of classical tautologies ( [120], 1956) which is in fact an immediate
corollary of Corollary 1.67.

Lemma 3.33. For every Y ∈ L
(
R0, Sb(A2)

)
we have

(i) α → β ∈ Y ⇔ (α ∈ Y ⇒ β ∈ Y );

(ii) α + β ∈ Y ⇔ (α ∈ Y ∨ β ∈ Y );
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(iii) α · β ∈ Y ⇔ (α ∈ Y ∧ β ∈ Y );

(iv) ∼ α ∈ Y ⇔ α /∈ Y .

We have proved, in Chapter 2, the completeness of the classical proposi-
tional logic with respect to the classical two-valued matrix M2 (or the two-element
Boolean algebra B2), see Corollary 2.93. Now, the above theorems concerning
completeness enable us to give another proof of this result. We have

Lemma 3.34. A2 ⊆ E(M2) and r0 ∈ N(M2).

The notion of satisfiability in the matrix M2 has been defined by the equiv-
alence (see Definition 2.35)

X ∈ Sat(M2) ⇔ (hv(X) ⊆ {1}, for some v : At → {0, 1}).

One of the most important results of a general nature pertaining to the classical
logic is the so-called Gödel–Malcev propositional theorem:

Theorem 3.35. Cn2

(
X

) �= S2 ⇔ X ∈ Sat(M2), for each X ⊆ S2.

Proof. (⇒): By the assumption and Theorem 3.31 we conclude that there is a set
Y ∈ L

(
R0, Sb(A2) ∪ X

)
. Define the valuation v : At → {0, 1},

v(γ) = 1 ⇔ γ ∈ Y, for every γ ∈ At.

Then by Lemma 3.33, we have hv(α) = 1 ⇔ α ∈ Y , for every α ∈ S, which yields
the double inclusion hv(X) ⊆ hv(Y ) ⊆ {1}.

(⇐): Assume the right side of 3.35. Using Lemma 3.34 we prove easily that
hv

(
Cn(R0, Sb(A2)∪X)

) ⊆ {1} and hv(p· ∼ p) = 0 for some v : At → {0, 1}. Then
we get Cn

(
R0, Sb(A2) ∪ X

) �= S2. �
An immediate consequence of 3.35 (and finiteness of 〈R0, Sb(A2)〉) is the

compactness theorem for the notion of satisfiability:

Theorem 3.36. For every X ⊆ S2,

X ∈ Sat(M2) ⇔ (
Y ∈ Sat(M), for each Y ∈ Fin(X)

)
.

By Gödel–Malcev’s propositional theorem 3.35 and Tarski’s lemma 3.28(ii),
we receive the completeness theorem for classical logic with respect to the two-
valued matrix M2. We formulate this theorem in a stronger version than usual;
in the traditional terminology 3.37 (i) is called Post’s theorem on completeness of
the classical logic.

Theorem 3.37. (i) Cn
(
R0, Sb(A2)

)
= Cn(R0∗, A2) = E(M2);

(ii) Der
(
R0, Sb(A2)

)
= N(M2);

(iii) Der(R0∗, A2) = V (M2) = Adm
(
R0, Sb(A2)

)
= Adm(R0∗, A2).
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Proof. (ii): By 3.34, we have Der
(
R0, Sb(A2)

) ⊆ N(M2). Let 〈Π, α〉 ∈ r ∈ N(M2);
if α /∈ Cn

(
R0, Ab(A2)∪Π

)
, then Cn

(
R0, Sb(A2)∪Π∪{∼ α}) �= S2 by 3.28. From

3.35 we infer that there exists a valuation v : At → {0, 1} such that hv(Π) ⊆ {1}
and hv(α) = 0; thus r /∈ N(M2), which contradicts our assumptions.

(i): It follows from (ii) and Lemma 2.48.
(iii): By 3.34 we get Der(R0∗, A2) ⊆ V (M2). Let r ∈ V (M2) \Der(R0∗, A2),

we have then α /∈ Cn(r0∗, A2∪Π) for some 〈Π, α〉 ∈ r and hence α /∈ Cn2

(
Sb(Π)

)
.

By 3.28, we get Cn2

(
Sb(Π)∪{∼ α}) �= S2. Hence, by 3.35, there is v : At → {0, 1}

such that hv
(
Sb(Π)

) ⊆ {1} and hv(α) = 0. Since r ∈ V (M2), we have β /∈ E(M2)
for some β ∈ Π. By (i), there is v1 : At → {0, 1} such that hv1(β) = 0. Hence, if
we define a mapping e : At → S as follows

e(η) =

{
p → p iff v1(η) = 1

∼ (p → p) iff v1(η) = 0, for η ∈ At,

then we get ∼ he(β) ∈ E(M2). Thus hvhe(β) = 0 and hv
(
Sb(Π)

) ⊆ {1}, but
β ∈ Π, then hvhe(β) ∈ hv

(
Sb(Π)

)
, which is impossible. �

Corollary 3.38. Cn
(
R0, Sb(A2) ∪ X

)
=

−→
M2(X), for every X ⊆ S2.

By Theorems 2.38 and 3.22 (ii) we get one of the most important theorems on
classical propositional logic, namely the substitutional version of classical propo-
sitional logic is Post-complete, see [65], 1929.

Theorem 3.39. 〈R0∗, A2〉 ∈ Cpl.

On the other hand, it is easy to see that the invariant system of this logic is
Post-incomplete:

Theorem 3.40. dc
(
R0, Sb(A2)

)
= c.

Proof. By 3.33, we know that every Y ∈ L
(
R0, Sb(A2)

)
determines a valuation

v : At → {0, 1} such that Y = hv−1
({1}). On the other hand, every set of the form

hv−1
({1}) is a Lindenbaum overset of Cn

(
R0, Sb(A2)

)
. Two different valuations

determine different Lindenbaum oversets, thus dc
(
R0, Sb(A2)

)
= c. �

Of course, the degree of completeness of any logic weaker than 〈R0, Sb(A2)〉
also is equal to c. Moreover, (see [4], 1981),

Corollary 3.41. L (R0,
⋂{Yi : i � n}) = {Y1, . . . , Yn} if {Yi}i ⊆ L

(
R0, Sb(A2)

)
.

Proof. Inclusion (⊇) is obvious. Assume Y ∈ L
(
R0,

⋂{Yi : i � n})\{Y1, . . . , Yn}.
Hence Y ∈ L

(
R0, Sb(A2)

)
and there are formulas αi ∈ Y \ Yi (i � n). So,

Cn(R0, Yk∪{αi}i�1) = S2 for each k � n. Then ∼ (α1 ·. . .·αn) ∈ Cn(R0, Yk) = Yk

and hence ∼ (α1 · . . . · αn) ∈ Cn(R0,
⋂{Yi : i � n}) ⊆ Y which is impossible. �
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3.3 The problem of uniqueness of Lindenbaum extensions

In the previous section we considered Lindenbaum supersets and oversystems of
a given propositional logic. These constructions are vaguely called Lindenbaum
extensions. An interesting problem is to count the number of such extensions,
that is to find the cardinality of the family L (R, X) for a given system 〈R, X〉.
Particularly, one can look for such logics 〈R, X〉 for which Nc

(
L (R, X)

)
= 1. Let

us assume the following definition (see [4], 1976):

Definition 3.42. 〈R, X〉 ∈ T (M) ⇔ L (R, X) = {M}, for M ⊆ S.

We shall say that 〈R, X〉 has Tarski’s property iff 〈R, X〉 ∈ T (M) for some
M �= S. In this section we shall deal with results concerning the T (M)-property.

Intermediate logics

Let us consider the intuitionistic propositional logic defined in Chapter 1. We
recall that the consequence operation generated by the invariant version of this
logic 〈R0, Sb(Ai)〉 is denoted by Cni. We will also consider some extensions and
fragments of the intuitionistic logic; in the first place the positive fragment, which
is the so-called Hilbert’s logic 〈R0, Sb(AH)〉 where AH = S1 ∩ Ai. One feature of
the intuitionistic (likewise Hilbert’s) logic is the validity of the deduction theorem
and, consequently, consistency theorem (see Corollary 1.66);

Lemma 3.43. For every X ⊆ S2 and every α, β ∈ S2,

(i) (α → β) ∈ Cni(X) ⇔ Cni

(
X ∪ {β}) ⊆ Cni

(
X ∪ {α});

(ii) Cni

(
X ∪ {α}) �= S2 ⇔ ∼ α �∈ Cni(X).

The intuitionistic logic is weaker than the classical one. Nevertheless, the
same characterization of consistent and complete extensions are valid for the in-
tuitionistic logic as in the classical case, see Corollary 3.29;

Corollary 3.44. For each X ⊆ S2,

(i) 〈R0, Sb(Ai) ∪ X〉 ∈ Cns ⇔ (¬(
α,∼ α ∈ Cni(X)

)
, for some α ∈ S2

)
;

(ii) 〈R0, Sb(Ai) ∪ X〉 ∈ Cpl ⇔ (
α ∈ Cni

(
X

)∨ ∼ α ∈ Cni

(
X

)
, for each α ∈ S2

)
.

Corollary 3.45.

(i) L
(
R0, Sb(A2)

)
= L

(
R0, Sb(Ai)

)
;

(ii) L (R0∗, A2) = L (R0∗, Ai) = {Z2)}.
Proof. (i): Inclusion (⊆) is obvious; to prove the reverse inclusion (⊇) it suffices
to show that Sb(A2) ⊆ Y for every Y ∈ L

(
R0, Sb(Ai)

)
. By Glivenko’s theorem,

Corollary 2.91, we have ∼∼ α ∈ Cn
(
R0, Sb(Ai)

) ⊆ Y for each α ∈ Sb(A2). Hence,
we get ∼ α /∈ Y and consequently, by 3.44, α ∈ Y .
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(ii): Inclusion (⊆) is obvious; assume Y ∈ L (R0∗, Ai)\L (R0∗, A2). We have
Cn(R0∗, A2∪Y ) = S2. By Lindenbaum’s theorem there is Y1 ∈ L

(
R0, Y ∪Sb(Ai)

)
and hence using 3.45 we get Sb(A2) ⊆ Y1. Thus, we reach a contradiction as
S2 = Cn(R0∗, A2 ∪ Y ) ⊆ Cn(R0, Ai ∪ Y1) �= S2. �

This corollary implies that for the system 〈R0, Sb(Ai)〉 there does not hold
a counterpart of Lindenbaum–Łoś’s theorem: let β ∈ S2 be a formula such that
β ∈ Cn(R0∗, A2)\Cn(R0∗, Ai), then L β

(
R0, Sb(Ai)

)∩L
(
R0, Sb(A2)

)
= ∅. Thus,

there exist relative Lindenbaum (R0-closed) oversets for the set Cn
(
R0, Sb(Ai)

)
which are not Lindenbaum supersets. A relative Lindenbaum superset is a Linden-
baum superset iff it contains all axioms of the classical logic (this follows directly
from Corollaries 3.30 and 3.45). The above concerns, of course, R0-closed sets. We
can also formulate this fact in the following form (see [6], 1974):

Lemma 3.46. If Y ∈ L β
(
R0, Sb(Ai)

)
, then

〈R0, Y 〉 /∈ Cpl ⇔ (
(β → α) → β ∈ Y, for some α ∈ S2

)
.

Proof. Let us assume that 〈R0, Y 〉 /∈ Cpl. Then, there is a formula γ ∈ S such
that β ∈ Cn(R0, Y ∪{γ}) �= S2. This means that Cn(R0, Y ∪{β}) �= S2 and hence
β → α /∈ Y for some α ∈ S2. Thus, we have (β → α) → β ∈ Y .

Now, assume that (β → α) → β ∈ Y for some α ∈ S2 and let 〈R0, Y 〉 ∈ Cpl.
Then Cn(R0, Y ∪ {β}) = S2, and hence by the deduction theorem β → α ∈ Y
which is impossible. �

Most theorems proved in this section for propositional systems in the lan-
guage S2, hold also for any implicative sublanguage. In particular, by the same
argument as in the proof of Lemma 3.46, we get the above equivalence for every
Y ∈ L β

(
R0, Sb(AH)

)
. Thus, we get for Hilbert’s logic,

Corollary 3.47. L
(
R0, Sb(AH)

)
= L

(
R0, Sb(A→+·

2 )
)
.

Proof. The inclusion (⊇) is obvious. Now, let us assume that Y ∈ L
(
R0, Sb(AH)

)
.

We will consider the following two possibilities:
1. β /∈ Y . Then we get ((β → α) → β) → β ∈ Y for each formula α ∈ S1(

since Y ∈ L β
(
R0, Sb(AH)

))
.

2. β ∈ Y . Then from the fact that β → (((β → α) → β) → β) ∈ Y if follows
that ((β → α) → β) → β ∈ Y . Therefore Sb

({((p → q) → p) → p}) ⊆ Y which
means that Sb(A→+·

2 ) ⊆ Y . �

By Theorem 3.40 and Corollaries 3.45 and 3.47 we can determine the degree
of completeness of any consistent system 〈R0, Sb(AH) ∪ X〉. Since such logics
possess relative Lindenbaum oversystems which are not Lindenbaum oversystems,
then it seems interesting to establish the cardinality of the family of all relative
Lindenbaum oversystems for any formula β /∈ Cn

(
R0, Sb(AH)∪X

)
. The following

theorem holds for any implicative sublanguage of S2 (see [6], 1974):
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Theorem 3.48. If p0 → p0 ∈ X and α /∈ Cn
(
R0, Sb(X)

)
, then

Nc
(
L α

(
R0, Sb(X)

))
= c.

Proof. At first, we prove that α /∈ Cn
(
R0, Sb(X)∪A∪{pi → α : pi /∈ A∪At(α)})

for every A ⊆ At \ At(α). Suppose, on the contrary, it is not true. Then for the
substitution e : At → S2 defined by the clause

e(pi) =

⎧⎪⎪⎨
⎪⎪⎩

pi → pi, if pi ∈ A

α, if pi /∈ A ∪ At(α)

pi, if pi ∈ At(α)

we get α = he(α) ∈ Cn
(
R0, Sb(X) ∪ he(A) ∪ he{pi → α : pi /∈ A ∪ At(α)}) =

= Cn
(
R0, Sb(X)

)
which is impossible.

From Theorem 3.26 we infer that there is a set Y such that

Y ∈ L α
(
R0, Sb(X) ∪ A ∪ {pi → α : pi /∈ A ∪ At(α)}).

Moreover, we have Y ∈ L α
(
R0, Sb(X)

)
and At ∩ Y \ At(α) = A. Thus, one

may define, taking f(Y ) = At ∩ Y \ At(α), a mapping f from L α
(
r0, Sb(X)

)
onto the set 2At\At(α). Since the set At \ At(α) is infinite, we conclude that
Nc

(
L α

(
R0, Sb(X)

))
= c. �

The above theorem comprises also, as its particular case, the invariant sys-
tem of the classical propositional logic. By Theorem 3.30, we again come to the
conclusion that the degree of completeness of the system 〈R0, Sb(A2)〉 is c.

It is easy to see now that the question concerning the degree of complete-
ness is essential only if one considers propositional systems with substitution as
a derivable rule. It is so because the degree of completeness for the majority of
invariant logics is equal to c.

Now we determine the degree of completeness of the intuitionistic logic and
its certain extensions (see [149], 1974; [16], 1959):

Theorem 3.49.

(i) dc(〈R0∗, Ai〉) = dc(〈R0∗, AH〉) = c ;

(ii) dc(〈R0∗, Al〉) = ℵ0 ;

(iii) dc(〈R0∗, Hn〉) = n, for each n � 2.

The above easily follows from the appropriate completeness theorems for the
logics considered.
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Many-valued logics of Łukasiewicz

Łukasiewicz’s many-valued logics have many non-standard properties. However,
there are also known for them variants of the deduction theorem and variants of
Tarski’s lemma on consistency, see Theorems 1.62 and 1.65. Hence we can get for
them a similar body of results, as concerns Lindenbaum extensions, as we got for
the intuitionistic logic. In particular, we have

Corollary 3.50. L (R0∗,Ł∞) = L (R0∗,Łn) = L (R0∗, A2) = {Z2}.
Moreover, we can easily put bounds on the degree of completeness of the

considered logics (see [110], 1952):

Theorem 3.51.

(i) dc(〈R0∗,Ł∞〉) � ℵ0;

(ii) dc(〈R0∗,Łn〉) � 2k−1 + 1, where k is the number of divisors of n − 1.

Now, we pass to the main subject of this chapter. It is easy to see that Linden-
baum’s theorem (Lindenbaum–Asser’s theorem) does not determine, in general, a
unique complete superset (oversystem) for a given set of theorems Cn(R, X) (of
a given system 〈R, X〉).
Example. Let us consider the system 〈R0∗, {p → p}〉. A Lindenbaum oversystem
for this system is, of course, the classical logic 〈R0∗, A→

2 〉. Now, for the system
〈R0∗, {p → p, (p → q) → (q → p)}〉 there exists, according to Lindenbaum’s
theorem, a Lindenbaum superset Y ⊇ Cn

(
R0∗, {p → p, (p → q) → (q → p)}). The

set Y is at the same time the Lindenbaum overset for Cn
(
R0∗, {p → p}). But, of

course, Y �= Cn(R0∗, A→
2 ). Then for the system 〈R0∗, {p → p}〉 there exist at least

two different Lindenbaum oversystems 〈R0∗, A→
2 〉 and 〈R0∗, Y 〉.

On the other hand, there exist propositional logics which have exactly one L-
extension. For instance, the only L-extension for the logics 〈R0∗, Ai〉 and 〈R0∗, Ł∞〉
is the classical logic 〈R0∗, A2〉. Both 〈R0∗, Ai〉 and 〈R0∗, Ł∞〉 possess then Tarski’s
property (see Definition 3.42). More formally, we have

〈R0∗, Ai〉 ∈ T (Z2) and 〈R0∗, Ł∞〉 ∈ T (Z2),

where Z2 = Cn(R0∗, A2). In this situation one can ask how strong a propositional
system ought to be (we confine ourselves to R0∗-systems) so as to have as its
only L-extension the system 〈R0∗, A2〉. This question is interesting and important
not only from the purely formal point of view. Namely, we have proved that
the system 〈R0∗, {p → p}〉 has at least two different L-extensions 〈R0∗, A2〉 and
〈R0∗, Y 〉 (see the above example). In the first system the symbol → occurring
in the initial formula (‘axiom’) p → p remains to be the implication connective,
whereas in the second system 〈R0∗, Y 〉 the symbol → cannot be interpreted as
the implication connective. So we can rightly think that systems with only one
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L-extension determine their primitive connectives in a unique manner or, in other
words, determine their connectives properly.

Let AT = {p → (q → p), p →∼∼ p,∼ p → (p → q), p → (∼ q →∼ (p → q)),
p → (p+ q), q → (p+ q), ∼ p → (∼ q →∼ (p+ q)), p → (q → p · q), ∼ p →∼ (p · q),
∼ q →∼ (p · q)}. Tarski (see [119], 1935) has proved that 〈R0∗, A2〉 is the only
complete and consistent extension for 〈R0∗, AT 〉. In symbols, L (R0∗, AT ) = {Z2}.
Some further results concerning the cardinality of families of L–extensions were
obtained a few years after Tarski’s result. But this problem was neither exactly
examined, nor Tarski’s theorem essentially generalized before Biela [4],1976.

Let us recall that T (M) (see Definition 3.42) is the family of systems 〈R, X〉
such that 〈R, M〉 is the only L-extension for 〈R, X〉.
Lemma 3.52. If 〈R, A〉 ∈ Comp ∩ Cns and M �= S, then 〈R, A〉 ∈ T (M) iff

Cn(R, A ∪ M) = M ∧ Cn(R, A ∪ {α}) = S, for each α /∈ M.

Easy proof of this lemma is left to the reader.
Let us define a substitution: e(pi) = (p → p) →∼∼ (p → p) for each i ∈ N.

Then we get (see [119], 1935)

Lemma 3.53. For each formula α ∈ S2 with At(α) = {p}:
(i) he(α) ∈ Z2 ⇒ he(α) ∈ Cn(R0∗, AT );

(ii) he(α) /∈ Z2 ⇒ ∼ he(α) ∈ Cn(R0∗, AT ).

Easy inductive proof can be omitted. Let us prove

Theorem 3.54.

(i) There are propositional systems 〈R0∗, X〉 ∈ T (Z2) weaker than the system
〈R0∗, AT 〉 as given by Tarski;

(ii) For every 〈R0∗, X〉 ∈ T (Z2) the set Cn(R0∗, X)∩Cn(R0∗, AT ) is non-empty.

Proof. (i): Let p ∈ At. Define Sp = {α ∈ S2 : At(α) = {p}} and let us take
A = Sp∩Cn(R0∗, AT ). We will show that 〈R0∗, A〉 ∈ T (Z2). By the completeness
of the classical logic with respect to the two-valued matrix M2, for each α /∈ Z2

one can find a mapping v : At → {0, 1} such that hv(α) = 0. Let us define a
substitution e : At → S2 as

e(pi) =

{
p → p, if v(p) = 1

∼ (p → p), if v(p) = 0.

Of course, we have At
(
he(α)

)
= {p} and ∼ he(α) ∈ Z2. Thus, by Lemma 3.53,

we get ∼ hehe(α) ∈ A. Since ∼ p → (p → q) ∈ AT , then
(
hehe(α) → p

) ∈ A.
So, we have S2 = Cn(R0∗, A ∪ {α}). To prove that Cn(R0∗, A) �= Cn(R0∗, AT ) it
suffices to observe first that Cn(R0∗, A) ⊆ Cn(R0∗, Z2 ∩ Sp) ⊆ Sb(Z2 ∩ Sp) and
then p → (q → p) ∈ Cn(R0∗, AT ) \ Sb(Z2 ∩ Sp).

(ii): Let α ∈ Cn(R0∗, X) ∩ Sp, where 〈R0∗, X〉 ∈ T (Z2). Then, we have
he(α) ∈ Cn(R0∗, X) ⊆ Z2 and by Lemma 3.53, he ∈ Cn(R0∗, AT ). �
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Clearly, each consistent 〈R0∗, X〉 stronger than any 〈R0∗, A〉 ∈ T (M) is also
an element of T (M). Hence, it follows from the proof of the above theorem that
〈R0∗, AT 〉 ∈ T (Z2). Moreover, let us note that 3.54 (ii) does not extend on systems
〈R, A〉 with R �= R0∗. To show this take r = {〈α, β〉 ∈ S2 : α /∈ S2 \ Z2 ∧ β ∈ S2}
and notice that 〈{r}, ∅〉 ∈ T (Z2).

Vaguely speaking, Theorem 3.53(ii) shows that there are systems 〈R0∗, X〉
with Tarski’s property different from 〈R0∗, AT 〉 but sets of the theorems of these
systems must have non-empty intersections with Cn(R0∗, AT ) = ZT . Thus, looking
for various families of systems with T (Z2)-property, we can encounter six situa-
tions in which the elements of such a family are related to the system 〈R0∗, AT 〉
(and to themselves). These situations can be formally defined but we represent
them with the following drawings:

I II III IV V VI

For each drawing there was found, in [4], a family with maximal cardinality.
Here, we present only a family represented by the drawing I.

Let us define the relation # between R-systems: 〈R, X〉#〈R, X1〉, in words:
the systems overlap , iff the sets Cn(R, X)∩Cn(R1, X1), Cn(R, X) \Cn(R1, X1)
and Cn(R, X1) \ Cn(R, X), are non-empty. Then the figure I represents a family
such that every system from this family overlaps with 〈R0∗, AT 〉 and, if 〈R, X〉,
〈R, X1〉 both belong to this family, then they also overlap.

Let S01 be the set of all formulas built by means of p → p and ∼ (p → p) as
atoms. Formally, we have S01 = he(S2) for any e : At

onto−→ {p → p,∼ (p → p)}. It
is known that for every α ∈ S01 we have α ∈ Z2 or ∼ α ∈ Z2. Define now

∆p = {α → p : α ∈ S01} ∩ Z2,

∆∼(p→p) = {α →∼ (p → p) : α ∈ S01} ∩ Z2.

Lemma 3.55.

(i) 〈R0∗, ∆p〉 ∈ T (Z2);

(ii) 〈R0∗, ∆p〉#〈R0∗, AT 〉#〈R0∗, ∆p ∪ ∆∼(p→p)〉;
(iii) If X ⊆ ∆∼(p→p), then Cn(R0∗, ∆p ∪ X) = Sb(∆p) ∪ Sb(X).
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Proof. (i): For every α /∈ Z2 there exists e : At → {p → p,∼ (p → p)} such that
he(α) /∈ Z2. Then he(α) → p ∈ ∆p and consequently Cn(R0∗, ∆p ∪ {α}) = S2

which by Lemma 3.52 ends the proof.
(ii): We have ∼ (p → p) → p ∈ ∆p \ Cn(R0∗, AT ) which can be proved by

use of the matrix M = 〈{0, 1, 2}, {1}, f→, f∼, f+, f ·〉 where

f→ 0 1 2
0 2 1 1
1 2 1 2
2 1 1 1

f∼

0 2
1 2
2 1

f · 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

f+ 0 1 2
0 1 1 2
1 1 1 1
2 2 1 2

Moreover, Cn(R0∗, ∆p ∪∆∼(p→p)) ⊆ Sb(Z2∩Sp) �� p → (q → p) and, by Theorem
3.54 (ii), Cn(R0∗, ∆p) ∩ Cn(R0∗, AT ) �= ∅.

(iii): One ought to prove that r0 ∈ Adm(r∗, X∪∆p); if α → β ∈ Sb(X∪∆p),
then of course ∼ α ∈ Z2, thereby α /∈ Sb(X∪∆p). In other words: r0 is admissible
since it does not work on this set. �

Theorem 3.56. There is an uncountable family R of systems 〈R0∗, X〉 (where X ⊆
S2) such that:

(i) if 〈R0∗, X〉 ∈ R, then 〈R0∗, X〉 ∈ T (Z2);

(ii) if 〈R0∗, X1〉, 〈R0∗, X2〉 ∈ R and X1 �= X2, then 〈R0∗, X1〉#〈R0∗, X2〉;
(iii) if 〈R0∗, X〉 ∈ R, then 〈R0∗, X〉#〈R0∗, AT 〉.
Proof. Let δn = (p → p) n→∼ (p → p) (n � 1). Then δn →∼ (p → p) ∈ ∆∼(p→p)

and Sb
(
δn →∼ (p → p)

) ∩ Sb(∆p) = ∅ for each n ∈ N). Moreover, one easily
checks that Sb

({δn →∼ (p → p)}) ∩ Sb
({δm →∼ (p → p)}) = ∅ if n �= m. Thus,

by Lemma 3.55, we conclude that
⋃

n�1

{δn →∼ (p → p)} is an independent set

with respect to the consequence operation generated by 〈R0∗, ∆p〉. Since for every
infinite countable set there exists a family R of its subsets such that Nc(R) = c
and X1 \ X2 �= ∅, X1 ∩ X2 �= ∅, X2 \ X1 �= ∅ for each X1, X2 ∈ R, we conclude
that {〈R0∗, ∆p ∪X〉 : X ⊆ ⋃

n�1

{δn →∼ (p → p)}} contains the desired family. �

Let us note, moreover, that all systems considered in the proof of 3.56 are
not finitely axiomatizable. It can be easily verified that for each X ⊆ ∆p and each
Y ⊆ ∆∼(p→p) we have Cn(R0∗, X ∪ Y ) = Sb(X) ∪ Sb(Y ) and, for non-finite X
and Y the inclusion ∆p ⊆ Sb(X) ∪ Sb(Y ) holds.

The above theorem solves the question concerning the number of R0∗-systems
with Tarski’s property. Note that families represented by the figures III and IV can
be infinite but countable. From the mere existence of two separate systems with
T (Z2)-property it follows, of course, that a least R0∗-system with the T (Z2)-
property does not exist.
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3.4 Structural completeness

In this chapter we again investigate the notion of generalized completeness, Γ-Cpl
(see Definition 3.1). Theorem 3.15 states that every admissible rule of a Post-
complete logic is also a derivable rule of this logic. By Theorem 1.60,

Lemma 3.57. If 〈R, A〉 ∈ Inv and A �= ∅, then r∗ ∈ Der(R, A) ⇔ 〈R, A〉 /∈ Cns.

The substitution rule is then admissible and non-derivable in almost all in-
variant consistent logics (the exceptions are systems 〈R, ∅〉 such that Cn(R, {α}) =
S for each α ∈ S). By 3.57 we get, of course, 〈R0, Sb(A2)〉 /∈ Cpl. Nevertheless,
it can happen that the set of derivable rules of a given Post-incomplete system
contains all admissible (in this system) and structural rules. The set of structural
rules constitutes an important subset of all inferential rules, therefore the situation
presented above seems to be essential enough to introduce a new notion describ-
ing it. This notion is named structural completeness (and was introduced in [79],
1971).

If Γ = S, we shall write – see Definition 3.1(i) – SCpl instead of S-Cpl:

〈R, A〉 ∈ SCpl ⇔ Adm(R, A) ∩ Struct ⊆ Der(R, A),

for A ⊆ S, R ⊆ RS . Of course, we have Cpl �= SCpl and, by Lemma 3.10, we get
the following characterization of structural completeness:

Corollary 3.58.

〈R, A〉 ∈ SCpl ⇔ ∀R1⊆Struct ∀A1⊆S [Cn(R, A) = C(R1, A1) ⇒ 〈R1, A1〉 � 〈R, A〉].

If we restrict ourselves to invariant logics, then we get (see [68], 1976)

Corollary 3.59. If 〈R, A〉 ∈ Inv, then

〈R, A〉 ∈ SCpl ⇔ ∀〈R1,A1〉∈Inv [Cn(R, A) = Cn(R1, A1) ⇒ 〈R1, A1〉 � 〈R, A〉].

An invariant propositional system is then structurally complete iff it is max-
imal in the family of all invariant systems with the fixed set of theorems. We can
write down 3.59 in the consequence formalism:

Corollary 3.59 (∞). If Cn ∈ STRUCT, then

Cn ∈ SCPL ⇔ ∀Cn1∈STRUCT [Cn1(∅) = Cn(∅) ⇒ Cn1 � Cn.

By Theorem 3.4, for Γ = S, we get the following two corollaries (see [84]
1973).

Corollary 3.60. If r∗ ∈ Adm(R, A) and ∅ �= Cn(R, A) �= S, then

Der(R, A) ∩ Struct = V (M) ∩ Struct ⇔ Cn(R, A) = E(M) ∧ 〈R, A〉 ∈ SCpl.
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Corollary 3.61. If Cn(R, A) = E(M), then

〈R, A〉 ∈ SCpl ⇔ V (M) ∩ Struct ⊆ Der(R, A).

Corollary 3.61 states an intuitively important fact that if M is an adequate
matrix for 〈R, A〉, then 〈R, A〉 is structurally complete iff all structural and M-
valid rules are derivable in 〈R, A〉.

Of course, not all systems are structurally complete but by Theorem 3.13 we
get

Corollary 3.62. Every consistent system 〈R, A〉 can be consistently extended to a
structurally complete system 〈R1, A1〉.

Structural completeness for systems over S2 is — rather unexpectedly —
connected with Tarski’s property (see [5], 1982):

Theorem 3.63. If 〈R, A〉 ∈ Inv and Cn(R, A ∪ Z2) ⊆ Z2, then

〈R ∪ {r∗}, A〉 ∈ SCpl ⇒ 〈R ∪ {r∗}, A〉 ∈ T (Z2).

Proof. Let us assume that α /∈ Z2. By the completeness theorem, we have hv(α) =
0 for some v : At → {0, 1}. Define e : At → S2 as follows:

e(γ) =

{
p → p if v(γ) = 1

∼ (p → p) if v(γ) = 0.

Of course, ∼ he(α) ∈ Z2. Consider the rule r = {〈φ, ψ〉 : φ ∈ Sb
(
he(α)

)}. Obvi-
ously, r ∈ Struct ∩ Adm(R, A). Thus, r ∈ Der(R ∪ {r∗}, A). For every ψ ∈ S2 we
have ψ ∈ Cn

({r}, {he(α)}) ⊆ Cn(R ∪ {r∗}, A ∪ {α}) = S2. We have proved that,
for every Y ⊆ S such that Cn(R ∪ {r∗}, A ∪ Y ) �= S2, we have Y ⊆ Z2 and hence
L (R ∪ {r∗}, A) = {Z2}. �

If R ⊆ Struct and Cn(R, A ∪ Z2) ⊆ Z2, then R ⊆ Der(R0∗, A2). Thus, the
intuitive meaning of 3.63 is that a structurally complete substitutional subsystem
of 〈R0∗, A2〉 determines uniquely its logical connectives. In view of Corollary 3.60
and Theorem 3.63 one can say that structurally complete logic is a good logic.

Using the notion of the ‘big rule’ (see Lemma 3.8) we can get a simple
characterization of structural completeness ([98], 1972):

Corollary 3.64. 〈R, A〉 ∈ SCpl ⇔ rCn(R,A) ∈ Der(R, A).

We can also strengthen Corollary 3.6 to the following result:

Lemma 3.65. 〈R, A〉 ∈ SCpl ⇔ N(MR,A) ⊆ Der(R, A).

Proof. The proof is by Lemma 2.44 and Corollary 3.64. �
It is also possible to write down this lemma in the matrix-consequence for-

malism
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Corollary 3.66 (∞). 〈R, A〉 ∈ SCpl ⇔ (−−−→
MR,A(X) ⊆ CnRA(X), for each X ⊆ S

)
.

For invariant logics the above characterization of structural completeness
becomes more visible as we get:

Corollary 3.67. If 〈R, A〉 ∈ Inv, then

(i) 〈R, A〉 ∈ SCpl ⇔ N(MR,A) = Der(R, A);

(ii) (∞) 〈R, A〉 ∈ SCpl ⇔ ∀X⊆S

−−−→
MR,A(X) = Cn(R, A ∪ X);

(iii) (fin) 〈R, A〉 ∈ SCpl ⇔ ∀X∈Fin(S)

−−−→
MR,A(X) = Cn(R, A ∪ X).

There exists an interesting characterization of structural completeness for
invariant systems which is quite different from the preceding ones (see [105], 1977).

Theorem 3.68 (∞). Let 〈R, A〉 be an invariant logic such that CnRA is finitistic.
Then 〈R, A〉 ∈ SCpl iff for every ψ ∈ S and for every Y ∈ L ψ(R, A) there is an
endomorphism h : S → S such that Y = h−1

(
Cn(R, A)

)
.

Proof. (⇒): Suppose this implication is not true, i.e., 〈R, A〉 ∈ SCpl and

(	) he(Y ) ⊆ Cn(R, A) ⇒ Y �= he−1(
Cn(R, A)

)
,

for all e : At → S and for some Y ∈ L ψ(R, A). Suppose that he(Y ) ⊆ Cn(R, A)
for a substitution e : At → S. By (	), we get ψ ∈ Cn(R, A ∪ Y ∪ {φ}) for some
φ ∈ he−1(

Cn(R, A)
) \ Y . Then he(ψ) ∈ Cn

(
R, A∪ he(Y ) ∪ {he(φ)}) ⊆ Cn(R, A).

Thus, we have proved that for each e : At → S,

he(Y ) ⊆ Cn(R, A) ⇒ he(ψ) ∈ Cn(R, A).

Hence, by Corollary 3.64, we get ψ ∈ Cn(R, Y ) which is impossible.
(⇐): Assume that r ∈ Struct \ Der(R, A). Then, there exists 〈Π, ψ〉 ∈ r

such that ψ /∈ Cn(R, A ∪ Π). Suppose that Y ∈ L ψ(R, A ∪ Π) ⊆ L ψ(R, A). By
assumptions of our theorem, he(Π) ⊆ he(Y ) ⊆ Cn(R, A) and he(ψ) /∈ Cn(R, A).
The rule r is structural, so we get 〈he(Π), he(ψ)〉 ∈ r. Thus, r /∈ Adm(R, A). �
Corollary 3.69 (∞). If 〈R, A〉 ∈ Inv, then

〈R, A〉 ∈ SCpl ⇒ ∀Y ∈L (R,A) ∃e : At→S Y = he−1(
Cn(R, A)

)
.

This follows directly from Theorem 3.68; the assumption that CnRA is fini-
tistic has not been used in the proof of the implication (⇒). A counterexample
below shows that the reverse implication does not hold:

Example. Let S = 〈SFG; F, G〉 where F , G are unary connectives. We define two
rules in this language: r1 = {〈α, Fα〉 : α ∈ SFG}, r2 = {〈α, Gα〉 : α ∈ SFG},
A = Sb({FFp, FGp, GFp, GGp}), R = {r1, r2}. We have now 〈R, A〉 ∈ Inv and

1) p, Gp, Fp �∈ Cn(R, A),
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2) Cn(R, A ∪ {p}) = SFG,

3) Cn(R, SFG \ At) = SFG \ At.

Thus, the only complete overset of Cn(R, A) is Y = SFG \ At. For e(p) = Fp we
have he−1

(A) = Y . Define now r3 = {〈Fα, Gα〉 : α ∈ SFG}; it is easily seen that
r ∈ Struct ∩ Adm(R, A) \ Der(R, A). Thus 〈R, A〉 /∈ SCpl.

Let M, N be two logical matrices. We say that M is embeddable in N if M
is isomorphic with some submatrix of N. We confine our investigations now to
logical systems with the equivalence connective. That is, we assume that

α∼R,A∪Y β iff α → β, β → α ∈ Cn(R, A ∪ Y )

is a congruence in the Lindenbaum matrix MR,A∪Y for each Y ⊆ S. We will
write ∼Y instead of ∼R,A∪Y if the system 〈R, A〉 is fixed. We get the following
characterization of structural completeness:

Theorem 3.70 (∞). If 〈R, A〉 is an invariant system with equivalence and CnRA

is finitistic, then the following conditions are equivalent:

(i) 〈R, A〉 ∈ SCpl;

(ii) MR,A/ ∼Y is embeddable in MR,A/ ∼A for each ψ ∈ S and Y ∈ L ψ(R, A);

(iii)
−−−−→
M R,A �

−−−−→
M R,Y for each ψ ∈ S and Y ∈ L ψ(R, A).

Proof. (i)⇒(ii): If Y ∈ L ψ(R, A), then (by 3.68) there is an endomorphism
h : S → S such that Y = h−1

(
Cn(R, A)

)
. Define f : S/∼y → S/∼A by

f([α]Y ) = [h(α)]A, for every α ∈ S.

It can be verified that f is a one-to-one homomorphism and

[α]Y ∈ Cn(R, A ∪ Y )/∼Y ⇔ f([α]Y ) ∈ Cn(R, A)/∼A.

(ii)⇒(i): This follows immediately from Corollary 2.37.
(iii)⇒(i): Assume that ψ /∈ Cn(R, A ∪ X) for some X ⊆ S and ψ ∈ S.

Then, by Theorem 3.26, there exists a set Y ∈ L ψ(R, A∪X). Let us consider the
Lindenbaum matrix MR,Y . Obviously, we have ψ /∈ −−−→

MR,Y (X) and hence by (iii)
ψ /∈ −−−→

MR,A(X). Thus, it has been proved that
−−−→
MR,A(X) ⊆ Cn(R, A ∪ X) for each

X ⊆ S. According to Corollary 3.66, we get 〈R, A〉 ∈ SCpl. �

Let us notice that our assumption that 〈R, A〉 is a system with equivalence
is not necessary for the proof of the equivalence (i)⇔(iii) but it is required for
(i)⇔(ii). The later equivalence has been proved in [105], 1977.

We will now give a short survey of the most important results concerning
structural completeness of some concrete propositional logics.
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Classical logic
The invariant version of classical propositional logic, although Post-incomplete, is
structurally complete (see [79], 1971):

Theorem 3.71. 〈R0, Sb(A2)〉 ∈ SCpl.

Proof. Let us assume that α /∈ Cn
(
R0, Sb(A2)∪X

)
. By the generalized complete-

ness theorem 3.38, there exists a valuation v : At → {0, 1} such that hv(X) ⊆ {1}
and hv(α) = 0 (where hv : S2 → {0, 1}). Let us define e : At → S2 as follows:

e(γ) =

{
γ → γ, if v(γ) = 1

∼ (γ → γ), if v(γ) = 0.

Obviously, we have hw ◦ e = v for every valuation w : At → {0, 1}. Then we get
he(X) ⊆ E(M2) = Cn

(
R0, Sb(A2)

)
and he(α) /∈ Cn

(
R0, Sb(A2)

)
. Consequently,

〈X, α〉 /∈ rCn(R0,Sb(A2)). Thus, we have proved rCn(R0,Sb(A2)) ∈ Der
(
R0, Sb(A2)

)
and hence, by Corollary 3.64, 〈R0, Sb(A2)〉 ∈ SCpl. �

It seems worth noticing that Theorem 3.71 can also be proved without us-
ing the completeness theorem (and without using Post’s theorem); the structural
completeness easily follows from Lindenbaum–Łoś’s theorem.

Classical logic is very often understood as a system 〈R, A〉 such that Cn(R, A)
= Z2 (it should be emphasized that we do not accept such a definition). Accept-
ing this definition one easily proves there are ‘classical’ systems which are not
structurally complete:

Example. Let ro = {〈{α, α → β}, β〉 : α ∈ S2, β ∈ S2 \ At} and R0∗ = {r0, r∗}.
Notice that the rule r0 is admissible in the system 〈R0∗, A2〉 (and consequently
Cn(R0∗, A2) = Z2) but r0 /∈ Der(R0∗, A2) since Cn(R0∗, S2 \At) = S2 \At. Thus,
we have〈R0∗, A2〉 /∈ SCpl.

Intermediate logics
Structural incompleteness of intuitionistic propositional logic, defined in the lan-
guage with {→, ·, +,∼}, has been already proved by Minc [71], 1972.

Theorem 3.72. 〈R0∗, Ai〉 �∈ SCpl.

The following structural rules, for instance, are admissible in intuitionistic
logic but they are not derivable there:

∼ α → β + γ

(∼ α → β) + (∼ α → γ)
,

(α → β) → α + γ

((α → β) → α) + ((α → β) → γ)
.

Some fragments of the intuitionistic logic may be, however, structurally com-
plete. There are many results on this subject proved by A. Wroński and T.Prucnal;
some of them may be found in [58], 1983. For instance, we have
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Theorem 3.73. 〈R0, Sb(A→·∼
i )〉 ∈ SCpl.

The rule basis for the structural complete strengthening of 〈R0, Sb(Ai)〉, see
Corollary 3.62, has been given by R. Iemhoff [43], 2001. It should also be mentioned
that not only the Lindenbaum matrix is not strongly adequate for the intuitionit-
sic logic 〈R0, Sb(Ai)〉, see Corollary 3.67, but there does not exist any countable
matrix strongly adequate for this logic, see [151], 1974). The logic 〈R0, Sb(Ai)〉
does possess a strongly adequate matrix of cardinality c.

There is also an extensive literature on structural completeness of intermedi-
ate logics. Let us mention, for instance, Citkin [12], 1977 and Rybakov [112], 1997.
As concerns this subject we only quote without proof (see Dzik [18], 1973:

Theorem 3.74.

(i) 〈R0, Sb(Hn)〉 ∈ SCpl, for each n � 2;

(ii) 〈R0∗, Al〉 ∈ SCpl;

(iii) (∞) 〈R0, Sb(Al)〉 /∈ SCpl;

(iv) (fin) 〈R0, Sb(Al)〉 ∈ SCpl.

Many-valued logics of Łukasiewicz

Let Mn be the n-valued Łukasiewicz’s matrix 〈〈An, f→
n , f+

n , f ·
n, f∼

n 〉, {1}〉. We shall
prove now the fundamental lemma on the structural completeness of finite-valued
Łukasiewicz logics.

Lemma 3.75.
−−−−−−→
Mn × M2 ∈ SCPL, for every n � 2.

Proof. Suppose that n � 2 is a fixed natural number. For every x ∈ An (the
universe of Mn) let α0

x, α1
x be two formulas defined as follows (we use the abbre-

viations: p→0q = q, p→k+1q = p → (p→kq)):

α1
1 = p → p,

α1
n−2
n−1

=
(
(p→n−2q) → p

) → p,

α1
0 =

(
(p→n−2q)→n−1q

) → (
(p→n−1q) → q

)
, if n > 2,

α1
x = α1

n−2
n−1

→x·(n−1)α1
0, if 0 � x <

n − 2
n − 1

,

α0
x =∼ α1

1−x.

It can be verified that for every v : At → An,

hv(αi
x) =

{
i if v(p) �= n−2

n−1 or v(q) �= 0

x if v(p) = n−2
n−1 and v(q) = 0.
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Let us define a relation ≈n on S2: α ≈n β iff α ≡ β ∈ E(Mn). Of course, ≈n

is a congruence-relation on the Lindenbaum matrix MR0,Sb(Łn) and α ≈n β iff
hv(α) = hv(β) for every v : At → An. Let f : An × A2 → S2/ ≈n be defined
as follows f(〈x, i〉) = |αi

x|. One can easily prove that f is a homomorphism from
Mn×M2 into S2/ ≈n. Moreover, f is one-to-one and hence Mn×M2 is isomorphic
with some submatrix of the Lindenbaum matrix MR0,Sb(Łn)/ ≈n. Thus, we have−−−−−−−→
MR0,Sb(Łn) � −−−−−−→

Mn × M2 by Corollary 2.37.
On the other hand, since

−−→
Mn(∅) =

−−−−−−−→
MR0,Sb(Łn)(∅) =

−−−−−−→
Mn × M2(∅) we in-

fer from Makinson’s theorem 3.59 that
−−−−−−→
Mn × M2 �

−−−−−−−→
MR0,Sb(Łn). Hence, we get−−−−−−→

Mn × M2 =
−−−−−−−→
MR0,Sb(Łn) ∈ SCPL. �

Thus, from Theorem 2.41 it follows that

−−−−−−→
Mn × M2(X) =

{ −−→
Mn(X) if X ∈ Sat(M2)

S2 if X /∈ Sat(M2).

It it easy to see that
−−−−−−→
Mn × M2(X) >

−−→
Mn if n �= 2 (for example, if one

takes α = [(∼ p → p) n−1−→ p] →∼ (
(∼ p → p) → p

)
, then

−−→
Mn(α) �= S2 and

α /∈ Sat(M2)). Thus as an immediate result of 3.59 we infer (see [79], 1971 and
[122], 1972)

Corollary 3.76. 〈R0, Sb(Łn)〉 /∈ SCpl, for every n > 2.

We shall now prove the theorem on structural completeness of Łukasiewicz’s
propositional logic:

Theorem 3.77. 〈R0∗,Łn〉 ∈ SCpl, for every n � 2.

Proof. To prove that
−→
Mn

(
Sb(X)

)
=

−−−−−−→
Mn × M2

(
Sb(X)

)
for every X ⊆ S2, it suf-

fices to show (see 2.41) that
−→
Mn

(
Sb(X)

)
= S2 if Sb(X) /∈ Sat(M2). Suppose that

it is not true, i.e., Sb(X) /∈ Sat(M2) and
−→
Mn

(
Sb(X)

) �= S2 for some X ⊆ S2. Then
there exists a valuation v : At → An such that hv

(
Sb(X)

) ⊆ {1}. Let e : At → S2

be a substitution defined as follows: e(γ) = γ → γ for each γ ∈ At. We have
w = hv ◦e : At → {0, 1}, so hw

(
Sb(X)

)
= hvhe

(
Sb(X)

) ⊆ hv
(
Sb(X)

) ⊆ {1} which
is a contradiction. Hence, for each X , we get

−−−−−−→
Mn × M2

(
Sb(X)

)
=

−→
Mn

(
Sb(X)

)
=

Cn
(
R0, Sb(Łn) ∪ Sb(X)

)
= Cn(R0∗, Łn ∪ X). Thus, 〈R0∗, Łn〉 ∈ SCpl. �

This theorem was proved first for n = 2, 3 in [79], 1971 and later generalized
in [122], 1972. The above proof was given in [130], 1976.

We complete the examination of many-valued Łukasiewicz logics by the fol-
lowing results:

Theorem 3.78. 〈R0, Sb(Ł→+·
n )〉 ∈ SCpl, for each n � 2.

Theorem 3.79. 〈R0∗,Ł→+·
∞ 〉 /∈ SCpl.
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The structural completeness of the pure implicational logics of Łukasiewicz
has been proved by T. Prucnal to whom belongs also 3.79 (unpublished). The
proof of 3.79 can be found in [131], 1978.

Modal logics
In this part we consider the problem of structural completeness of Lewis’s modal
system S5.

Theorem 3.80 (fin).

(i) 〈R0∗a, AS5〉 ∈ SCpl;

(ii) 〈R0a, Sb(AS5)〉 /∈ SCpl.

Proof. Assume the abbreviation Z5 = Cn(R0∗a, AS5) and define

α ≈ β iff α ≡ β ∈ Z5, for α, β ∈ S2.

It is easy to observe that ≈ is a congruence relation on S2. Let φ ∈ S2. Define
eφ : At → S2 by eφ(γ) = φ · γ for each γ ∈ At. We write e0 for φ =∼ (p0 → p0)
and e1 if φ = p0 → p0. By (33) and (34) (see Chapter 1) we have

(A) he1(α) ≈ α, for every α ∈ S2,

(B) he0(α) ∈ Z5 or ∼ he0(α) ∈ Z5, for every α ∈ S2

(the easy proof of (B), by induction on the length of α, is left to the reader).

(C) (φ ≡ ψ) → (
heφ(α) ≡ heψ(α)

) ∈ Z5, for each φ, ψ, α ∈ S2.

Indeed, we get φ · γ ≡ ψ · γ ∈ Cn(R0∗a, AS5 ∪{φ ≡ ψ}) for γ ∈ At and hence from
1.72 we get heφ(α) ≡ heψ (α) ∈ Cn(R0∗a, AS5 ∪ {φ ≡ ψ}) which gives (C). As an
immediate corollary of (C) and (A) we obtain

(D)
(
φ ≡ (p0 → p)

) → (
heφ(α) ≡ α

) ∈ Z5,(
φ ≡∼ (p0 → p)

) → (
heφ(α) ≡ heψ (α)

) ∈ Z5, for each φ, ψ ∈ S2.

We have then

�φ → (
heφ(α) ≡ α

) ∈ Z5 and

� ∼ φ → (
heφ(α) ≡ he0(α)

) ∈ Z5, for each α, φ ∈ S2.

Assume that φ ∈ SL (then also ∼ φ ∈ S� — see 1.73), hence φ ≈ �φ and
� ∼ φ ≈∼ φ. Thus,

φ → (
heφ(α) ≡ α

) ∈ Z5 and

∼ φ → (
heφ(α) ≡ he0(α)

) ∈ Z5 for each φ ∈ S�, α ∈ S2.

Using (35) and (40) we get

φ · heφ(α)+ ∼ φ · heφ(α) ≈ φ · α+ ∼ φ · he0(α)

and hence by (30), (32)
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(E) heφ(α) ≈ φ · α+ ∼ φ · he0(α) for each φ ∈ S�, α ∈ S2.

Assume that for some α1, . . . , αk, β ∈ S2 we have

(F) he({α1, . . . , αk}) ⊆ Z5 ⇒ he(β) ∈ Z5, for every e : At → S2.

We have to show that β ∈ Cn(R0∗a, AS5 ∪ {α1, . . . , αk}). Let α = α1 · . . . · αk

and suppose that ∼ he0(α) ∈ Z5. Then S2 = Cn(R0∗a, AS5 ∪ {α}) and hence
β ∈ Cn(R0∗a, AS5 ∪ {α1, . . . , αk}). Thus, by (B), we can assume that he0(α) ∈ Z5

and hence by (E),
he�α(α) ≈ �α+ ∼ Lα.

It follows now from (F) that he�α(β) ∈ Z5 and hence �α ·β+ ∼ �α ·he0(β) ∈ Z5.
Thus, by means or ra and by (30), we get

β ∈ Cn(R0∗a, AS5 ∪ {�α})

and since Gödel’s rule is derivable in the system 〈R0∗a, AS5〉 (see 1.75) we get
β ∈ Cn(R0∗a, AS5 ∪ {α}) = Cn(R0∗a, AS5 ∪ {α1, . . . , αk}). Gödel’s rule r� is
structural and admissible in 〈R0a, Sb(AS5)〉 but r� is not derivable in this system:
the reverse assumption leads to the conclusion that p → (

(p → p) → p
) ∈ Z5,

which is false. �

The proof of the above theorem is in [99], 1972. Note, however that the
main result of [99] is incorrect as stated: the author did not take into account
that the systems 〈R0∗, AS5〉 and 〈R0∗a, AS5〉 are non-equivalent. Let us remark
that non-derivability of r� (or ra) in the system 〈R0∗, AS5〉 yields a structural
incompleteness of the system 〈R0∗AS5〉.

From Biela’s paper [3], 1975 it follows that all subsystems of S3.5 are struc-
turally incomplete. Moreover, it is known (but unpublished) that both versions of
S4 (Gödel’s and Meredith’s) are structurally incomplete, too.

3.5 Some related concepts
Many authors restrict propositional logic to invariant propositional systems only.
This approach gives some advantages. It should be noted, however, that this also
means reduction of the deductive power of propositional systems (by eliminating
the substitution rule from the set of derivable rules!).

The observation that the notion of Post-completeness does not meet the case
of invariant logics forced logicians to introduce other concepts of completeness
for these systems. The notion of structural completeness (if restricted to invariant
logics) can serve as an example. Another example can be given by assuming Γ = S
in Definition 3.1 (ii). It is easy to see that 〈R, A〉 ∈ S-Max if and only if 〈R, A〉, if
consistent, is a maximal element in the preordered set of all invariant consistent
logics. The third concept of this kind is the notion of saturation introduced by
Wójcicki (cf. [123] 1973):
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Definition 3.81. A propositional logic 〈R, X〉 ∈ Inv is said to be saturated, formally
〈R, X〉 ∈ Std, iff Der(R ∪ {r∗}, X) ∩ Struct ⊆ Der(R, X).

It is easily seen that this notion matches invariant logics, as for systems
〈R, X〉 such that r∗ ∈ Der(R, X) the definitional inclusion is trivially fulfilled. If
〈R, X〉 is saturated, then the structural rules derivable in this logic are the same
as the structural rules derivable in 〈R ∪ {r∗}, X〉. Let us try to establish some
connections between the three above concepts.

Lemma 3.82. S-Max ⊆ SCpl ∩ Inv ⊆ Std.

This follows immediately from the definitions and Lemma 3.2. It has already
been shown (see the example on page 92) that S-Max is a proper subclass of
SCpl∩ Inv. To complete our discussion let us prove that there is a saturated logic
which is not structurally complete:

Example. Let us consider the system 〈R0∗, A2〉 from the example on page 116,
where it is proved that this logic is not structurally complete. By the deduc-
tion theorem for the system 〈R0, Sb(A2)〉 and by the equality Cn

(
R0, Sb(A2)

)
=

Cn
(
R0, Sb(A2)

)
, where R0 = {r0}, we get

(	) α ∈ Cn
(
R0, Sb(A2) ∪ X

) ⇒ α ∈ At ∨ α ∈ Cn
(
R0, Sb(A2) ∪ X

)
.

Since the set S2\At is closed under the rule r0, it follows from the above statement
and from the fact that 〈R0∗, A2〉 is Post-complete that

Cn
(
R0∗, A2 ∪ X

)
=

⎧⎪⎪⎨
⎪⎪⎩

Z2 if X ⊆ Z2

S2 if X ∩ At �= ∅
S2 \ At otherwise.

Let r be a structural rule which is not derivable in the system 〈R0, Sb(A2)〉 that
is r ∈ Struct \ Der

(
R0, Sb(A2)

)
. So φ /∈ Cn

(
R0, Sb(A2) ∪ Π

)
for some 〈Π, φ〉 ∈ r.

We have to prove that r /∈ Der
(
R0∗, Sb(A2)

)
. If φ /∈ Cn

(
R0, Sb(A2) ∪ Π

)
, then

r /∈ Adm
(
R0, Sb(A2)

)
= Adm(R0∗, A2) by the structural completeness of the

classical logic. But Cn
(
R0∗, A2

)
= Cn(R0∗, A2) and hence r /∈ Adm(R∗, A2) ⊇

Der(R0∗, A2) = Der
(
R0∗, Sb(A2)

)
. So, we can assume φ ∈ Cn

(
R0, Sb(A2) ∪ Π

)
.

It follows from (	) that φ ∈ At. Consider a substitution e : At → S2 such that
e(φ) = φ and e(γ) /∈ At for every γ ∈ At \ {γ}. Obviously, φ /∈ Π because
φ /∈ Cn

(
R0, Sb(A2) ∪ Π

)
. Therefore, he(Π) ⊆ S \ At and he(φ) = φ ∈ At. Thus,

we get he(φ) /∈ Cn
(
R0∗, Sb(A2) ∪ he(Π)

)
. Since 〈Π, φ〉 ∈ r and r is a structural

rule, we have 〈he(Π), he(φ)〉 ∈ r and consequently r /∈ Der
(
R0∗, A2

)
.

Another concept of completeness (we will call it pseudo-completeness) for
invariant logics was introduced by [123], 1973.
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Definition 3.83. Let 〈R, A〉 ∈ Inv, then

〈R, A〉 ∈ p-Cpl ⇔ 〈R ∪ {r∗}, A〉 ∈ Cpl.

It is easy to see that the above notion is obtained by a simple translation of
the notion of Post-completeness into the class Inv. Thus, we get

Lemma 3.84. If 〈R, A〉 ∈ Inv, then

〈R, A〉 ∈ p-Cpl ⇔ Cn
(
R, A ∪ Sb({α})) = S for every α /∈ Cn(R, A).

Maximality in the family of consistent invariant logics is a very strong prop-
erty. Among the concepts considered here, it appears to be the best counterpart
— for invariant logics — of the notion of Post-completeness (see [80], 1974). By
Lemmas 3.3 and 3.11, we easily get

Corollary 3.85. Let 〈R, A〉 ∈ Inv. Then

(i) 〈R, A〉 ∈ S-Max ⇔ ∀r∈Struct

(〈R ∪ {r}, A〉 ∈ Cns ⇒ r ∈ Der(R, A)
)
;

(ii) 〈R, A〉 ∈ p−Cpl ⇔ ∀r∈Struct

(〈R ∪ {r}, A〉 ∈ Cns ⇒ r ∈ Der(R ∪ {r∗}, A)
)
.

One can easily prove, see [123], 1973:

Theorem 3.86. If 〈R, A〉 ∈ Inv, then the following conditions are equivalent:

(i) 〈R, A〉 ∈ S-Max;

(ii) 〈R, A〉 ∈ SCpl ∩ p-Cpl;

(iii) 〈R, A〉 ∈ Std ∩ p-Cpl.

Moreover, on the basis of Theorem 3.14 we obtain:

Corollary 3.87 (fin). For every 〈R, A〉 ∈ Inv ∩ Cns there is 〈R1, A1〉 ∈ S-Max
such that 〈R, A〉 � 〈R1, A1〉 ∈ Cns.

In other words any structural, consistent and finitistic consequence operation
can be extended to a maximal and consistent one.

Corollary 3.87 (∞). For every 〈R, A〉 ∈ Inv ∩ Cns ∩ Comp there is 〈R1, A1〉 ∈
S-Max such that 〈R, A〉 � 〈R1, A1〉 ∈ Cns.

The example on page 97 shows that the assumption 〈R, A〉 ∈ Comp cannot
be omitted. By Theorems 3.86, 3.71 and 3.39 we get (see [75], 1968)

Theorem 3.88. 〈R0, Sb(A2)〉 ∈ S-Max.

All other invariant logics considered in this book are not S-maximal. It is
because they are weaker than the classical system 〈R0, Sb(A2)〉. Theorem 3.86
allows us to establish other connections between S-maximality and saturation
([123], 1973).
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Corollary 3.89. If 〈R, X〉 ∈ Inv ∩ p-Cpl, then

〈R, X〉 ∈ SCpl ⇔ 〈R, X〉 ∈ S-Max.

The next few results concern saturation and we prove that this notion is a
derivative of structural completeness.

Lemma 3.90. Let 〈R, A〉 ∈ Inv. Then 〈R, A〉 ∈ Std if and only if(〈R1 ∪ {r∗}, A1〉 � 〈R ∪ {r∗}, A〉 ⇒ 〈R1, A1〉 � 〈R, A〉, for every 〈R1, A1〉 ∈ Inv
)
.

Proof. (⇒): Let 〈R1 ∪ {r∗}, A1〉 � 〈R ∪ {r∗}, A〉 for some invariant 〈R1, A1〉
and let 〈R, A〉 ∈ Std. Then R1 ⊆ Struct ∩ Der(R ∪ {r}, A) ⊆ Der(R, A) and
A1 ⊆ Cn(R ∪ {r∗}, A) = Cn(R, A). Thus, 〈R1, A1〉 � 〈R, A〉.

(⇐): From the assumptions we get 〈Der(R ∪ {r∗}, A) ∩ Struct, A〉 � 〈R, A〉
and hence Der(R ∪ {r∗}, A)∩ Struct ⊆ Der(R, A). Thus, we get 〈R, A〉 ∈ Std. �

Adopting the above theorem to the consequence formalism we obtain

Corollary 3.90 (∞). If Cn ∈ STRUCT, then

Cn ∈ STD ⇔ ∀Cn1∈STRUCT

(
Cn1 ◦ Sb � Cn ◦ Sb ⇒ Cn1 � Cn

)
.

It is also clear that

Corollary 3.91. If 〈R, A〉 ∈ Inv and 〈R ∪ {r∗}, A〉 ∈ SCpl, then

〈R, A〉 ∈ Std ⇔ 〈R, A〉 ∈ SCpl.

The above statement is easy to anticipate and it can be easily deduced from
the definitions of the involved notions. More surprising connections between satu-
ration and structural completeness are given below. We recall that, for any family
{〈Rt, At〉 : t ∈ T } of propositional systems, the symbol

∏
t∈T

〈Rt, At〉 stands for the

system 〈 ⋂
t∈T

Der(Rt, At),
⋂

t∈T

Cn(Rt, At)〉.

Lemma 3.92. For every family {〈Rt, At〉 : t ∈ T } ⊆ Std ∩ Inv, we have∏
t∈T

〈Rt, At〉 ∈ Std.

Proof. Let {〈Rt, At〉 : t ∈ T } ⊆ Inv. We know that (see 1.61) there exists an
invariant logic 〈R, A〉 such that 〈R, A〉 ≈ ∏

t∈T

〈Rt, At〉. Let us assume now that

{〈Rt, At〉 : t ∈ T } ⊆ Std and suppose that r ∈ Der(R ∪ {r∗}, A) ∩ Struct. Then,
for every 〈Π, α〉 ∈ r, we have

α ∈Cn(R ∪ {r∗}, A ∪ Π) = Cn
(
R, A ∪ Sb(Π)

)
= Cn

(
R, A ∪ Sb(Π)

)
⊆

⋂
t∈T

Cn
(
Rt, At ∪ Sb(Π)

)
=

⋂
t∈T

Cn(R ∪ {r∗}, At ∪ Π).
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Thus, we have r ∈ Der(Rt ∪{r∗}, At)∩Struct for each t ∈ T . By the saturation of
the system 〈Rt, At〉, we get r ∈ Der(Rt, At) for each t ∈ T and hence (see Lemma
1.52) r ∈ ⋂

t∈T

Der(Rt, At) = Der
( ∏
t∈T

(Rt, At)
)

= Der(R, A). �

Theorem 3.93. If 〈R, A〉 ∈ Inv, then 〈R, A〉 ∈ Std if and only if∏
t∈T

〈Rt, At〉 ≈ 〈R, A〉 for some family {〈Rt, At〉 : t ∈ T } ⊆ Inv ∩ SCpl.

Proof. The implication (⇐) follows directly from 3.92 and 3.82.
(⇒): Let RX = Adm

(
R, A ∪ Sb(X)

) ∩ Struct for any X ⊆ S. Obviously,
Adm

(
RX , A∪Sb(X)

)∩Struct = Adm
(
Adm

(
R, A∪Sb(X)

)
, A∪Sb(X)

)∩Struct =
RX and hence 〈RX , A ∪ Sb(X)〉 ∈ Inv ∩ SCpl for any X ⊆ S. Moreover, R ⊆ RX

for each X ⊆ S. Thus, 〈R, A〉 �
∏

X⊆S

〈RX , A ∪ Sb(X)〉. We have to prove that∏
X⊆S

〈RX , A ∪ Sb(X)〉 � 〈R, A〉, that is (see 1.51)

⋂
X⊆S

Cn
(
RX , A ∪ Sb(X) ∪ Π

) ⊆ Cn(R, A ∪ Π), for every (finite) Π ⊆ S.

Let α ∈ ⋂
X⊆S

Cn
(
RX , A∪Sb(X)∪Π

)
and r be the rule determined by 〈Π, α〉, i.e.,

〈Y, β〉 ∈ r ⇔ ∃e : At→S

(
Y = he(Π) ∧ β = he(α)

)
.

Since 〈RX , A ∪ Sb(X)〉 ∈ Inv, we have β ∈ Cn
(
RX , A ∪ Sb(X) ∪ Y

)
and hence

Y ⊆ Cn
(
R, A ∪ Sb(X)

) ⇒ β ∈ Cn
(
R, A ∪ Sb(X)

)
, for every 〈Y, β〉 ∈ r.

Thus, it has been shown that r ∈ Adm
(
R, A∪Sb(X)

)
for each X ⊆ S and hence,

by 1.59, we get r ∈ Der(R ∪ {r∗}, A). But 〈R, A〉 is saturated and r is structural,
so r ∈ Der(R, A) and hence α ∈ Cn(R, A ∪ Π). �

Both above theorems can be written down in the consequence formalism:

Lemma 3.92. For each family {Cnt : t ∈ T } of structural and saturated conse-
quence operations, we have

∏
t∈T

Cnt ∈ STD.

Theorem 3.93 (∞). Let Cn ∈ STRUCT. Then

Cn ∈ STD ⇔ Cn =
∏

{Cn1 ∈ STRUCT : Cn � Cn1 ∈ SCPL}.

One can prove, similarly as Theorem 3.13, that every consistent propositional
logic can be consistently extended to a saturated one, i.e.,

Theorem 3.94. For every 〈R, A〉 ∈ Cns, there is 〈R1, A1〉 ∈ Std such that
〈R, A〉 � 〈R1, A1〉 ∈ Cns.
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Proof. Let us assume that R1 = R ∪ Der(R ∪ {r∗}, A) ∩ Struct and notice that
R1 ∪ {r∗} ⊆ Der(R ∪ {r∗}, A). Therefore, we have Der(R1 ∪ {r∗}, A) ∩ Struct ⊆
⊆ Der(R ∪ {r∗}, A) ∩ Struct ⊆ R1 and hence 〈R1, A〉 ∈ Std. Moreover, R ⊆ R1

which means that 〈R, A〉 � 〈R1, A〉. �
The saturated extension of 〈R, A〉, that is the system 〈R1, A1〉, is defined

above in a such way that we also establish its properties:

1. 〈R ∪ {r∗}, A〉 ≈ 〈R1 ∪ {r∗}, A1〉,
2. 〈R, A〉 ∈ Inv ⇔ 〈R1, A1〉 ∈ Inv,

3. 〈R, A〉 ∈ Std ⇔ 〈R1, A1〉 ≈ 〈R, A〉,
assuming that 〈R, A〉 ∈ Inv (or at least r∗ ∈ Adm(R, A)) we get also

4. 〈R1, A1〉 ∈ SCpl ⇔ 〈R ∪ {r∗}, A〉 ∈ SCpl.

The property 4. allows us to construct many saturated logics which are struc-
turally incomplete. Namely, it suffices to find such a logic 〈R, A〉 ∈ Inv that
〈R ∪ {r∗}, A〉 /∈ SCpl, then the extension (such as in the proof of Theorem 3.94)
of 〈R, A〉 is saturated and is structurally incomplete. Lemma 3.92 give us another
method of constructing saturated logics which are not structurally complete. Let
us notice that from the inequality SCpl �= Std it follows that, for structural com-
pleteness, the counterpart of 3.92 does not hold.

Now we would like to look more carefully at the structure of the notion of
Γ-completeness. In the forthcoming considerations we will confine ourselves to
propositional systems formalized over the language S2 = 〈S2,→, +, ·,∼〉. This
assumption, however, will not be essential for most of the further results.

Lemma 3.95. Γ1 ⊆ Γ2 ⇒ Γ1-Cpl ⊆ Γ2-Cpl.

The easy proof is omitted. Note that such monotonicity is not true for Γ-ma-
ximality. By Definition 3.1, we obtain Cpl ⊆ Γ-Cpl ⊆ SCpl for every Γ ⊆ S. Let
us prove that there exist sets Γ ⊆ S such that Cpl �= Γ-Cpl �= SCpl:

Example. Take Γ = Z2 = Cn(R0∗, A2). We have 〈R0, Sb(A2)〉 /∈ Γ-Cpl, as the rule

r1 = {〈α, β〉 : α, β ∈ At ∨ α, β ∈ Z2}
is Γ-structural, and r1 ∈ Adm

(
R0, Sb(A2)

)
, whereas q /∈ Cn

(
R0, Sb(A2) ∪ {p})

if p, q are different variables. Hence r /∈ Der
(
R0, Sb(A2)

)
. On the other hand, if

R1 = Adm
(
R0, Sb(A2)

)∩Struct(Z2), then 〈R1, Sb(A2)〉 ∈ Γ-Cpl but ∼ (p → p) /∈
Cn

(
R1, Sb(A2)∪{p}) because ∼ (α → α) /∈ Z2 = Cn

(
R1, Sb(A2)∪{α}) for every

α ∈ Z2. Thus, we get 〈R1, Sb(A2)〉 /∈ Cpl.

Lemma 3.96.

(i) If e1, . . . , en : At → Γ and n � 1, then

hen ◦ . . . ◦ he1(Γ)-Cpl ⊆ Γ-Cpl;
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(ii) If Γ ⊆ S \ At and e : At → Γ, then

he(Γ)-Cpl �= Γ-Cpl.

Proof. To prove (i) it suffices to show that

Struct(Γ) ⊆ Struct
(
hen ◦ . . . ◦ he1(Γ)

)
for each n � 1, e1, . . . , en : At → Γ. Let r ∈ Struct(Γ), e : At → hen . . . he1(Γ)
and let e0 : At → Γ be such a mapping that hen . . . he1

(
e0(γ)

)
= e(γ) for each

γ ∈ At. Since the set S is countable, one can define this mapping effectively. As
hen ◦ . . .◦he1 ◦e0 = e and 〈hen . . . he0(Π), hen . . . he0(α)〉 ∈ r for every 〈Π, α〉 ∈ r,
we get 〈he(Π), he(α)〉 ∈ r which was to be proved.

(ii): Let R = {Γ-rSb(he(Γ))} (see definition 3.7). We have Cn
(
R, Sb

(
he(Γ)

))
=

Sb
(
he(Γ)

)
and from 3.8 it follows that 〈R, Sb

(
he(Γ)

)〉 ∈ Γ-Cpl. Moreover, it
is obvious that 〈R, Sb

(
he(Γ)

)〉 ∈ Inv(Γ). We will show that 〈R, Sb
(
he(Γ)

)〉 /∈
he(Γ)-Cpl. Suppose that α is a formula such that α ∈ e(At) and l(φ) � l(α)
for each φ ∈ e(At) (we recall that l(α) is the length of the formula α). It has
been assumed that e(At) ⊆ S \ At, hence l(α) < l

(
he(φ)

)
for each φ /∈ At and

thus α /∈ Sb
(
he(Γ)

)
. Since e(γ) = α for some γ ∈ At, we conclude that e(γ) /∈

Cn
(
R, Sb

(
he(Γ)

))
= Cn

(
R, Sb

(
he(Γ)

) ∪ {he(α)}). But 〈R, Sb
(
he(Γ)

)〉 ∈ Inv(Γ)
and therefore γ /∈ Cn

(
R, Sb

(
he(Γ)

) ∪ {α}). If we consider the rule

r = {〈α, γ〉} ∪ {〈φ, ψ〉 : φ ∈ S ∧ ψ ∈ Sb
(
he(Γ)

)}
then we can easily see that r ∈ Struct

(
he(Γ) ∩ Adm

(
R, Sb

(
he(Γ)

))
. On the other

hand r /∈ Der
(
R, Sb

(
he(Γ)

))
, hence 〈R, Sb

(
he(Γ)

)〉 /∈ he(Γ)-Cpl. �
The reason for introducing new concepts of completeness for propositional

logics is that Post-completeness is a strong property, too strong for the invariant
classical propositional logic. If we decide to accept the notion of Γ-Cpl for some
fixed Γ ⊆ S, it will be quite natural to render that 〈R0, Sb(A2)〉 ∈ Γ-Cpl. Thereby,
the case Γ = Z2 (see the example on page 125) should be excluded from our
considerations and we ought to look for another notion of completeness in the
family {Γ-Cpl : Γ ⊆ S}. We know that 〈R0, Sb(A2)〉 ∈ S-Cpl. Farther on, from
3.96 (ii) we get he(S \ At)-Cpl �= (S \ At)-Cpl and, by 3.95, we also have (S \
At)-Cpl ⊆ S-Cpl. Since, for some e : At → S and some α,∼ β ∈ Z2, we have
{α, β}-Cpl ⊆ he(S \ At)-Cpl (see 3.95), we thus succeed in finding a set Γ such
that 〈R, Sb(A2)〉 ∈ Γ-Cpl � SCpl. This is characteristic as we can prove:

Lemma 3.97.

(i) If α,∼ β ∈ Z2, then 〈R0, Sb(A2)〉 ∈ {α, β}-Cpl;

(ii) If 〈R0, Sb(A2)〉 ∈ Γ-Cpl, then there are α, β ∈ S2 such that α,∼ β ∈ Z2 and
{α, β}-Cpl ⊆ Γ-Cpl.
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Proof. The proof of (i) is quite similar to that of Theorem 3.71.
(ii): Note that p /∈ Cn

(
R0, Sb(A2) ∪ {q,∼ s}). Then 〈{q,∼ s}, p〉 /∈ Γ-rZ2

by 3.8. Hence there are e1, . . . , en : At → Γ such that for α = hen . . . he1(q) and
β = hen . . . he1(s) we have α,∼ β ∈ Z2. The inclusion {α, β}-Cpl ⊆ Γ-Cpl follows
now from Lemma 3.96. �

Thus, we know that there are Γ ⊆ S2 such that

Cpl � Γ-Cpl � SCpl and 〈R0, Sb(A2)〉 ∈ Γ-Cpl.

In connection with the above lemma one can expect that there exists the smallest
(with respect to the relation of inclusion) or at least a minimal completeness for
〈R0, Sb(A2)〉. Unfortunately, this conjecture is false:

Theorem 3.98. The family {Γ-Cpl : 〈R0, Sb(A2) ∈ Γ-Cpl} does not contain any
minimal element.

Proof. Let 〈R0, Sb(A2) ∈ Γ-Cpl. By 3.97, 〈R0, Sb(A2) ∈ {α, β}-Cpl ⊆ Γ-Cpl for
some α, β ∈ S2 such that α,∼ β ∈ Z2. Let e : At → {α, β}. Then we get he(α),∼
he(β) ∈ Z2 and hence 〈R0, Sb(A2) ∈ he({α, β})-Cpl. Moreover, by 3.96 (ii), we
have he({α, β})-Cpl � {α, β}-Cpl ⊆ Γ-Cpl. �

Despite this negative result it is still possible that there exists a minimal
element in the family {Γ-Cpl ∩ Inv : 〈r0, Sb(A2) ∈ Γ-Cpl}.

For any 〈R, A〉, one can define a binary relation on S2 by

α∼RAβ iff (α ≡ β) ∈ Cn(R, A).

We write ∼ instead of ∼RA if the system 〈R, A〉 is fixed. Let us recall that 〈R, A〉
is a system with equivalence (〈R, A〉 ∈ Equiv) iff ∼ is a congruence on the Lin-
denbaum matrix MR,A∪X for each X ⊆ S2.

Lemma 3.99. Let 〈R, A〉 ∈ Inv ∩ Equiv and 〈R, A〉 ∈ {a0, . . . , ak}-Cpl for some
α0, . . . , αk ∈ S2 (where k � 0). Then there are, at most, k + 1-element matrices
M1, . . . ,Ms (s � 1) such that M1 × . . . × Ms is strongly adequate for 〈R, A〉.
Proof. Let us accept the assumptions of our lemma. Then, of course, 〈R, A〉 is
structurally complete (see Lemma 3.95) and the relation ∼RA is a congruence
relation on the Lindenbaum matrix MR,A. Thus,

1. Cn(R, A) = E(MR,A) = E(MR,A/ ∼).

We can assume Cn(R, A) �= S2, as for the inconsistent logic a strongly adequate
matrix can be easily found. The main step in our proof is to show that

(2) Cn(R, A) =
⋂{E(M) : M ⊆ MR,A/∼ ∧ Nc(M) � k + 1}.

The inclusion (⊆) is obvious. We have to prove the reverse inclusion. We do not
know if there ever exists a matrix M which fulfills the above conditions; but it is
so indeed. Suppose that φ /∈ Cn(R, A) and let
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(3) A0 = At(φ),
Ai+1 = Ai ∪ {∼ α : α ∈ Ai} ∪ {α1 → α2 : α1, α2 ∈ Ai} ∪ {α1 + α2 : α1, α2 ∈
Ai} ∪ {α1 · α2 : α1, α2 ∈ Ai}.

Let g : Ak+1 → At be any one-to-one mapping such that g(γ) = γ for each γ ∈
At(φ). In the sequel we will write pα instead of g(α) for α ∈ Ak+1. We have pγ = γ
if γ ∈ At(φ). Moreover, let

(4) Πi = {α ≡ pα : α ∈ Ai} for i = 0, . . . , k + 1.

Obviously, we have Π0 ⊆ Π1 ⊆ . . . ⊆ Πk+1 and all these sets are finite. What is
more At(φ) ⊆ At(Πt) = {pα : α ∈ Ai}. Take e : At → S such that e(pα) = α
for each α ∈ Ak+1. Then e(γ) = γ for each γ ∈ At(φ) and hence heφ = φ.
Thus, we get he(φ) /∈ Cn(R, A) and he(Πk+1) ⊆ Sb(p ≡ p) ⊆ Cn(R, A) and
hence φ /∈ Cn(R, A ∪ Πk+1) as 〈R, A〉 ∈ Inv. Then Γ-completeness of 〈R, A〉,
where Γ = {α0, . . . , αk}, yields by 3.8 〈Πk+1, φ〉 /∈ Γ-rCn(R,A). Suppose that
Πk+1 ⊆ Cn(R, A). Then Cn(R, A) �= ∅ and p∼γ ≡∼ γ ∈ Π1 ⊆ Cn(R, A) for
each γ ∈ At(φ). Since pγ ∈ At and p∼γ �= γ we get α ≡∼ γ ∈ Cn(R, A) for
each α ∈ Cn(R, A). But 〈R, A〉 ∈ Equiv, thus ∼ γ ∈ Cn(R, A) and this implies
p∼γ ∈ Cn(R, A) (by the fact that p∼γ ≡∼ γ ∈ Cn(R, A)). Therefore, some variable
belongs to Cn(R, A) and hence Cn(R, A) = S2, which contradicts our assump-
tions. Thus we have proved that 〈Πk+1, φ〉 /∈ Γ-rCn(R,A) and Πk+1 � Cn(R, A).
By 3.7, there are e1, . . . , en : At → Γ (where n � 1) such that

(5) hen . . . he1(Πk+1) ⊆ Cn(R, A) and hen . . . he1(φ) /∈ Cn(R, A).

Since Γ = {α0, . . . , αk}, Nc
(
hen . . . he1(At)

)
� k + 1 and hence in the sequence

hen . . . he1
(
At(Π0)

) ⊆ hen . . . he1
(
At(Π1)

) ⊆ . . . ⊆ hen . . . he1
(
At(Πk+1)

)
there are two equal elements, i.e.,

(6) hen . . . he1
(
At(Πi)

)
= hen . . . he1

(
At(Πi+1)

)
for some i � k.

Take B = {[β]∼ : hen . . . he1
(
At(Πi)

)} and prove that B expands a subma-
trix of MR,A/ ∼. Let [β1], [β2] ∈ B, i.e., let β1 = hen . . . he1(pα1) and β2 =
hen . . . he1(pα2) for some α1, α2 ∈ Ai. Then α1 → α2 ∈ Ai+1 and hence pα1→α2 ≡
(α1 → α2) ∈ Πi+1 ⊆ Πk+1. By (5), we get

hen . . . he1(pα1→α2) ≡ (β1 → β2) ∈ Cn(R, A)

and thus, by (6) and (3),
[β1 → β2] ∈ B.

Similarly, it can be shown that [β1 + β2], [β1 · β2], [∼ β1] ∈ B. Therefore B is
closed under the operations from the matrix MR,A/∼ and then it expands a
submatrix M = 〈B, B∗〉 of MR,A/∼. Moreover, the set B contains at most k +1
elements as Nc

(
hen . . . he1

(
At(Πi)

))
� k + 1. Consider the mapping v : At → B

such that v(γ) = [hen . . . he1(γ)] for each γ ∈ At(φ) (note that At(φ) ⊆ At(Πi)).
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Obviously, hv(φ) = [hen . . . he1(φ)], where hv : S2 → B, and hence (by (5) and
(1)) hv(φ) /∈ B∗. Thus, φ /∈ E(M) which completes the proof of (2).

There are only finitely many non-isomorphic matrices with at most k + 1
elements. Therefore, we can find M1, . . . ,Ms (where s � 1) at most k +1-element
submatrices of MR,A/∼ such that

(7) Cn(R, A) = E(M1) ∩ . . . ∩ E(Ms).

We know that ∼ is a congruence-relation in the Lindenbaum matrix MR,A. Thus−−−→
MR,A =

−−−−−→
MR,A/∼ � −→

Mi by 2.37 and 2.39, and CnRA �
−−−→
MR,A. Hence, by 2.41,

we get Cn(R, A ∪ X) ⊆ −−−−→
P

i�s
Mi(X) for each X ⊆ S2. On the other hand, we have

−−−−→
P

i�s
Mi(X) ⊆ Cn(R, A ∪ X) by 3.59 and (7) (Let us note that P

i�s
Mi is finite and

hence the corresponding matrix consequence is finitistic). Thus, we conclude that
the product M1 × . . . × Ms is strongly adequate for 〈R, A〉. �

Theorem 3.100. Let 〈R, A〉 ∈ Inv ∩ Equiv. Then 〈R, A〉 ∈ Γ-Cpl for a finite set
Γ ⊆ S iff 〈R, A〉 ∈ SCpl and there is a finite adequate matrix M for 〈R, A〉.
Proof. The implication (⇒) follows from the above lemma. To prove the reverse
implication (⇐) let us assume that M = 〈B, B∗〉 is a finite matrix adequate
for 〈R, A〉 ∈ SCpl and let φ /∈ Cn(R, A ∪ X) for some (finite) set X ⊆ S2.
Then, by 3.64, we have 〈X, φ〉 /∈ rCn(R,A) and hence there exists a substitution
e : At → S2 such that he(X) ⊆ Cn(R, A) and he(φ) /∈ Cn(R, A). Suppose that
B = {a0, . . . , ak} (B is the base of M). Since M is adequate for 〈R, A〉, we have
hv

(
he(φ)

)
/∈ B∗ for some v : At → B. Define e1 : At → {p0, . . . , pk} by

e1(γ) = pi iff v(γ) = ai

and take v1 : At → B such that v1(pi) = ai for each i = 0, . . . , k. We have
v1

(
e1(γ)

)
= v(γ) for each γ ∈ At and hence hv1

(
he1

(
he(φ)

))
/∈ B∗. Thus, we get

he1
(
he(φ)

)
/∈ Cn(R, A) and

(
he1

(
he(X)

) ⊆ Cn(R, A). It has been assumed that
∼RA is a congruence on the Lindenbaum matrix MR,A. Observe that this relation
divides the set of all formulas built up from the variable p0, . . . , pk into a finite
number of equivalence classes. Indeed, each formula α with At(α) ⊆ {p0, . . . , pk}
determines a mapping fα : Bk+1 → B by fα

(
v(p0), . . . , v(pk)

)
= hv(α) for every

v : At → B. Since B is finite, there exists a finite set Γ of formulas such that
fα ∈ {fγ : γ ∈ Γ} for each α. Thus, for each formula α built up from variables
p0, . . . , pk (i.e., At(α) ⊆ {p0, . . . , pk}) there is γ ∈ Γ such that hv(α) = hv(γ) for
each v : At → B. But p ≡ p ∈ Cn(R, A) and hence α ≡ γ ∈ Cn(R, A). Thus,
Γ contains representatives of all equivalence classes into which the subalgebra
generated by p0, . . . , pk is divided. Since e1 : At → {p0, . . . , pk}, we can find a
mapping e2 : At → Γ such that e2(γ) ≡ he1

(
e(γ)

) ∈ Cn(R, A) for every γ ∈ At.
Then he2(φ) ∼ he1

(
he(φ)

)
and hence (recall that he1he(φ) /∈ Cn(R, A)), he2(φ) /∈

Cn(R, A). By the same argument we get he2(X) ⊆ Cn(R, A). It has been shown
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that 〈X, φ〉 /∈ Γ-rCn(R,A) for any X , φ such that φ /∈ Cn(R, A ∪ X). This means
that Γ-rCn(R,A) ∈ Der(R, A) and hence 〈R, A〉 ∈ Γ-Cpl. �
Corollary 3.101. Let 〈R, A〉 ∈ Inv ∩ Equiv. Then 〈R, A〉 ∈ Γ-Cpl for a finite set
Γ ⊆ S iff 〈R, A〉 ∈ SCpl and there exists a finite matrix M such that CnRA =

−→
M.

All the above results expose certain connections between adequacy (weak and
strong) and the notion of a finite Γ-completeness. Moreover, by Theorem 3.98, we
can give a partial positive answer to the question on the existence of a minimal
Γ-completeness for 〈R0, Sb(A2)〉 in the family of invariant calculi with equivalence.
Note that the family Γ-Cpl ∩ Inv ∩Equiv, for a finite set Γ, contains only a finite
number of non-equivalent systems. Therefore, we can choose such α, β ∈ S2 that
α,∼ β ∈ Z2 (hence 〈R0, Sb(A2)〉 ∈ {α, β}-Cpl) and that

Γ-Cpl ∩ Inv ∩ Equiv � {α, β}-Cpl ∩ Inv ∩ Equiv ⇒ 〈R0, Sb(A2)〉 /∈ Γ-Cpl

for every Γ ⊆ S. One can even find such a set Γ ⊆ S that

〈R, A〉 ∈ Γ-Cpl ∩ Inv ∩ Equiv iff 〈R, A〉 ≈ 〈R0, Sb(A2)〉.

We can also give a characterization of a two-valued logic without any char-
acterization of the propositional connectives. We say that 〈R, A〉 is two-valued iff
there exists a two-element matrix M = 〈B, {1}〉, where B = {0, 1}, such that
Cn(R, A) = E(M) and N(M) ⊆ Der(R, A). Let Sp be the sublanguage of S2

generated by the variable p, i.e., α ∈ Sp iff At(α) = {p}. We have

Theorem 3.102. Suppose that 〈R, A〉 ∈ Equiv. Then 〈R, A〉 is two-valued iff
〈R, A〉 ∈ {α, β}-Cpl for some α, β ∈ S and one of the following conditions holds:

(i) Sp/∼RA = {[p], [p → p]},
(ii) α(p ≡ p) /∈ Cn(R, A) for some α ∈ Sp.

The proof of this theorem is similar to that of Theorem 3.99. Thus, two-valued
propositional logics can be characterized by means of {α, β}-completeness. The
conditions (i),(ii) are rather technical. They state that the negation is definable in
〈R, A〉 (condition (ii)) or that all formulas in one variable are equivalent either to
p or to p ≡ p (condition (i)).



Chapter 4

Characterizations of propositional
connectives

Our attempt is to define propositional logics by use of certain conditions, the so-
called Cn-definitions, which characterize basic properties of connectives involved
in these logics. Our approach turns out to be successful in the case of intuitionistic
logic but not quite satisfactory for the classical logic. In our opinion, there is still
the need for a complete and adequate set of postulates which would characterize
basic properties of classical connectives.

4.1 Cn-definitions
A characterization of the classical logic in terms of a consequence operation is due
to Tarski [117] and [118], 1930. His ideas have been elaborated by Grzegorczyk
[37], 1972, and Pogorzelski, Słupecki [87], 1960. So, it is well known that Cn2

is the least consequence operation Cn which fulfills the following conditions, see
Corollary 1.67, for every X, Y ⊆ S2 and every α, β ∈ S2:

(T0) X ⊆ Cn(Y ) ⇒ Y ∪ Cn(X) ⊆ Cn(Y );
(T1) Cn({α,∼ α}) = S2 & Cn({α}) ∩ Cn({∼ α}) = Cn(∅);
(T2) α → β ∈ Cn(X) ⇔ β ∈ Cn(X ∪ {α});
(T3) Cn(X ∪ {α + β}) = Cn(X ∪ {α}) ∩ Cn(X ∪ {β});
(T4) Cn(X ∪ {α · β}) = Cn(X ∪ {α, β}).

It is also known that Cn2 is the only consistent and structural consequence oper-
ation satisfying the above conditions. The above characterization of the classical
logic is not quite satisfactory. Firstly the conditions are not quite uniform. The
condition (T0) postulates that Cn is a consequence operation. We would prefer to
have, in addition to (T0), one condition of the form :

α � β ∈ Cn(X) ⇔ . . .
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for each � ∈ {∼,→, +, ·}. The right-hand side of each equivalence should sat-
isfy the usual definition conditions. It means that the connective occurring on
the left-hand side should not appear on the right-hand side of the corresponding
equivalence. There should not be circulus vitiosus in definitions (for instance, it
should not be allowed that → is defined by means of conditions involving ∼ and,
vice versa, ∼ is defined by use of →). The conditions should be as uniform as
it is possible. Equivalences of this form will be called Cn-definitions of proposi-
tional connectives. We do not specify (meta)logical means allowed there (on the
right-hand sides) but, instead, we illustrate our approach with an example:

(H1) ∼ α ∈ Cn(X) ⇔ S2 ⊆ Cn(X ∪ {α});
(H2) α → β ∈ Cn(X) ⇔ Cn(X ∪ {β}) ⊆ Cn(X ∪ {α});
(H3) α + β ∈ Cn(X) ⇔ Cn(X ∪ {α}) ∩ Cn(X ∪ {β}) ⊆ Cn(X);
(H4) α · β ∈ Cn(X) ⇔ Cn(X ∪ {α}) ∪ Cn(X ∪ {β}) ⊆ Cn(X).

As is well known, see Corollary 1.66 (and following comments), we have:

Theorem 4.1. The intuitionistic consequence operation Cni is the least one which
fulfills the above conditions (H).

Thus, the intuitionistic logic possess a satisfactory and complete character-
ization by use of specific properties of propositional connectives. Our task is to
find an appropriate set of Cn-definitions for the classical logic Cn2. And, in prin-
ciple, we would like to achieve this goal without changing the general properties
of consequence operations given by the condition (T0).

We recall that Cn2 is the consequence operation determined by the (invariant
version of) the classical logic 〈R0, Sb(A2)〉. We have R0 = {r0}, where r0 is the
modus ponens rule, and Sb(A2) consists of the following axiom schemata:

(1) α → (β → α)

(2) [α → (α → β)] → (α → β)

(3) (α → β) → [(β → γ) → (α → γ)]

(4) α → α + β

(5) β → α + β

(6) (α → γ) → [(β → γ) → (α + β → γ)]

(7) α · β → α

(8) α · β → β

(9) (α → β) → [(α → γ) → (α → β · γ)]

(10) α → (∼ α → β)

(11) (α →∼ α) →∼ α

(12) ∼∼ α → α

for each α, β, γ ∈ S2. Let Z2 = Cn2(∅) be the set of (classical) tautologies over S2.
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4.2 The system (D)
Firstly, let us consider the following set of Cn-definitions called the system (D):

(D1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(D2) α → β ∈ Cn(X) ⇔ Cn(X ∪ {α,∼ β}) = S2;
(D3) α + β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α,∼ β}) = S2;
(D4) α · β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α}) ∩ Cn(X ∪ {∼ β}) = S2.

The operation Cn2 clearly satisfies the conditions (D). Note that, if a conse-
quence operation Cn satisfies these conditions, then so does any of its axiomatic
extensions. Thus, the conditions do not define a consequence operation in a unique
way. It also means that any Cn satisfying the conditions does not need to be fini-
tary, nor structural. If one takes, however, the least (D)-operation (perceived as
the intersection of all operations satisfying these conditions), then this operation
— defined in a unique way — is finitary and structural. So, let us try to identify
the least consequence operation satisfying the above conditions.

Lemma 4.2. If a consequence operation Cn fulfills (D1)–(D4), then

(i) β ∈ Cn({α,∼ α}), for every α, β ∈ S2;

(ii) β ∈ Cn({α, α → β}), for every α ∈ S2 and β ∈ S2 \ At;

(iii) β ∈ Cn(X ∪ {α}) ⇒ (α → β) ∈ Cn(X), for every α, β ∈ S2, X ⊆ S2.

Proof. (i): Follows immediately from (D1) and ∼ α ∈ Cn({∼ α}).
(ii): If β �∈ At, then β is �(γ, δ) with � ∈ {∼,→, ·, +}. As Cn fulfills the

conditions (D), there are formulas βi with i ∈ I ⊆ {1, 2} such that

β ∈ Cn(X) ⇔ Cn(X ∪ {βi}i∈I) = S2

for every X ⊆ S2. Thus, Cn({β} ∪ {βi}i∈I) = S2 which shows ∼ β ∈ Cn({βi}i∈I)
by (D1). Since we have Cn({α → β, α,∼ β}) = S2 by the condition (D2), we also
get Cn({α → β, α} ∪ {βi}i∈I) = S2 and hence β ∈ Cn({α → β, α}).

(iii): Suppose that β ∈ Cn(X ∪ {α}). Then Cn(X ∪ {α,∼ β}) = S2 by (i)
and hence (α → β) ∈ Cn(X) by (D2). �
Lemma 4.3. If a consequence operation Cn over the language S2 fulfills the con-
ditions (D), then Sb(A2) ⊆ Cn(∅).
Proof. (1): Easily follows from Lemma 4.2 (iii).

(2): Since (α → β) ∈ Cn({α, α → (α → β)}) by Lemma 4.3 (ii), we get
Cn({α,∼ β, α → (α → β)}) = S2 by (D2). Hence (α → β) ∈ Cn({α → (α → β)})
and (Ax2) follows from Lemma 4.2 (iii).

(3): We have Cn({β → γ, β,∼ γ}) = S2 by (D2) and hence we also get
∼ β ∈ Cn({β → γ,∼ γ}) by (D1). Since Cn({α → β, α,∼ β}) = S2 by (D2), we
get Cn({α → β, β → γ, α,∼ γ}) = S2 and hence (α → γ) ∈ Cn({α → β, β → γ})
on the basis of (D2).
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(4) and (5): Follow from (D3) and Lemma 4.2.
(6): Since Cn({α → γ, α,∼ γ}) = S2 = Cn({β → γ, β,∼ γ}), we also get

∼ α ∈ Cn({α → γ,∼ γ}) and ∼ β ∈ Cn({β → γ,∼ γ}) by (D1). Hence

Cn({α → γ, β → γ,∼ γ, α + β}) = S2

by (D3) which shows that (α + β → γ) ∈ Cn({α → γ, β → γ}).
(7) and (8): Since Cn({α · β,∼ α}) = S2 = Cn({α · β,∼ β}) by (D4), we

get (7) and (8) immediately by (D2).
(9): We get Cn({α → β, α,∼ β}) = Cn({α → γ, α,∼ γ}) = S2 by (D2).

Hence β · γ ∈ Cn({α → β, α → γ, α}) by (D4). Then, to get (9) it suffices to use
Lemma 4.2 (iii).

(10): Follows from Lemma 4.2 (i) and (iii).
(11): We get ∼ α ∈ Cn({α, α →∼ α}) by Lemma 4.2 (ii). Then, by (D1),

Cn({α, α →∼ α}) = S2 which gives ∼ α ∈ Cn({α →∼ α}) = S2.
(12): Since Cn({∼ α,∼∼ α}) = S2 we get (12) by (D2). �

Now, the least consequence operation satisfying the conditions (D) can be
identified quite easily. Let CnD be the consequence operation determined by the
axioms Sb(A2) and the following inferential rules:

r01 :
α, α →∼ β

∼ β
, r02 :

α, α → (β → γ)
β → γ

, r03 :
α, α → β + γ

β + γ
,

r04 :
α, α → β · γ

β · γ , r1 :
α, ∼ α

β
.

Note that r0i for i ∈ {1, 2, 3, 4} are subrules of the modus ponens rule r0. Since
the rules of CnD are classically valid, we get CnD(X) ⊆ Cn2(X) for every set X .
Using known properties of the classical logic (such as the deduction theorem) one
easily shows that for every set X ⊆ S2:

(∗) CnD(X) = S2 ⇔ Cn2(X) = S2 ;
(∗∗) α ∈ CnD(X) ⇔ α ∈ Cn2(X), if α /∈ At;

(∗ ∗ ∗) α ∈ CnD(X) ⇔ α ∈ X, if α ∈ At, Cn2(X) �= S2.

Since the classical logic Cn2 fulfills the conditions (D) and those conditions
involve compound formulas on the left-hand side of the equivalences, and inconsis-
tent theories on the right-hand side, it follows from (∗) and (∗∗) that CnD fulfills
the conditions (D), as well. Besides, by Lemma 4.2 and 4.3, we get CnD � Cn for
every consequence operation Cn fulfilling the conditions (D). Consequently

Theorem 4.4. The operation CnD is the least consequence operation satisfying the
conditions (D).

To get Cn2 � CnD, one would need to show that r0 is a derivable rule of
CnD. By Lemma 4.3, it would be sufficient to show that β ∈ CnD({α, α → β})
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for β ∈ At. However, this is not true (as we shall see later on) and, consequently,
Cn2 is not the least consequence operation which fulfills (D). As no tautology is
a variable, we can only get by (∗∗):
Corollary 4.5. Z2 = CnD(∅).

Now, let us consider a three-element matrix MD, on the set {1, 2, 3}, with 3
as the only designated element, and the connectives interpreted as:

→ 1 2 3 + 1 2 3 · 1 2 3 ∼
1 3 3 3 1 1 3 3 1 1 1 1 1 3
2 1 3 3 2 3 3 3 2 1 3 3 2 1
3 1 3 3 3 3 3 3 3 1 3 3 3 1

Note that the classical two-element matrix M2 is (isomorphic to) a subma-
trix of MD. Hence,

−−→
MD � −→

M2 = Cn2 where
−−→
MD and

−→
M2 denote the matrix

consequences (see Definition 2.32) determined by MD and M2, respectively.
Notice that q /∈ −−→

MD(p → q, p) for all distinct p, q ∈ At (take the valuation
v such that v(p) = 3 and v(q) = 2) and hence

−−→
MD < Cn2. It means, in parti-

cular, that the Cn-definitions (D) do not determine the classical connectives but
connectives of a weaker logic. We also get

Theorem 4.6.
−−→
MD = CnD.

Proof. We prove that
−−→
MD � CnD as the reverse is quite obvious — it suffices to

notice that the axioms and rules of CnD are valid in MD.
Let α /∈ CnD(X). If α /∈ At, then α /∈ −→

M2(X) by (∗∗) and hence we get
α /∈ −−→

MD(X) as M2 is a submatrix of MD.
Suppose that α ∈ At. If Cn2(X) = S2, then CnD(X) = S2 by (∗) contra-

dicting our assumptions. We can assume, therefore, that X is satisfiable in the
classical two-element matrix. Hence hv(X) ⊆ {3} for a valuation v : At → {1, 3}.
We define a valuation w : At → {1, 2, 3} by

w(p) =

{
2 if p is α and v(p) = 3

v(p) otherwise.

One shows by induction on the length of a formula that hv(φ) = hw(φ) for every
φ different from α. We also get w(α) = 2. Since α /∈ CnD(X), we have α �∈ X and
hence hw(X) = hv(X) ⊆ {3} which shows α /∈ −−→

MD(X). �

Thus, CnD < Cn2. Note that CnD is very close to the classical logic. In
particular, CnD(∅) = Z2 and all instances of r0 with compound conclusions are
CnD-valid. There are only lacking (classically valid) inferences of the form X/α
where α is a variable and α /∈ X , e.g., α ·α/α. Let us prove additionally that CnD

is a threshold logic which means that Cn2 is the only structural and consistent
(proper) extension of CnD:
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Theorem 4.7. If Cn is a structural and consistent consequence operation and
Cn > CnD, then Cn = Cn2.

Proof. Let Cn ∈ STRUCT ∩ CNS and Cn > CnD. Then
−−→
MD < Cn by Theorem

4.6. Since we have Cn(∅) =
⋂{−→N(∅) : N ⊆ MD ∧ Cn(∅) ⊆ −→

N(∅)} (see Theorem
2.38), and M2 is the only proper submatrix of MD, we get Cn(∅) =

−−→
MD(∅) = Z2.

As Cn2 is structurally complete we conclude that Cn � Cn2, see Corollary 3.59.
Thus CnD < Cn � Cn2. Moreover, by the conditions (∗)–(∗ ∗ ∗) above,

α ∈ Cn2(X) yields α ∈ Cn(X) if α /∈ At, or α ∈ X , or Cn2(X) = S2. To get
Cn = Cn2 it suffices now to show that α ∈ Cn(X) for every X , α such that
α ∈ At \ X and α ∈ Cn2(X) �= S2.

Let α /∈ Cn(X) for every X , α such that α ∈ At \X and α ∈ Cn2(X) �= S2.
Since CnD < Cn, we get β ∈ Cn(Y ) \ CnD(Y ) for some β, Y . Then, according
to (∗) and the above assumption, we must have β /∈ At. Hence, by (∗∗), we would
get β /∈ Cn2(X) contradicting our assumptions. Thus, we conclude that there are
X0, α0 such that α0 ∈ At \ X0, and α0 ∈ Cn2(X0) �= S2, and α0 ∈ Cn(X0).

As Cn2(X0) �= S2, the set X0 is satisfiable in M2 and hence hv(X0) ⊆ {3}
for a valuation v : At → {1, 3}. Let us define a substitution e : At → S2 by

e(p) =

⎧⎪⎪⎨
⎪⎪⎩

α0 if p is α0

α0 → α0 if v(p) = 3 and p is not α0

∼ (α0 → α0) if v(p) = 1 and p is not α0.

Note that Cn2(he(X0)) �= S2 and no element of he(X0) is a variable. Besides,
α0 = he(α0) ∈ Cn2(he(X0)). Thus, each element of he(X0) is either valid in
classical logic or equivalent to α0. So he(X0) ⊆ Cn2({(α0 → α0) → α0}) and
hence, by (∗∗) and Theorem 4.6, we get

he(X0) ⊆ −−→
MD({(α0 → α0) → α0}) ⊆ Cn({(α0 → α0) → α0}).

As α0 ∈ Cn(X0) and Cn is structural, we get α0 ∈ Cn({(α0 → α0) → α0}). But
α0 is a variable and hence α ∈ Cn({(α → α) → α}) for every α.

Let α ∈ At \ X and α ∈ Cn2(X) �= S2. Then (α → α) → α ∈ Cn2(X) and
hence (α → α) → α ∈ CnD(X) ⊆ Cn(X) by (∗∗) which gives α ∈ Cn(X). �

One can show that the rules r0i (together with A2) but without the rule
r1 do not axiomatize CnD. Namely, let M1 be the matrix on {1, 3} in which 3
is designated, ∼ x = 3 and �(x, y) = 3 for each x, y and each � ∈ {→, +, ·}.
Note that the rules r0i and the axioms Sb(A2) are valid in M1 whereas r1 is not.
Moreover, one can show that the consequence operation determined by these rules
(and Sb(A2)) coincides with

−→
M1 ∩ −→

M2 and all its structural strengthenings are
given by the following diagram:
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inconsistent consequence

−→
M1Cn2

CnD

−→
M1 ∩ −→

M2

Note that MD is a submatrix of M1 × M2 and one can also show that

−−→
MD =

−−−−−−→
M1 × M2.

4.3 Variants
There are many variants and versions of the system (D). For instance,

Theorem 4.8. The system (D) is equivalent with the following Cn-definitions:

(D′1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(D′2) α → β ∈ Cn(X) ⇔ Cn(X ∪ {α,∼ β}) = S2;
(D′3) α · β ∈ Cn(X) ⇔ Cn(X ∪ {α →∼ β}) = S2;
(D′4) α + β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α· ∼ β}) = S2.

Proof. Note that the conditions (D′i) coincide for i = 1, 2 with the appropriate
conditions (D). So, we assume that a consequence operation Cn fulfills (D1) and
(D2) and prove that (D4) is equivalent with (D′3):

Cn(X ∪ {∼ α}) ∩ Cn(X ∪ {∼ β}) = S2 ⇔ Cn(X ∪ {α →∼ β}) = S2.

Suppose that Cn(X∪{∼ α}) = S2 and Cn(X∪{∼ β}) = S2. Then, by (D1),
∼∼ α ∈ Cn(X) and ∼∼ β ∈ Cn(X). Since Cn(X ∪ {α →∼ β, α,∼∼ β}) = S2 by
(D2) we immediately get Cn(X ∪ {α →∼ β}) = S2. If Cn(X ∪ {α →∼ β}) = S2,
then Cn(X ∪ {∼ α}) = S2 and Cn(X ∪ {∼ β}) = S2 as α →∼ β ∈ Cn({∼
α}) ∩ Cn({∼ β}).

Next, we assume that Cn fulfills (D1), (D2), (D4) and prove that the condi-
tion (D3) is equivalent with (D′4):

Cn(X ∪ {∼ α,∼ β}) = S2 ⇔ Cn(X ∪ {∼ α· ∼ β}) = S2.

Suppose that Cn(X ∪ {∼ α,∼ β}) = S2. Since ∼ α ∈ Cn({∼ α· ∼ β}) and
∼ β ∈ Cn({∼ α· ∼ β}) by Lemma 4.2 (ii), we also get Cn(X ∪ {∼ α· ∼ β}) = S2.

Suppose that Cn(X ∪ {∼ α· ∼ β}) = S2. As Cn({∼ α,∼ β,∼∼ α}) = S2

and Cn({∼ α,∼ β,∼∼ β}) = S2, then ∼ α· ∼ β ∈ Cn(X ∪ {∼ α,∼ β}) = S2 by
(D4) and hence Cn(X ∪ {∼ α,∼ β}) = S2. �
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The above theorem suggests many other sets of Cn-definitions equivalent
to (D). It suffices only to take into account mutual definability of various sets
of propositional connectives in classical logic. In particular, it turns out that the
system (D) is equivalent with the following Cn-definitions:

(D′′1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(D′′2) α + β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α,∼ β}) = S2;
(D′′3) α · β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α+ ∼ β}) = S2;
(D′′4) α → β ∈ Cn(X) ⇔ Cn(X ∪ {α· ∼ β}) = S2.

One easily notices that the above conditions have a similar form. Namely,
they all fall under the general schema:

α ∈ Cn(X) ⇔ Cn(X ∪ {α1, . . . , αk}) = S2

where α ≡∼ (α1 · . . . · αk) is classically valid. If α is not a variable, all conditions
of the above form — if classically valid — are clearly fulfilled by the consequence
operation CnD (see the conditions (∗) and (∗∗) in the previous section). We do
not know if one can get a set of Cn-definitions of the above form which is not
equivalent with the system (D). But any such set of conditions would be satisfied
by the consequence operation CnD and hence would not be a set of Cn-definitions
for the classical logic.

Thus, to get a set of Cn-definitions for logics different from CnD (presumably,
for the classical logic), we should get rid of the above form for at least one of the
conditions. Let us consider, for instance, the system (E):

(E1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(E2) α → β ∈ Cn(X) ⇔ Cn(X ∪ {α,∼ β}) = S2;
(E3) α + β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α,∼ β}) = S2;
(E4) α · β ∈ Cn(X) ⇔ Cn(X ∪ {α, β}) ⊆ Cn(X).

The above Cn-definitions are not as uniform as for the system (D) but all specified
requirements are fulfilled here. Let us try to identify the logic determined by
this set of Cn-definitions. First, we can show that the matrix consequence of the
following 3-element matrix ME , in which 3 is the only designated element, satisfies
the conditions (E):

→ 1 2 3 + 1 2 3 · 1 2 3 ∼
1 3 3 3 1 1 3 3 1 1 1 1 1 3
2 1 3 3 2 3 3 3 2 1 2 2 2 1
3 1 3 3 3 3 3 3 3 1 2 3 3 1

Note that the {∼,→, +} fragment of the matrix ME coincides with the same
fragment of the matrix MD and the conditions (E1)–(E3) coincide with (D1)–
(D3). It does not mean, however, that

−−→
ME fulfills these conditions (even if

−−→
MD

does). One could show it would not be the case if the conjunction were defined in
another way. It means we should prove
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Lemma 4.9. The consequence operation
−−→
ME fulfills the conditions (E).

Proof. (E1): Suppose that ∼ α ∈ −−→
ME(X). Then hv(X) ⊆ {3} yields hv(α) =1,

for every valuation v. Thus, the set X ∪ {α} is not satisfiable in the matrix ME

and hence
−−→
ME(X ∪ {α}) = S2.

Assume that
−−→
ME(X ∪ {α}) = S2. Then the set X ∪ {α} is not satisfiable in

the matrix ME and hence hv(X} ⊆ {3} yields hv(α) ∈ {1, 2} for every valuation
v. Suppose that hv(X) ⊆ {3} and hv(α) �= 3 for some v. Let us note that the
mapping f : {1, 2, 3} → {1, 3} such that f(1) = 1 and f(2) = f(3) = 3 is a
homomorphism of the algebra of the matrix ME onto the algebra of its submatrix
on {1, 3}. Then X ∪ {α} would be satisfiable in the submatrix which would also
give its satisfiability in ME — we get to a contradiction. Thus, hv(X) ⊆ {3} yields
hv(α) = 1 and hence hv(∼ α) = 3, for every v. This means that ∼ α ∈ −−→

ME(X).
(E2): If α → β ∈ −−→

ME(X) and hv(X) ⊆ {3}, then hv(α → β) = 3 and
hence hv({α,∼ β}) ⊆ {3} does not hold. Thus,

−−→
ME(X ∪ {α,∼ β}) = S2 as the

set X ∪ {α,∼ β} is not satisfiable in the matrix ME .
Assume that

−−→
ME(X ∪{α,∼ β}) = S2. The set X ∪{α,∼ β} is not satisfiable

in ME and hence hv(X, α) ⊆ {3} yields hv(β) ∈ {2, 3}, for every v. Suppose
that hv(X) ⊆ {3} and hv(α) = 2 and hv(β) = 1 for some v. Since the mapping
f : {1, 2, 3} → {1, 3} defined above is a homomorphism of the algebra of the matrix
ME onto the algebra of its submatrix, the set X ∪ {α,∼ β} would be satisfiable
in the submatrix and, thus, we would get to a contradiction. This means that
(α → β) ∈ ∈ −−→

ME(X) as required.
(E3): If α + β ∈ −−→

ME(X) and hv(X) ⊆ {3}, then hv(α + β) = 3 and hence
hv({∼ α,∼ β}) ⊆ {3} does not hold. Thus,

−−→
ME(X,∼ α,∼ β) = S2.

Assume that
−−→
ME(X ∪{∼ α,∼ β}) = S2. The set X∪{∼ α,∼ β} is not satis-

fiable in ME . Suppose that hv(X} ⊆ {3} and let hv(α) ∈ {2, 3} and hv(β) ∈ {2, 3}
for some v. Since the mapping f : {1, 2, 3} → {1, 3} defined above is a homomor-
phism from the algebra of the matrix ME onto the algebra of its submatrix, the
set X ∪ {∼ α,∼ β} would be satisfiable in the submatrix and, thus, we would get
to a contradiction.

(E4): Follows quite easily as the conjunction is interpreted as the minimum
operator with respect to the natural ordering on the set {1, 2, 3}. �

Using the matrix ME , one easily notices that the rule r04 (the fragment of
the modus ponens rule in which the conclusion is a conjunction) does not follow
from the conditions (E). However, we can derive the following rules, instead:

α · β
α

,
α · β

β
,

α, β

α · β .

Let CnE be the consequence operation determined by the axiom and rules of CnD,
except for the rule r04, together with the ones above. One shows
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Theorem 4.10. The consequence operation CnE is the least one which fulfills the
conditions (E). We get CnE =

−−→
ME and CnE(∅) = Z2. The consequence operation

CnE is threshold, i.e.,

CnE < Cn ∈ STRUCT ∩ CNS ⇒ Cn = Cn2.

Proof. One can show — in a standard way — that any formula is equivalent over
CnE to a conjunction of formulas in {∼,→, +}. The rules and axioms of CnD

(without r04) are sufficient to show that for every α there are α1, . . . , αk which do
not contain the connective · such that

α ≡ α1 · . . . · αk ∈ CnE(∅).
The additional rules for · are essential to get

CnE({α}) = CnE({α1, . . . , αk}).
It means, in particular, that each structural Cn ≥ CnE is uniquely determined
by its {∼,→, +}–fragment. Now, it suffices to make use of Theorems 4.4–4.7 (or
more specifically, their versions proved for the language {∼,→, +}) to get similar
results for the system (E). �

Additional Cn-systems may be received quite easily by mixing up various Cn-
definitions considered so far. It does not mean, however, that we always obtain in
this way a similar body of results as above. In particular, there is no symmetry
between · and +. For instance, for the system

(F1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(F2) α → β ∈ Cn(X) ⇔ Cn(X ∪ {α,∼ β}) = S2;
(F3) α + β ∈ Cn(X) ⇔ Cn(X ∪ {α}) ∩ Cn(X ∪ {β}) ⊆ Cn(X);
(F4) α · β ∈ Cn(X) ⇔ Cn(X ∪ {α, β}) ⊆ Cn(X),

one can define, similarly as for the system (D), a three-element matrix MF , on
the set {1, 2, 3}, with 3 as the only designated element:

→ 1 2 3 + 1 2 3 · 1 2 3 ∼
1 3 3 3 1 1 2 3 1 1 1 1 1 3
2 1 3 3 2 2 2 3 2 1 2 2 2 1
3 1 3 3 3 3 3 3 3 1 2 3 3 1

It turns out that
−−→
MF fulfills the conditions (F) but this is not the least

consequence operation with this property. Using the matrix one can also notice
underivability of α+ ∼ α in the system (F).

In none of the systems considered in this section were we able to derive the
modus ponens rule (only certain of its subrules such as r01 etc.). However, there
are systems of Cn-definitions which determine logics with the modus ponens rule.
For instance, the set (H) determines the intuitionistic logic Cni for which r0 is
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valid. Let us note, additionally, that Cni(∅) �= Z2, nor is Cni a threshold logic.
One can also get the modus ponens rule using the following set of Cn-definitions:

(G1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(G2) α → β ∈ Cn(X) ⇔ Cn(X ∪ {∼ α}) ∩ Cn(X ∪ {β}) = Cn(X);
(G3) α + β ∈ Cn(X) ⇔ Cn(X ∪ {α}) ∩ Cn(X ∪ {β}) = Cn(X);
(G4) α · β ∈ Cn(X) ⇔ Cn(X ∪ {α}) ∪ Cn(X ∪ {β}) = Cn(X).

The received logic, that is the least logic fulfilling the conditions (G), is rather
weak. In particular, the formula α → α is not valid there as shown by the following
matrix, the matrix consequence of which fulfills (G):

→ 1 2 3 + 1 2 3 · 1 2 3 ∼
1 3 3 3 1 1 2 3 1 1 1 1 1 3
2 1 2 3 2 2 2 3 2 1 2 2 2 1
3 1 2 3 3 3 3 3 3 1 2 3 3 1

The Cn-definitions considered above involve set-theoretical operations. One
may also say that they involve metalogical connectives (occurring in the definitions
of set-theoretical operations). We conclude, therefore, that our attempts to find
a set of Cn-definitions for the connectives of classical logic failed even though we
accepted metalogical connectives in our conditions. In the next section we will
additionally use quantification over sets of formulas to achieve our goals.

4.4 The system (I)
The following set of Cn-definitions, called the system (I), involve quantifiers rang-
ing over subsets (or finite subsets — it does not matter) of S2.

(I1) ∼ α ∈ Cn(X) ⇔ Cn(X ∪ {α}) = S2;
(I2) α → β ∈ Cn(X) ⇔ ∀Y {∀Z [α ∈ Cn(X ∪ Y ∪ Z ∪ {β})

⇒ α ∈ Cn(X ∪ Y ∪ Z)] ⇒ β ∈ Cn(X ∪ Y )};
(I3) α + β ∈ Cn(X) ⇔ ((α → β) → β) ∈ Cn(X);
(I4) α · β ∈ Cn(X) ⇔ Cn(X ∪ {α, β}) = Cn(X).

The right-hand side of the conditions (I3) should be read as

∀W

(∀Y {∀Z [α ∈ Cn(X ∪ W ∪ Y ∪ Z ∪ {β}) ⇒ α ∈ Cn(X ∪ W ∪ Y ∪ Z)]

⇒ β ∈ Cn(X ∪ W ∪ Y )} ⇒ β ∈ Cn(X ∪ W )
)
.

The above is too complicated for any practical use and so we replaced it with
its (less elementary but simpler) equivalent. Quantifiers are involved in our Cn-
definitions and hence it is not clear if classical logic fulfills them. More specifically,
it is not clear if Cn2 fulfills (I2). In contrast to the system (D), the meet of a
family of consequence operations fulfilling the conditions (I) may not fulfill these
conditions. So, it is not clear whether the least consequence operation fulfilling (I)
ever exists (and if it is structural and finitary).
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Lemma 4.11. The consequence operation Cn2 fulfills the conditions (I).

Proof. First, let us assume that the right-hand side of the condition (I2) holds
for Cn2. Let us take Y = X ∪ {α} and note that α ∈ Cn2(X ∪ Y ∪ Z). Hence
β ∈ Cn2(X ∪ {α}) which gives (α → β) ∈ Cn2(X).

Then, let us assume (α → β) ∈ Cn2(X) and suppose that for each Z:

α ∈ Cn2(X ∪ Y ∪ Z ∪ {β}) ⇒ α ∈ Cn2(X ∪ Y ∪ Z).

Take Z = {β → α} to get α ∈ Cn2(X ∪ Y ∪ Z) and note that this suffices to get
β ∈ Cn2(X ∪ Y ) since (α → β) ∈ Cn2(X). �

Let A→+ denote a set of axioms for the {→, +} fragment of classical logic.
For instance, suppose that the set consists of the axioms (1)–(6) and Peirce’s law:
((α → β) → α) → α for each α, β.

Theorem 4.12. If a consequence operation Cn fulfills the conditions (I), then we
have A→+ ⊆ Cn(∅) and β ∈ Cn({α, α → β}), for every α, β ∈ S2.

Proof. Take X = {α → β}. Then, by (I2), one gets β ∈ Cn(X ∪ Y ) if

α ∈ Cn(X ∪ Y ∪ Z ∪ {β}) ⇒ α ∈ Cn(X ∪ Y ∪ Z)

for each Z. As the above holds for Y = {α}, one gets β ∈ Cn({α, α → β}).
(1): Let us assume that

(i) ∀Z [α ∈ Cn(Y ∪ Z ∪ {β → α}) ⇒ α ∈ Cn(Y ∪ Z)],

(ii) ∀Z′ [β ∈ Cn(Y ∪ Y ′ ∪ Z ′ ∪ {α}) ⇒ β ∈ Cn(Y ∪ Y ′ ∪ Z ′)],

and show α ∈ Cn(Y ∪ Y ′). By (i), it suffices to prove α ∈ Cn(Y ∪ Y ′ ∪ {β → α}).
Since we have (β → α) ∈ Cn(Y ∪ Y ′ ∪ {β → α}), we get by (I2),

∀Y ′′{∀Z′′ [β ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ Z ′′ ∪ {β → α, α})

⇒ β ∈ Cn(Y, Y ′, Y ′′, Z ′′, {β → α})] ⇒ α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ {β → α})}.
Choosing suitable parameters in (ii) we get the antecedent of the above implication.
Hence α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ {β → α}) for each Y ′′.

(2): The axiom is a consequence of the remaining axioms in A→,+, so its
derivation by use of the condition (I2) could be skipped. Let us assume that

(i) ∀Z [(α → (α → β)) ∈ Cn(Y ∪Z ∪ {α → β}) ⇒ (α → (α → β)) ∈ Cn(Y ∪Z)],

(ii) ∀Z′ [α ∈ Cn(Y ∪ Y ′ ∪ Z ∪ β) ⇒ α ∈ Cn(Y ∪ Y ′ ∪ Z ′)],
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and show that β ∈ Cn(Y ∪ Y ′). We get (α → (α → β)) ∈ Cn({α → β}) by (I2).
Hence (α → (α → β)) ∈ Cn(Y ) by (i). Suppose that

α ∈ Cn(Y ∪ Y ′ ∪ Z ′′ ∪ {α → β}) for any Z ′′.

Since (α → β) ∈ Cn({β}) by (I2), we get α ∈ Cn(Y ∪ Y ′ ∪ Z ′′ ∪ {β}) and hence
α ∈ Cn(Y ∪ Y ′ ∪ Z ′′) by (ii). Thus we have shown

α ∈ Cn(Y ∪ Y ′ ∪ Z ′′ ∪ {α → β}) ⇒ α ∈ Cn(Y ∪ Y ′ ∪ Z ′′)

which gives (α → β) ∈ Cn(Y ∪ Y ′) by (I2) since (α → (α → β)) ∈ Cn(Y ). Using
(ii), we conclude that β ∈ Cn(Y ∪ Y ′).

(3): We assume

(i) (∀Z [(α → β) ∈ Cn(Y ∪Z∪{(β → γ) → (α → γ)}) ⇒ (α → β) ∈ Cn(Y ∪Z)],

(ii) ∀Z′ [(β → γ) ∈ Cn(Y ∪ Y ′ ∪ Z ′ ∪ {α → γ}) ⇒ (β → γ) ∈ Cn(Y ∪ Y ′ ∪ Z ′)],

(iii) ∀Z′′ [α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ Z ′′ ∪ {γ}) ⇒ α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ Z ′′)],

and show γ ∈ Cn(Y ∪ Y ′ ∪ Y ′′). Using (ii) and (I2), we easily get

(α → γ) ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ {(β → γ) → (α → γ)}).
Hence, by (iii) and (I2), we have

(iv) γ ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ {(β → γ) → (α → γ)}).
Then, by the axiom (1) and the modus ponens rule, it follows that

(β → γ) ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ {α → γ})
and hence, by (ii) and (I2), we obtain

(β → γ) ∈ Cn(Y ∪ Y ′ ∪ Y ′′).

Now, according to (I2), we get γ ∈ Cn(Y ∪ Y ′ ∪ Y ′′) as required if we show

∀W [β ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ∪ {γ}) ⇒ β ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W )].

So, let us assume that

(v) β ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ∪ {γ}).
Then, using the axiom (1) (together with r0) and (iv),

(α → β) ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ∪ {(β → γ) → (α → γ)}),
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and hence by (i) we obtain (α → β) ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ). Now, by (I2), we
get β ∈ Cn(Y ∪ Y ∪ Y ′′ ∪ W ) if we show that for each W ′,

α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ∪ W ′ ∪ {β}) ⇒ α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ∪ W ′).

So, suppose that α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪W ∪W ′ ∪{β}). Then, by (v) and (iii), we
get α ∈ Cn(Y ∪ Y ′ ∪ Y ′′ ∪ W ∪ W ′) which completes our argument.

(Peirce’s law) Let us assume that

(i) ∀Z [((β → α) → β) ∈ Cn(Y ∪ Z ∪ {β}) ⇒ ((β → α) → β) ∈ Cn(Y ∪ Z)]

and show that β ∈ Cn(Y ). Since ((β → α) → β) ∈ Cn({β}) by (I2), the above
(i) reduces to ((β → α) → β) ∈ Cn(Y ). Thus, it suffices to show that β ∈
∈ Cn({(β → α) → β)}). But ((β → α) → β) ∈ Cn({(β → α) → β)}) and hence
one gets β ∈ Cn({(β → α) → β}) if one shows

∀Z′ [(β → α) ∈ Cn(Z ′ ∪ {β → α) → β, β})
⇒ (β → α) ∈ Cn(Z ′ ∪ {(β → α ) → β})].

So, let us assume (β → α) ∈ Cn(Z ′∪{(β → α) → β, β}). Then by (I2) and known
properties of consequence operations one gets

(ii) (β → α) ∈ Cn(Z ′ ∪ {β}).
To show (β → α) ∈ Cn(Z ′ ∪ {(β → α) → β}) we use (I2) and hence we assume

(iii) ∀Z′′ [β ∈ Cn(Z ′ ∪ Y ′′ ∪ Z ′ ∪ {(β → α) → β, α})
⇒ β ∈ Cn(Z ′ ∪ Y ′′ ∪ Z ′′ ∪ {(β → α) → β})]

and try to show α ∈ Cn(Z ′ ∪ Y ′′ ∪ {(β → α) → β}). Since the modus ponens rule
is derivable for Cn and (β → α) ∈ Cn({α}), we get by (iii),

β ∈ Cn(Z ′ ∪ Y ′′ ∪ {(β → α) → β}).
Then, we receive α ∈ Cn(Z ′ ∪ Y ′′ ∪ {(β → α) → β}) using (ii) and r0.

(4)–(6): It has been shown that Cn contains the implicational fragment of
classical logic. Since α+β is classically equivalent to (α → β) → β and (I3) says the
same holds for Cn, we conclude that Cn contains the {→, +}–fragment of classical
logic. For instance, to show the axiom (4) we began with (α → ((α → β) → β)) ∈
∈ Cn(∅). By (I2), it means that

∀Y {∀Z [α ∈ Cn(Y ∪ Z ∪ {(α → β) → β}) ⇒ α ∈ Cn(Y ∪ Z)]

⇒ ((α → β) → β) ∈ Cn(Y )}.
Now, according to (I3), we can replace the formula (α → β) → β with α + β and
thus we get (α → (α + β)) ∈ Cn(∅). �
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Thus, each consequence operation fulfilling the conditions (I) contains the
{→, +}-fragment of classical logic together with the modus ponens. The remaining
axioms are more problematic. Without difficulty one shows (∼ α → α) → α and
(α →∼ α) →∼ α). But α → (∼ α → β) and ∼∼ α → α, the axioms (10) and
(12), are not derivable. More surprisingly, the axioms (7) and (8) are not derivable,
either, whereas (9) as well as α → (β → α ·β) are derivable. One could only derive
the inferential versions of (7),(8) and (10):

α, ∼ α

β
,

α · β
α

,
α · β

β
.

The above means, in particular, that the usual deduction theorem cannot be
derived from (I). Instead, one can prove:

Lemma 4.13. If a consequence operation Cn fulfills the conditions (I), then

Cn(X ∪ {β}) = Cn(X ∪ {α}) ⇒ (α → β) ∈ Cn(X), for every X, α, β.

Proof. Let us assume that Cn(X ∪{β}) = Cn(X ∪{α}). We use (I2) to show that
(α → β) ∈ Cn(X). So, let us assume that

∀Z [α ∈ Cn(X ∪ Y ∪ Z ∪ {β}) ⇒ α ∈ Cn(X ∪ Y ∪ Z)].

The antecedent of the implication is fulfilled as Cn(X ∪ {β}) = Cn(X ∪ {α}).
Thus, we get α ∈ Cn(X ∪Y ∪Z) for each Y, Z and hence α ∈ Cn(X). It also gives
β ∈ Cn(X) which was to be proved. �

Corollary 4.14. If Cn fulfills the conditions (I), then

(i) α· ∼ α ∈ Cn(X) ⇔ β· ∼ β ∈ Cn(X);
(ii) ∼ α ∈ Cn(X) ⇔ (α → α· ∼ α) ∈ Cn(X);
(iii) α ∈ Cn(X ∪ {β → α}) ⇔ ((β → α) → α) ∈ Cn(X);
(iv) ∼ α ∈ Cn(X) ⇒ (α· ∼ α → α) ∈ Cn(X);
(v) (α· ∼ α → α) ∈ Cn(X) ⇒ (∼∼ α → α) ∈ Cn(X).

To show that the axioms (7), (8), (10) and (12) are not derivable there one
can use a 3-element matrix MI . The matrix is defined, similarly as MD, on {1, 2, 3}
with 3 as the only designated element and

→ 1 2 3 + 1 2 3 · 1 2 3 ∼
1 3 2 3 1 1 3 3 1 1 1 1 1 3
2 1 3 3 2 3 2 3 2 1 2 2 2 1
3 1 2 3 3 3 3 3 3 1 2 3 3 1

Theorem 4.15. The matrix consequence operation
−→
MI is the least consequence

operation fulfilling the conditions (I).
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Proof. First, we should prove that
−→
MI fulfills the conditions (I1)–(I4). Note that

the rule r0 is derivable for
−→
MI . It is also clear that the conditions (I3) and (I4) are

fulfilled as hv(α · β) = 3 iff hv(α) = 3 = hv(β), and hv(α + β) = hv((α → β) → β)
for each valuation v. Let 0 = p· ∼ p and 1 = p → p for some variable p. We get
hv(0) = 1, and hv(1) = 3, and hv(∼ α) = hv(α → 0) for each valuation v. Hence−→
MI({0}) = S2 and (I1) reduces to (I2). Thus, it suffices to prove

−→
MI fulfills (I2).

(⇒): Let us assume that, for some X, Y, α, β and v, we have

(i) α → β ∈ −→
MI(X),

(ii) ∀Z [α ∈ −→
MI(X ∪ Y ∪ Z ∪ {β}) ⇒ α ∈ −→

MI(X ∪ Y ∪ Z)],
(iii) hv(X ∪ Y ) ⊆ {3}.

We need to prove hv(β) = 3. Suppose that hv(β) ∈ {1, 2}. By (i) and (iii), we
get hv(α → β) = 3. Then hv(α) = hv(β). Take Z = {β → α}. Since we have
α ∈ −→

MI(X ∪ Y ∪ Z ∪ {β}) by r0, we get α ∈ −→
MI(X ∪ Y ∪ Z) by (ii). Hence

hv(α) = 3, as hv(X ∪ Y ∪ Z) ⊆ {3}, which contradicts our assumptions.
(⇐): Let hv(X) ⊆ {3} and hv(α → β) �= 3 for some v. We want to show

that the right-hand side of (I2) is false. We have the following possibilities:

(a) hv(α) = 3 and hv(β) ∈ {1, 2}. Take Y = {α} and notice that the above (ii)
is fulfilled whereas β �∈ −→

MI(X ∪ Y ).

(b) hv(α) = 2 and hv(β) = 1. This case reduces to the above one. It suffices
to notice that the mapping h : {1, 2, 3} → {1, 3} defined by h(1) = 1 and
h(2) = h(3) = 3 is an endomorphism of the algebra of the matrix. Thus we
get h(hv(α)) = 3 and h(hv(β)) = 1.

(c) hv(α) = 1 and hv(β) = 2. Take Y = {∼ α} and note hv(X ∪ Y ) ⊆ {3}
and hv(β) = 2. Then β �∈ −→

MI(X ∪ Y ) and hence it remains to show the
condition (ii) above. Note that α ∈ −→

MI(X ∪ Y ∪ Z) iff the set X ∪ Y ∪ Z is
not satisfiable in the matrix, which means that hw(X ∪ Y ∪ Z) ⊆ {3} holds
for no w. So, to prove (ii) it suffices to show that X ∪ Y ∪ Z is satisfiable iff
X ∪ Y ∪Z ∪ {β} is satisfiable. But if hw(X ∪ Y ∪Z) ⊆ {3} for some w, then
we also get h(hw(X ∪ Y ∪Z)∪ {β})) ⊆ {3} for the endomorphism h defined
in (b) above. Hence X ∪ Y ∪ Z ∪ {β} is satisfiable if X ∪ Y ∪ Z is.

Suppose that Cn is a consequence operation fulfilling the conditions (I) and
show that

−→
MI � Cn. So, we assume that α0 /∈ Cn(X) and prove that α0 /∈ −→

MI(X).
Note that we do not assume that Cn is finitary. Let X0 be a maximal overset of
X (that is X ⊆ X0) with respect to the following condition:

(i) α0 �∈ Cn(Z) for each finite Z ⊆ X0.

It follows from the definition of X0 and Corollary 4.14 that

(ii) for each β �∈ X0 there is a finite set Z ⊆ X0 such that α0 ∈ Cn(Z ∪ {β}),
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(iii) either (β → α0) ∈ X0, or ((β → α0) → α0) ∈ X0, for every β.

Let us prove

(iv) (β → α0) ∈ X0 ⇒ (α0 → β) ∈ X0, for every β.

Let (β → α0) ∈ X0 and (α0 → β) /∈ X0. Then α0 ∈ Cn(Z0 ∪ {α0 → β}) for
some finite set Z0 ⊆ X0, by (2). We can assume that (β → α0) ∈ Z0. Let us show,
using (I2), that ((α0 → β) → α0) ∈ Cn(Z0). So, suppose that

∀Z [(α0 → β) ∈ Cn(Z0 ∪ Y ∪ Z ∪ {α0}) ⇒ (α0 → β) ∈ Cn(Z0 ∪ Y ∪ Z)]

and show that α0 ∈ Cn(Z0 ∪ Y ). Since we have α0 ∈ Cn(Z0 ∪ {α0 → β}) and
(α0 → β) ∈ Cn({β}), the above implication gives us

∀Z [β ∈ Cn(Z0 ∪ Y ∪ Z ∪ {α0}) ⇒ β ∈ Cn(Z0 ∪ Y ∪ Z)].

Using (I2) and (β → α0) ∈ Z0 ⊆ Cn(Z0), we get α0 ∈ Cn(Z0 ∪ Y ) as required.
Then, by Peirce’s law, α0 ∈ Cn(Z0) which contradicts (i).

Suppose that (0 → α0) ∈ X0. Then (α0 → 0) ∈ X0 by (iv). Thus, for
each β �∈ X0, we get Cn(X0 ∪ {β}) = Cn(X0 ∪ {0}) and hence β ≡ 0 ∈ X0,
by Lemma 4.13. It means that the set of all formulas is divided into two disjoint
classes: formulas equivalent to 1, and those equivalent to 0 (over X0). The division
defines in a natural way a valuation in the two-element matrix M2. Thus, we get
α0 �∈ −→

M2(X0) and hence α0 �∈ −→
MI(X) as

−→
MI(X) ⊆ −→

M2(X0).
Suppose that (0 → α0) /∈ X0. Then, by (iii), ((0 → α0) → α0) ∈ X0 and

hence, as Cn fulfills the conditions (I) — see Theorem 4.12, we get

(v) ((α0 → 0) → 0)) ∈ X0.

Let X1 be a maximal overset of X0 which does not contain the formula α0

and which is closed under the following rules:

φ, φ → ψ

ψ
,

φ· ∼ φ

ψ
.

(vi) β �∈ X1 ⇔ (β → α0) ∈ X1 or (β → 0) ∈ X1.

Indeed, if β �∈ X1, one can derive α0 using the above rules from X1 ∪ {β}. If
only the modus ponens occurs in the proof we get (β → α0) ∈ X1 by the classical
deduction theorem. If the second rule occurs, we get an r0-proof of 0 and hence
(β → 0) ∈ X1 by the deduction theorem.

Next, let us show

(vii) (β → 0) ∈ X1 ⇒ (0 → β) ∈ X1.

Let (β → 0) ∈ X1 and (0 → β) �∈ X1. We have ((0 → β) → 0) �∈ X1 (as
otherwise 0 ∈ X1 by Peirce’s law) and hence ((0 → β) → α0) ∈ X1 by (vi).
Thus, by (iii), we get ((0 → β) → α0) ∈ X0 and hence (β → α0) ∈ X0. Then
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(α0 → β) ∈ X0 by (vi). Since X0 ⊆ X1 and (β → 0) ∈ X1, we get (α0 → 0) ∈ X1

which contradicts (v).
If (β → α0) ∈ X1, then (β → α0) ∈ X0 by (iii) and hence (β ≡ α0) ∈ X1

by (iv). If (β → 0) ∈ X1, then (β ≡ 0) ∈ X1 by (vii). Thus, by (vi), the set of
formulas can be divided into three disjoint classes: formulas equivalent over X1 to
1, 0 or α0, respectively. Moreover, the following formulas belong to X1:

0 → 0 ≡ 1 0 → α0 ≡ α0 0 → 1 ≡ 1
α0 → 0 ≡ 0 α0 → α0 ≡ 1 α0 → 1 ≡ 1
1 → 0 ≡ 0 1 → α0 ≡ α0 1 → 1 ≡ 1

0 · 0 ≡ 0 0 · α0 ≡ 0 0 · 1 ≡ 0
α0 · 0 ≡ 0 α0 · α0 ≡ α0 α0 · 1 ≡ α0

1 · 0 ≡ 0 1 · α0 ≡ α0 1 · 1 ≡ 1

Similar equivalences can be shown for the operators + and ∼, as using the
condition (I) one easily derives α+β ≡ (α → β) → β and ∼ α ≡ (α → 0). It means
that the quotient algebra is isomorphic to the matrix MI (where 0 corresponds to
1, and 1 corresponds to 3). One also gets a valuation v : At → {1, 2, 3} such that
hv(X1) ⊆ {3} and hv(α0) = 2. So α0 /∈ −→

MI(X1). �
Notice that the classical two-element matrix M2 is (isomorphic to) a sub-

matrix of MI . Hence,
−→
MI � Cn2. As

−→
MI(∅) is a proper subset of Z2, we get−→

MI < Cn2. Thus, the conditions (I1)–(I4) do not determine the classical logic
Cn2, only a weaker system. Nevertheless, the two logics are very close as we can
prove that

−→
MI is a threshold logic:

Theorem 4.16. If Cn is a structural and consistent consequence operation and
Cn >

−→
MI , then Cn = Cn2.

Proof. Suppose that Cn ∈ STRUCT ∩ CNS and Cn ≥ −→
MI . Let q be a fixed

variable and denote q· ∼ q by 0, and q → q by 1. If 0 → p ∈ Cn(∅), we get
Sb(A2) ⊆ Cn(∅) by Theorems 4.12–4.14 and hence Cn = Cn2. So, let us assume
that (0 → p) �∈ Cn(∅).

We consider the 3-element subalgebra of the Lindenbaum–Tarski algebra for
Cn determined by: 0 , 0 → p, 1. Using (I1)–(I4) one easily shows:

0 → 0 ≡ 1 0 → (0 → p) ≡ 0 → p 0 → 1 ≡ 1
(0 → p) → 0 ≡ 0 (0 → p) → (0 → p) ≡ 1 (0 → p) → 1 ≡ 1

1 → 0 ≡ 0 1 → (0 → p) ≡ 0 → p 1 → 1 ≡ 1

0 · 0 ≡ 0 0 · (0 → p) ≡ 0 0 · 1 ≡ 0
(0 → p) · 0 ≡ 0 (0 → p) · (0 → p) ≡ 0 → p (0 → p) · 1 ≡ 0 → p

1 · 0 ≡ 0 1 · (0 → p) ≡ 0 → p 1 · 1 ≡ 1

Similar tables can be given for + and ∼. We conclude that a subalgebra of
the Lindenbaum–Tarski algebra is isomorphic to MI and hence Cn � −→

MI . �
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One can axiomatize the consequence operation
−→
MI using the

−→
MI derivable

formulas from A2, Peirce’s law, the inferential versions of the axioms (7), (8) and
(10) (mentioned below Theorem 4.12), and one of the rules

∼ (α → β)
α + β

,
∼ α

α· ∼ α → α
,

∼ β,∼∼ α

α + β
.

Let us observe that the axiom (12) is not derivable in the inferential form, either.
The above rules make our axiomatization of

−→
MI useless for any practical purpose.

One can show that they cannot be omitted using the following 4-element matrix
on {0, 1, 2, 3}, with 3 as the only designated element, in which implication and
disjunction are defined as in the 4-element Boolean algebra

�
�

�

�

�

�
�

��
�

�
��

�
�

�

3

12

0
and negation is defined by x → 1 (not as x → 0 which is usual) and conjunction
is determined by the usual linear ordering on {0, 1, 2, 3} (not the Boolean order).
Note that

−→
MI is a submatrix of the above 4-element matrix. All axioms (1)–(11)

(or corresponding rules) are valid in the matrix, but the additional rules are not.

4.5 Classical logic
Our attempts to discover a set of Cn-definitions for the classical logic failed. We
conjecture that such a set does not exist. We would be successful if the idea
of Cn-definability were violated somehow. For instance, the conditions (D)+(H2)
characterize the classical logic (as the least consequence fulfilling them) but we get
two Cn-definitions for implication there. Below we make several similar approaches
in each of which the basic idea of Cn-definability is modified or Cn-definitions are
extended with additional conditions.

First, we can claim that the conditions (D) concern (complex) formulas rather
than propositional operators. Hence, on the basis of Corollary 4.5, there remains
to extend these conditions with one which characterizes derivability of variables:

(D0) p ∈ Cn(X) ⇔ Cn(X ∪ {∼ p}) = S2 for every p ∈ At, X ⊆ S2.

Corollary 4.17. Cn2 is the least consequence operation fulfilling the conditions
(D0)–(D4). Cn2 is also the only structural and consistent consequence operation
fulfilling these conditions.

Another possibility is to introduce an additional connective, assertion, de-
noted by ια, and add to (D1)–(D4) the condition

(D5) ια ∈ Cn(X) ⇔ Cn(X ∪ {∼ α}) = S2.
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Since (α ≡ ια) ∈ Cn(∅), we can identify the operator ι with the usual assertion.
Then there remains to identify formulas with their assertions. In fact, it suffices
only to identify p with ιp for each variable p to get the classical logic. We omit
details as both approaches are quite similar.

Now, we consider certain contextual Cn-definitions of connectives. It turns
out they are stronger than explicit Cn-definitions. Let us prove

Theorem 4.18. Cn2 is the least consequence operation fulfilling the conditions
(K1)–(K4) below. Cn2 is also the only structural and consistent consequence
operation which fulfills these conditions.

(K1) Cn(X ∪ {∼ α}) = S2 ⇔ Cn(X ∪ {α}) ⊆ Cn(X);
(K2) Cn(X ∪ {α → β}) = S2 ⇔ Cn(X ∪ {α,∼ β}) ⊆ Cn(X);
(K3) Cn(X ∪ {α + β}) = S2 ⇔ Cn(X ∪ {∼ α,∼ β}) ⊆ Cn(X);
(K4) Cn(X ∪ {α · β}) = S2 ⇔ Cn(X ∪ {∼ α+ ∼ β}) ⊆ Cn(X).

Proof. Suppose that Cn is a consequence operation fulfilling (K1)–(K4). We need
to show — see Corollary 4.5 — that Cn fulfills (D1)–(D4) and the modus ponens
rule r0 is a derivable rule of Cn.

(D1): Since Cn({α, α}) ⊆ Cn({α}), we get Cn({α,∼ α}) = S2 by (K1).
So, if ∼ α ∈ Cn(X), then Cn(X ∪ {α}) = S2. Suppose on the other hand that
Cn(X ∪ {α}) = S2. Since Cn({∼∼ α,∼ α}) = S2, we get α ∈ Cn({∼∼ α}) by
(K1) and hence Cn(X ∪ {∼∼ α}) = S2. This means that ∼ α ∈ Cn(X).

(D2): We get Cn({α → β, α,∼ β}) = S2 by (K2). So, if α → β ∈ Cn(X),
then Cn(X ∪ {α,∼ β}) = S2. Suppose that Cn(X ∪ {α,∼ β}) = S2. Since we
have Cn({α → β,∼ (α → β)}) = S2, then α,∼ β ∈ Cn({∼ (α → β)}) by (K2)
and hence Cn(X ∪ {∼ (α → β)}) = S2 which gives α → β ∈ Cn(X) by (K1).

(D3): We get Cn(α + β,∼ α,∼ β) = S2 by (K3). So, if α + β ∈ Cn(X),
then Cn(X ∪{∼ α,∼ β}) = S2. Suppose that Cn(X ∪{∼ α,∼ β}) = S2. Since we
have Cn({α + β,∼ (α + β)}) = S2, then ∼ α,∼ β ∈ Cn({∼ (α → β)}) by (K3)
and hence Cn(X ∪ {∼ (α + β)}) = S2 which gives α + β ∈ Cn(X) by (K1).

(D4): We get Cn({α · β,∼ α+ ∼ β}) = S2 by (K4). So, if α · β ∈ Cn(X),
then Cn(X∪{∼ α+ ∼ β}) = S2 and hence Cn(X∪{∼ α})∩Cn(X ∪{∼ β}) = S2

by (K3). Suppose that Cn(X∪{∼ α})∩Cn(X∪{∼ β}) = S2. Then α, β ∈ Cn(X)
by (K1). We get Cn({α, β,∼ α+ ∼ β)}) = S2 by (K3) and (D1). Since we get
∼ α+ ∼ β ∈ Cn({∼ (α · β)}) by (K4), we have Cn({α, β,∼ (α · β)}) = S2 which
gives α · β ∈ Cn(X) by (K1).

(r0): We have Cn({α → β, α,∼ β}) = S2 on the basis of (K2) and hence we
get β ∈ Cn({α → β, α}) by (K1). �

The above contextual Cn-definitions can also be expressed in terms of sequen-
tial consequence relations. So, one can say that the connectives of classical logic
can be characterized by use of certain Cn-conditions if one extends the concept of
a consequence relation to a multiple consequence relation.

The above contextual Cn-definitions are close to the usual semantical char-
acterization of the classical logic. Every valuation v : At → {0, 1} corresponds to
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a consistent consequence operation fulfilling the conditions (N1)–(N4) below. The
consequence Cn2 does not fulfill these conditions but it is the intersection of all
(N)-systems:

(N1) ∼ α ∈ Cn(X) ⇔ α �∈ Cn(X);
(N2) α → β ∈ Cn(X) ⇔ if α ∈ Cn(X) then β ∈ Cn(X);
(N3) α + β ∈ Cn(X) ⇔ α ∈ Cn(X) or β ∈ Cn(X);
(N4) α · β ∈ Cn(X) ⇔ α ∈ Cn(X) and β ∈ Cn(X).

Let us also recall Theorems 4.7, 4.10 and 4.16. According to them any addi-
tional requirement (in addition to (D), (E) or (I)) together with the structurality
of Cn gives us the classical system. In particular,

Corollary 4.19. If Cn is a structural, consistent and structurally complete conse-
quence operation fulfilling the conditions (D), then Cn = Cn2.

One should keep in mind, however, that
−→
MI is structurally complete — in

contrast to
−−→
MD or

−−→
ME — and hence the counterpart of Corollary 4.19 does hold,

as well, for the system (E) but it does not for the system (I).
The technical reason for which our attempts fail is, perhaps, the fact that the

negation ∼ in Cn-systems is too weak. Note that the conditions (D1), and (E1),
and (I1) coincide and it is difficult to imagine another Cn-definition for negation.
We would succeed if we replaced, for instance, the condition (D1) in the system
(D) with the following one (which is not a Cn-definition):

α ∈ Cn(X) ⇔ Cn(X ∪ {∼ α}) = S2.

Using (D1) one can reduce the above condition to a connective-free form. Thus,
if we extend the general concept of consequence operation (defined originally by
the condition (T0)) with the condition (M1) given below, we obtain a set of Cn-
definitions for classical logic:

Theorem 4.20. Cn2 is the least operation fulfilling the following conditions:
(M0) ∀Y [X ⊆ Cn(X) ⇒ Y ∪ Cn(X) ⊆ Cn(Y )];
(M1) ∀Y [Cn(X ∪ Y ∪ {α}) = S2 ⇒ Cn(X ∪ Y ) = S2] ⇒ α ∈ Cn(X);
(M2) ∼ α ∈ Cn(X) ⇔ ∀Y [α ∈ Cn(X ∪ Y ) ⇒ Cn(X ∪ Y ) = S2];
(M3) α → β ∈ Cn(X) ⇔ ∀Y [Cn(X ∪ Y ∪ {β}) = S2 ⇒ Cn(X ∪ Y ∪ {α}) = S2];
(M4) α · β ∈ Cn(X) ⇔ ∀Y [Cn(X ∪ Y ∪ {α, β}) = S2 ⇒ Cn(X ∪ Y ) = S2];
(M5) α + β ∈ Cn(X) ⇔ ∀Y [Cn(X ∪ Y ∪ {α}) ∩ Cn(X ∪ Y ∪ {β}) = S2

⇒ Cn(X ∪ Y ) = S2].

We denote the above set of conditions by (M). Note that (M0) coincides
with (T0) and (M2)–(M5) are equivalent over (T0) to (D1)–(D4). The additional
(with respect to the system (D)) condition (M1) is connective-free. We may claim
that (T0)+(M1) narrows the general concept of a consequence operation. Thus,
Theorem 4.20 says that Cn-definitions of the classical propositional connectives
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are possible if one changes the general concept of a consequence operation. Let us
add that in place of (M1) one can also use other general properties of consequence
operations, and instead of (M2)–(M5) one could take the conditions (I), or any
other set of Cn-definitions considered in our paper.

Cn-definability seems to be well-suited for definability of propositional con-
nectives. It works, at least, for intuitionistic logic. However, it turns out that we can
get in this way threshold logics (the systems (D), (E) and (I)) but not the classical
one. The classical logic can be reached if we modify Cn-definability (the system
(K)) or change the general concept of a consequence operation (the system (M)).
The problem arises how to prove formally that there is no set of Cn-definitions
for the classical connectives without extending the concept of a consequence op-
eration. We did not manage to get such a result. We were only able to prove, see
section 2, that the connectives of classical logic do not have Cn-definitions of the
form:

α ∈ Cn(X) ⇔ Cn(X ∪ {α1, . . . , αk}) = S2.

Any formal proof of the negative result mentioned above would require a
precise definition of Cn-definability. We have not specified a precise variant of
the concept (it means we have not specified metalogical means allowed in Cn-
definitions) but it seems to us that a language with metaconnectives and quan-
tification over sets (or finite sets) of formulas is the proper one for this purpose.
This variant is sufficiently wide to cover all Cn-systems considered in our book.
Note that Cn-definitions usually appear in a certain order: negation is defined
first, then one defines implication (or disjunction) and the conjunction at the end.
These dependencies disappear, and each connective is defined independently, if
one introduces quantifiers over sets of formulas.
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The fundamental metatheorem for
the classical propositional logic

The main result of this section, see Metatheorem A.4, describes connections be-
tween the theory of Boolean algebras and classical propositional logic.

We assume now that At is an infinite set of propositional variables which
means that At need not be countable. Recall that α ∈ FC2(X), for X ⊆ S2 and
α ∈ S2 iff in each Boolean algebra B we have hv(α) ∈ F

(
hv(X)

)
for all v : At → B

where F
(
hv(X)

)
is the filter generated by the set hv(X). The operation FC2

coincides, see Theorem 2.90, with the consequence operation determined by the
classical logic:

FC2(X) = Cn
(
R0, Sb(A2) ∪ X

)
, for each X ⊆ S2.

It is also worth noticing that the above equality can be proved effectively.
The proof of the announced metatheorem will be technically facilitated by

some facts concerning Lindenbaum–Tarski algebras. The relation ∼X (for each
X ⊆ S2) is defined in the following way: α ∼X β iff (α ≡ β) ∈ FC2(X). This rela-
tion is a congruence relation on the algebra of the language S2, and the quotient
algebra

S2/ ∼X= 〈S2/ ∼X , →̇,∪,∩,−〉,
with the relation �X defined by [α] �X [β] iff α → β ∈ FC2(X), is a Boolean
algebra in which the following holds:

[α + β] = [α] ∪ [β]
[α · β] = [α] ∩ [β]
[α → β] = [α]→̇[β]
[∼ α] = −[α]
[α] = 1X ⇔ α ∈ FC2(X)
[α] = 0X ⇔∼ α ∈ FC2(X).



154 Appendix A

This is the so-called Lindenbaum–Tarski algebra determined by the set X
(or by FC2(X)) and is symbolized by L2(X).

Lemma A.1. Let H be a proper filter in a Boolean algebra B and let h : S2 → B
be a homomorphism. Then h−1(H) is an FC2-consistent and FC2-closed set, i.e.,

h−1(H) = FC2

(
h−1(H)

) �= S2.

Proof. Assume α ∈ FC2

(
h−1(H)

)
. Hence h(α) ∈ F

(
hh−1(H)

) ⊆ F (H) = H
which gives α ∈ h−1(H). Since H is a proper filter, we have h−1(H) �= S2. �

The next theorem is due to Łoś ([62], 1954).

Lemma A.2. Each Boolean algebra (of the power � At) is isomorphic with some
Lindenbaum–Tarski algebra L2(X).

Proof. Let B be a Boolean algebra such that B � At and let v : At → B be a
valuation from At onto the set B. Then the homomorphism hv maps S2 onto
the algebra B. Therefore, by Lemma 1.5, B will be isomorphic with the quotient
algebra S2/ ≈, where the congruence-relation is defined in the following way:

α ≈ β ⇔ hv(α) = hv(β) for α, β ∈ S2.

In order to complete the proof it suffices to show that ≈ is a congruence relation
determined by the set X = {α : hv(α) = 1B}, i.e., α ≈ β iff α ≡ β ∈ FC2(X). If
α ≈ β, that is if hv(α) = hv(β), then hv(α ≡ β) = 1B, and hence α ≡ β ∈ X . If,
on the other hand, α ≡ β ∈ FC2(X), then α ≡ β ∈ X (by Lemma A.1, the set
X is FC2-closed) and consequently hv(α) = hv(β) which means that α ≈ β. Thus
S2/ ≈ is a Lindenbaum–Tarski algebra isomorphic with B. �
Lemma A.3. For each X ⊆ S2 and each α ∈ S2,

FC2(X ∪ {∼ α}) �= S2 ⇔ α /∈ FC2(X).

This is the well-known property of the classical propositional logic, see Corol-
lary 1.67. Let us recall that B2 is the two-element Boolean algebra defined on the
set {0, 1}. We also recall that ZF is the standard system of set theory (Zermelo–
Fraenkel set theory). Derivability in ZF, sometimes called effective, means deriv-
ability without using the Axiom of Choice.

Metatheorem A.4. The following statements are equivalent in ZF (the validity
of (ii)–(iv) is understood as validity for every language, i.e., for language of any
infinite cardinality):

(i) Each Boolean algebra is isomorphic with some field of sets;

(ii) FC2(X) =
−→
B2(X) for each X ⊆ S2.

(iii) For each X ⊆ S2: if FC2(X) �= S2, then there is a valuation v : At → {0, 1}
such that hv(X) ⊆ {1}.
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(iv) For each X ⊆ S2 and α ∈ S2: if
(
he(X) ⊆ FC2(∅) ⇒ he(α) ∈ FC2(∅)

)
for

all e : At → S2, then α ∈ FC2(X).

(v) For each X ⊆ S2: if FC2(X) �= S2, then there is Y ⊆ S2 such that X ⊆ Y =
FC2(Y ) �= S2 and α ∈ Y or ∼ α ∈ Y for all α ∈ S2.

(vi) Each Lindenbaum–Tarski algebra L2(X) is isomorphic with some field of
sets.

Proof. (i)⇒(ii): Assume that α /∈ FC2(X) and let L2(X) be the Lindenbaum–
Tarski algebra determined by the set X . Then L2(X) is a non-degenerate Boolean
algebra and therefore, according to (i), L2(X) is isomorphic with some field of sets
B. The unit element 1B is a non-empty set since the algebra L2(X) contains at
least two different elements. L2(X) and B are isomorphic, then there exists a
homomorphism (natural) h : S2 → B such that h(X) ⊆ {1B} and h(α) �= 1B.
Let then a ∈ 1B and a /∈ h(α). Define the valuation v : At → {0, 1} in the following
way: v(γ) = 1 ⇔ a ∈ h(γ) for all γ ∈ At. It can be easily seen that the mapping v
extends to a homomorphism hv : S2 → B2 such that

hv(φ) = 1 ⇔ a ∈ h(φ), for all φ ∈ S2.

The condition hv(X) ⊆ {1} is true because, for each β ∈ X , we have a ∈ 1B = h(β)
and hence hv(β) = 1. What is more, hv(α) �= 1. So it has been shown that
α /∈ −→

B2(X). Consequently the inclusion
−→
B2(X) ⊆ FC2(X) holds. The reverse

inclusion is obvious.
(ii)⇒(iii): Immediately.
(iii)⇒(iv): Assume that

(	) he(X) ⊆ FC(∅) ⇒ he(α) ∈ FC2(∅), for each e : At → S2

and suppose that α /∈ FC2(X). By A.3, we have FC2(X ∪ {∼ α}) �= S2, hence
we conclude from (iii) that there exists a valuation v : At → {0, 1} such that
hv(X ∪ {∼ α}) ⊆ {1}. Let e : At → S2 be defined as

e(γ) =

{
γ → γ if v(γ) = 1

∼ (γ → γ) if v(γ) = 0.

It is easy to observe that for each φ ∈ S2,

hv(φ) = 1 ⇒ he(φ) ∈ FC2(∅),
hv(φ) = 0 ⇒ ∼ he(φ) ∈ FC2(∅).

The easy proof is by induction on the length of the formula φ. Then we conclude
that he(X ∪ {∼ α}) ⊆ FC2(∅) which is incompatible with (	).

(iv)⇒(v): Assume that α /∈ FC2(X). From (iv) we get he(X) ⊆ FC2(∅) for
some e : At → S2. Hence, for each v : At → {0, 1}, we have hv

(
he(X)

) ⊆ {1}. Let
us put Yv = {φ ∈ S2 : hv

(
he(φ)

)
= 1}. It is evident (see Lemma A.1) that the set
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Yv fulfills the consequent of the implication (v).
(v)⇒(vi): Let us consider L2(X) (for FC2(X) �= S2) and let M be the family

of those FC2-maximal sets Y which contain X . We recall that Y = FC2(Y ) �= S2

is a FC2-maximal iff φ ∈ Y or ∼ φ ∈ Y for each formula φ ∈ S2. We are going
to show that the algebra L2(X) is isomorphic with some field of sets on the just
defined set M . This isomorphism is defined as follows: i([φ]) = {Y ∈ M : φ ∈ Y }.
(a) i([φ] ∩ [ψ]) = i([φ]) ∩ i([ψ]).

The above is quite obvious. Let us prove

(b) i([−φ]) = −i([φ]).

Suppose that Y ∈ i(−[φ]) = i([∼ φ]). Hence ∼ φ ∈ Y and therefore Y /∈ i([φ])
since Y = FC2(Y ) �= S2. Assume next that Y ∈ −i([φ]), i.e., φ /∈ Y . Hence
∼ φ ∈ Y because Y is FC2–maximal and therefore Y ∈ i(| ∼ φ|) = i(−[φ]).

By (a) and (b) it can be concluded that i : S2/ ∼X→ 2M is a homomorphism.
Moreover the mapping i is one-to-one:

(c) [α] �= [β] ⇒ i([α]) �= i([β]).

Indeed, let [α] �= [β]. We have then (α ≡ β) /∈ FC2(X), e.g., β /∈ FC2(X ∪ {α}).
From this we obtain (see Lemma A.3) FC2(X ∪ {α,∼ β}) �= S2, hence by (v)
there exists a maximal set Y such that X ∪ {α,∼ β} ⊆ Y , so Y ∈ i([α]) \ i([β]).
Since i is a one-to-one homomorphism, the algebra L2(X) is isomorphic with some
subalgebra of 2M , that is with some field of sets.

(vi)⇒(i): This implication results from Lemma A.2. �
The Axiom of Choice AC has not been used in the above proof though the

axiom is necessary for proving each of the statements (i)–(vi) separately. Note that
(ii)–(vi) can be proved effectively (i.e., without using AC) if we assume that the
set of variables At ⊆ S2 is countable. The above list of theorems can be easily
extended by adding, for instance, the theorem on the existence of an ultrafilter in
any Boolean algebra; the so-called BPI theorem. Our aim, however, is to present
only logical equivalents of BPI. The equivalence of (i), (iii), (v) (vi) was proved by
Łoś and Henkin (see [62] 1954, [63] 1957, [40] 1953). Let us rewrite Metatheorem
A.4 replacing formal statements (i)–(vi) with their informal names.

Metatheorem A.4. The following theorems are effectively equivalent:

(i) Stone’s representation theorem for Boolean algebras.

(ii) Strong adequacy of the two-element Boolean algebra (or matrix M2) for the
classical propositional logic.

(iii) Gödel–Malcev’s propositional theorem.

(iv) Structural completeness theorem for the classical propositional logic.

(v) Lindenbaum–Łoś’s maximalization theorem.

(vi) Łoś’s theorem on the representation of Lindenbaum–Tarski algebras.
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A proof system for the classical
logic

We define an operation on inferential rules, called Hilbert’s operation (or H-opera-
tion, in short). Given two inferential rules, say r and r′, one can produce by use
of it another rule denoted by r(r′). The operation was defined by Pogorzelski [81],
1975, but some basic ideas came from Hilbert’s proof of ‘Prämissentheorem’, see
[42], 1939. We use this operation to minimize the axiom basis for the classical
logic.

H-operation
Let us recall that S denotes the set of formulas and R stands for the set of
inferential rules in a given propositional language. In the present chapter we confine
ourselves to rules with finite, non-empty sets of premisses. Let R+ be the set of
standard rules (i.e., rules with basic sequents) determined by sequents of the form
〈{p0}, Φ(p0, p1, . . . pk)〉. Note that r1 ∈ R+ where

r1 :
φ

ψ → φ

is the rule determined by the sequent 〈{p0}, p1 → p0〉 in the standard propositional
language S2. It should also be clear that the modus ponens rule

r0 :
φ, φ → ψ

ψ

does not belong to R+.
Suppose that r ∈ R+ and r′ ∈ R. Let

r :
α

Φ(α, β1, . . . , βk)
for all α, β1, . . . , βk ∈ S.
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Now, we can define a new rule r(r′). This operation can be viewed as a passage

from r′ :
α1, . . . , αn

α
to r(r′) :

Φ(α1, β1, . . . , βk), . . . ,Φ(αn, β1, . . . , βk)
Φ(α, β1, . . . , βk)

.

In other words, the rule r(r′) consists of all sequents of the form

〈{Φ(α1, β1, . . . , βk), . . . ,Φ(αn, β1, . . . , βk)}, Φ(α, β1, . . . , βk)〉
where 〈{α1, . . . , αn}, α〉 ∈ r′ and β1, . . . , βk ∈ S. The rule r ∈ R+ may have
many basic sequents — each alphabetical variant of a basic sequent is also a
basic sequent — but the above definition does not depend on the choice of the
alphabetical variant of Φ(p0, p1, . . . , pk). Notice that, if r′ is standard, then r(r′)
is standard as well and its basic sequent is

〈{Φ(γ1, p1, . . . pk), . . . ,Φ(γn, p1, . . . , pk)}, Φ(γ, p1, . . . , pk)〉
where 〈{γ1, . . . , γn}, γ〉 is a basic sequent for r′ and the variables p1, . . . , pk do not
occur in the formulas γi. Let us give some examples. One easily checks that

r1(r0) :
β → φ, β → (φ → ψ)

β → ψ
.

Next, note that if

r :
α

(δ →∼ α) → δ
and r′ :

β → ∼γ

γ → ∼β
,

then
r(r′) :

(δ →∼ (β →∼γ)) → δ

(δ →∼ (γ →∼β)) → δ
.

The basic property of the classical propositional logic is its closure under
H-operation:

Theorem B.1. For every r ∈ R+ and r′ ∈ R,

r, r′ ∈ Der
(
R0, Sb(A2)

) ⇒ r(r′) ∈ Der
(
R0, Sb(A2)

)
.

Proof. Suppose that r, r′ ∈ Der
(
R0, Sb(A2)

)
and let 〈{p0}, Φ(p0, p1, . . . , pk)〉 be a

basic sequent for r. If r(r′) /∈ Der
(
R0, Sb(A2)

)
, we would have

Φ(α, β1, . . . βk)) /∈ Cn
(
R0, Sb(A2) ∪ {Φ(α1, β1, . . . , βk), . . . ,Φ(αn, β1, . . . , βk)})

for some 〈{α1, . . . , αn} , α〉 ∈ r′ and some β1, . . . , βk.
Let M2 be the two-element matrix strongly adequate for the classical propo-

sitional logic. Let 0, 1 denote, as usual, the elements of the matrix. By the com-
pleteness theorem, we would get a valuation v : At → {0, 1} such that

hv
(
Φ(α, β1, . . . , βk)

)
= 0 and hv

(
Φ(αi, β1, . . . , βk)

)
= 1 for each i � n.
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Since 〈{α}, Φ(α, β1, . . . , βk)〉 ∈ r and r ∈ Der
(
R0, Sb(A2)

)
, we have

Φ(α, β1, . . . , βk) ∈ Cn
(
R0, Sb(A2) ∪ {α}).

But hv
(
Φ(α, β1, . . . , βk)

)
= 0, so hv(α) = 0. The rule r′ is derivable in the clas-

sical logic, hence hv(αi) = 0 for some i � n. Thus, there is an i � n such that
hv

(
Φ(α, β1, . . . , βk)

)
= hv

(
Φ(αi, β1, . . . , βk)

)
which is impossible. �

Suppose that a propositional system 〈R, A〉 is given. We would like to extend
the usual derivation on the basis of the system, that is the consequence CnRA,
with H-operation. It means that we would like to use the operation in derivations
(formal proofs), in addition to standard applications of the rules R and axioms A.
It can be achieved formally in several ways. One of them is to define inductively
an operation CRA : 2S → 2S and an auxiliary set of rules D(R, A). We will write
C(X) instead of CRA(X), and D(C) instead of D(R, A). We hope this does not
lead to confusion. Let

(i) α ∈ C0(X) ⇔ α ∈ A ∪ X,
(ii) r ∈ D0(C) ⇔ r ∈ R,
(iii) α ∈ Cn+1(X) ⇔ α ∈ Cn(X) ∨ 〈Π, α〉 ∈ r for some Π ⊆ Cn(X)

and some r ∈ Dn(C),
(iv) r ∈ Dn+1(C) ⇔ r ∈ Dn(C) ∨ α ∈ Cn(Π) for all 〈Π, α〉 ∈ r ∨

∨ (
r′ ∈ R+ ∧ r = r′(r′′)

)
for some r′, r′′ ∈ Dn(C),

(v) α ∈ C(X) ⇔ α ∈ Cn(X) for some n,
(vi) r ∈ D(C) ⇔ r ∈ Dn(C) for some n.

The above definition, although complicated, is quite standard, except for a frag-
ment of (iv) where H-operation appears. Without problems one should prove the
following corollary which provides us with another definition of CRA:

Corollary B.2. CRA is the least consequence operation which is closed under H-
operation and CnRA � CRA. Moreover, Der(CRA) = D(CRA).

The two-valued {→} logic
Let us consider a propositional system (R0, A0), in the pure implicational language
{→}, where R0 = {r0} and A0 consist of one axiom schema:

(c1) α → (β → α).

The C-like consequence operation (see the previous section) defined by the system
is denoted by C0, that is C0(X) = CR0,A0(X) for each X . Let us prove that this
consequence operation coincides with the consequence operation determined — in
the standard manner — by the classical logic {→}:
Theorem B.3. C0(X) = Cn

(
R0, Sb(A→

2 ) ∪ X
)
, for every set X ⊆ S→.
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Proof. The inclusion (⊆) is obvious as (R0, A0) is a subsystem of the classical logic
and it has been proved that the classical logic is closed under H-operation. For the
other, it is sufficient to derive, using the definition of the operation C0, all axioms
of the pure implicational fragment of classical logic. As axioms we can take, for
instance, the formulas (c1)–(c4) where:

(c2) (γ → (γ → β)) → (γ → β),

(c3) (δ → α) → ((α → γ) → (δ → γ)),

(c4) ((α → β) → β) → ((β → α) → α).

(c2): We derive — in the standard manner — the rule r1. Then, we also get
r1(r0), that is we get r1(r0) ∈ D(C0). Let r2 = r1(r0). We have

r2 :
γ → α , γ → (α → β)

γ → β
.

If we take γ for β and α → γ for α, we receive γ → γ ∈ C0(∅). Then, by r2,

γ → (γ → β)
γ → β

and, next, we receive c2 using r1 and (γ → (γ → α)) → (γ → (γ → α)).
(c3): Notice that the following is a subrule of r2:

(α → γ) → α , (α → γ) → (α → γ)
(α → γ) → γ

and hence we also get the rule

α

(α → γ) → γ

and the rule
r3 :

δ → α

δ → ((α → γ) → γ)
.

On the other hand, using r1(r2), we get

β → (α → (β → γ)) , β → (α → β)
(β → (α → γ)

which gives us the rule

r4 :
α → (β → γ)
β → (α → γ)

.
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Using r3 and r4 we receive — in the standard way —

δ → α

(α → γ) → (δ → γ)

which gives us (c3) on the basis of r1.
(c4): Using r1 we show in the standard manner

r5 :
α

((α → γ) → γ) → ((γ → α) → α)
.

Hence, as r5(r0), we receive the rule

((α → γ) → γ) → ((γ → α) → α)

(((α → β) → γ) → γ) → ((γ → (α → β)) → (α → β))
((β → γ) → γ) → ((γ → β) → β)

.

Thus, we obtain (c4) if we identify α with γ. �

It also follows from the above theorem that D(C0) = Der
(
R0, Sb(A→

2 )
)
.

Let us note that one could prove a similar result for a weaker (as concerns the
traditional derivation) propositional system consisting of the two rules {r0, r1}
and one axiom schema α → α.

The two-valued {→,∼} logic

Let us consider the language {→,∼} and the system (R0, A1), where R0 = {r0}
and A1 consists of (c1) and

(nc1) α → (∼ α → β),

(nc2) ∼∼ (α → α).

Let C1 be the C-like consequence operation determined by the above system. Let
us prove that C1 coincides with the consequence operation determined by the
classical logic in {→,∼}:
Theorem B.4. C1(X) = Cn

(
R0, Sb(A2) ∪ X

)
, for every set X ⊆ S→,∼.

Proof. Note that our system is an extension of the system (R0, A0) considered in
the previous chapter. Therefore C1(∅) contains all {→,∼} instances of all implica-
tional tautologies. Thus, to prove our theorem, it suffices to derive in our system,
for instance, (∼ α →∼ β) → (β → α).

Let

r6 :
α

∼ α → γ
, r7 :

∼ α → γ, ∼ (α → β) → γ

∼ β → γ
.
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Both rules are derivable for C1, by (nc1) and the fact that r7 = r6(r0). We sub-
stitute ∼ α for γ in r7 and we get

∼ (α → β) →∼ α

∼ β →∼ α
.

Then we apply r6 to receive, from the above, the rule

α → β

∼ β →∼ α

and hence (α → β) → (∼ β →∼ α) as well as (∼ α →∼ β) → (∼∼ β →∼∼ α).
Then, by (nc1) and (nc2) (take α → α for β in the above formula), we also get
α →∼∼ α which gives us

(∗) (α →∼ β) → (β →∼ α).

The following formula is an (instance of an) implicational tautology and hence it
is derivable in our system:

((α → (∼ α →∼ (α →∼ α)))) → ((α →∼ α) → (α →∼ (α →∼ α))).

Then, by (nc1) and r0, we get

(α →∼ α) → (α →∼ (α →∼ α))

which gives us, by (∗),
(α →∼ α) → ((α →∼ α) →∼ α)

Thus, we also get (α →∼ α) →∼ α which is equivalent (on the basis of an
implicational tautology) to (∼ α → α) → α. Then we get ∼∼ α → α by (nc1) and
hence, using (∗) again, we get (∼ α →∼ β) → (β → α). �

One could replace nc2 with any classical tautology of the form ∼ α but we
can also show that (c1) and (nc1), together with r0, are not sufficient to axiomatize
Cn2 — the consequence operation determined by the classical logic. Indeed, let
us consider a two-valued logic, say, Cn′

2 in which ∼ is interpreted as the falsum
operator. The logic Cn′

2 is H-closed by Theorem B.1. Their intersection Cn2∩Cn′
2

is H-closed, as well. Since (c1), (nc1) and r0 are valid for both logics, we conclude
that the axiom schema (nc2) cannot be removed from A1.

Let us consider a three-element matrix MD, on the set {1, 2, 3}, with 3 as
the only designated element, and the operators interpreted as:

→ 1 2 3 ∼
1 3 3 3 1 3
2 3 3 3 2 2
3 1 2 3 3 1



Appendix B 163

All {→}-tautologies, as well as the formulas A1 and the rule r0 are valid in
this matrix. On the other hand, none of the following formulas is valid there:

(α → β) → (∼ β →∼ α)

(α →∼ β) → (β →∼ α)

(∼ α →∼ β) → (β → α)

(∼ α → β) → (∼ β → α)

(α → β) → ((α →∼ β) →∼ α)

(α → β) → ((∼ α → β) → β)

(∼ α → α) → α

(α →∼ α) →∼ α

This shows that for the traditional notion of derivability, that is for CnRA, the set
A1 is relatively weak. In particular, the above formulas cannot be deduced from
(nc1) and (nc2) even on the basis of the pure implicative fragment of classical
logic.

H-completeness
A propositional system 〈R, A〉 is said to be H-complete if its derivable rules are
closed under the H-operation, i.e.,

r, r′ ∈ Der(R, A) ⇒ r(r′) ∈ Der(R, A)

for every r ∈ R+ and r′ ∈ R.
The above property is rare, see Theorem B.1. One easily notices that the

least propositional logic (with the empty set of rules and axioms) does possess
this property. But it is not easy to identify other systems of this kind. In the proof
of Theorem B.1 we have not used any specific property of classical logic (except for
completeness). Thus, one could repeat the above argument for each propositional
logic determined by a matrix with at most one undesignated element. It means, in
particular, that each two-valued logic, independently of the language considered,
is closed under H-operation. Clearly, any intersection of logics which are closed
under H-operation is also closed under the operation. It gives us a number of
logics which fulfill the above property. But it is not easy to give a natural (that
means considered in literature) non-classical system which is included in the family.
In view of Theorem B.2, there is no H-complete subsystem of the classical logic
containing 〈R0, A0〉.
Theorem B.5. An invariant propositional logic 〈R, A〉 (we write Cn for CnRA) is
H-complete if it fulfills the following conditions:
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(i) If Φ ∈ Cn({p0}), then Cn({Φ}) = Cn({p0 + Ψ}) for some Ψ which does
not contain the variable p0.

(ii) If α0 ∈ Cn({α1, . . . , αn}) then (α0 + Ψ) ∈ Cn({α1 + Ψ, . . . , αn + Ψ}), for
each of the formulas α0, . . . , αn, Ψ.

Proof. Suppose that r′ ∈ Der(Cn) and let 〈{α1, . . . , αn}, α0〉 ∈ r′. Then we have
α0 ∈ Cn({α1, . . . , αn}). Assuming that r ∈ Der(Cn) and 〈{p0}, Φ〉 is a basic
sequence for r, we conclude by (i) that Φ[p0/αi] is equivalent to αi + Ψ, for each
i, and hence Φ[p0/α0] ∈ Cn

({Φ[p0/α1] . . . , Φ[p0/αn]}) by (2). �
In contrast to Theorem B.1, the above result does make a use of certain

properties of classical operators. The property (ii) is the usual characterization
of disjunction and it is fulfilled by many logical systems. The property (i) is not
so usual. Using the above theorem one can show, for instance, that the classical
predicate logic is H-complete.

It should also be noted that H-completeness differs from all the variants of
completeness which were considered in the previous chapters. In particular, it does
not coincide with the notion of Γ-maximality (in the family of Γ-invariant systems).
We have already produced above H-complete systems which are not maximal in the
family of all consistent invariant logics. On the other hand side, one can also give an
example of a maximal invariant logic which is not H-complete. Such systems 〈R, A〉
are H-inconsistent which means that they generate the inconsistent consequence
operation CRA (even though the standard consequence operations CnRA might
be consistent).
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Notation

At, At(α) 1
S 1
l(α) 1
Sf(α) 1
Fin(X) 2
Fin∗(X) 2
RS 2
〈Π, α〉 2
S1 3
S2 3
r0 3
hv 4
A /� 4
P

t∈T
At 5

G(A ) 8
B2 8
∼H 10
A ⊕ 14
⊕A 14
〈Jn〉n�1 15
〈Gn〉n�1 18
CNS 19
〈R, X〉 19∐
t∈T

Ct,
∏

t∈T

Ct 20

Cn(R, X) 22
R(X) 22
Cns 23
Cpl 23
Adm(R, X) 23
Der(R, X) 23
≈ 26

DER(Cn) 26
ADM(Cn) 26∏
t∈T

〈Rt, Xt〉 27∐
t∈T

〈Rt, Xt〉 27

r∗ 27
Sb(X) 27
Struct 27
Inv, Inv(Γ) 28
rX 28
r∗|Γ 28
SbΓ 28
StructΓ 29
STRUCT(Γ) 30
STRUCT 30
Ai 31
R0∗ 31
R0 31
ra 32
Cni 31
AH 32
A→

H 32
S→ 32
A2 33
A→

2 , A→·
2 , A→+

2 33
Cn2 33
AS5 34
R0a∗, R0a 34
r� 38
Bu, Bl 42
Great, Least, Sup, Inf 42



176 Notation

F (A) 45−→
A (X) 50
E(A) 50
V (A, X), V (A) 53
N(A, X), N(A) 53
M 56
E(M) 56
N(M), V (M) 57
Sat(M) 57
MR,X 61
∼R,X 62
M2, Mn 64
MS5 64
Łn, Ł∞ 66
QN(M) 72
FCi, FCl, FC2 79
FC(X) 79
Al 83
Hn 86
Γ-Cpl, Γ-Max 92

Γ-CPL, Γ-MAX 92
Γ-rX 93
Comp 96
Max 98
dc(〈R, A〉) 100
L α(R, X) 101
T (M) 105
Z2 108
SCpl 112
SCPL 112
p-Cpl 122
Std 121
STD 123
Equiv 127
ZF 154
CnD 134
MD 135
ME 138
CnE 139
MI 145



Index

A-normal rule, 53
A-valid rule, 53
Abstract algebra, 3
Addition of lattices, 13
Adequate matrix, 64
Adjunction rule, 32
Admissible rule, 23
Axiom, 19
Axiomatic rule, 3

Basic sequent, 28
Big Γ-rule, 93
Big rule, 28
Boolean algebra, 8

Classical propositional logic, 33
Cn-axiomatizable set, 21
Cn-closed set , 20
Cn-consistent set, 21
Cn-definitions, 131
Cn-independent set, 21
Cn-maximal set, 21
Compact consequence operation, 19
Complete consequence operation, 19
Complete lattice, 7
Completeness, 63
Congruence relation, 4
Consequence operation, 19
Consistent consequence operation, 19

Degenerate algebra, 6
Degree of completeness, 100
Degree of incompleteness, 100
Degree of maximality, 100
Dense element, 8

Derivable formula, 22
Derivable rule, 23
Distinguished element, 56
Distributive lattice, 7

Effective derivability, 154
Embedding, 3

Filter, 43
Filter consequence, 79
Filter generated by a set, 45
Filter in a lattice, 10
Finite intersection property, 11
Finitistic consequence operation, 19
Formal proof, 22
Formula valid in A, 50
Free algebra, 4
Free generating set, 4

Γ-completeness, 92
Γ-invariant system, 29
Γ-maximality, 92
Γ-structural rule, 29
Generalized matrix, 70
Generating set, 4
Gödel–Heyting’s algebra, 18

H-completeness, 165
H-consistency, 166
H-operation, 159
Heyting algebra, 7
Hilbert‘s propositional logic, 32
Homomorphism of algebras, 3

Implicative lattice, 7
Intuitionistic propositional logic, 31
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Invariant system, 28

Jaśkowski algebra, 15
Jaśkowski’s mast operation, 14

Lattice, 7
Length of formula, 1
Lindenbaum matrix, 61
Lindenbaum oversystem, 100
Lindenbaum relative superset, 101
Lindenbaum superset, 99
Lindenbaum–Tarski algebra, 62
Linear algebra, 18
Logical matrix, 56

M-completeness, 63
Many-valued Łukasiewicz logic, 39
Matrix congruence, 59
Matrix consequence, 56
Maximal propositional logic, 98
Modal logic S5, 34
Modus ponens rule, 3

Normal rule, 53

Order relation, 41
Overlapping systems, 110

Peirce’s law, 142
Post-completeness, 23
Power of the algebra, 5
Preorder relation, 41
Preordered algebra, 50
Preordered set, 42
Prime filter, 12
Prime lattice, 12
Primitive rules, 19
Principal filter, 10
Product of algebras, 5
Product of matrices, 60
Product of preordered algebras, 53
Projection, 5
Proper filter, 10
Propositional formulas, 1
Propositional language, 1

Propositional logic, 19
Propositional subsystem, 25
Pseudo-complementation, 7
Pseudo-completeness, 121

Quotient algebra, 4
Quotient matrix, 59

Relative pseudo-complement, 7
Rule of inference, 2

Satisfiability, 57
Saturated propositional logic, 121
Sb-adequacy, 72
Sb-normal, 72
Standard propositional language, 3
Standard rule, 28
Strongly adequate matrix, 67
Structural completeness, 112
Structural rule, 27
Subformula, 1
Submatrix, 59
Substitution rule, 27
Substitutional system, 28

Tarski’s property, 105
Threshold logic, 135
Truth-functional connective, 3
Two-valued logic, 130

Ultrafilter, 11

Valid rule, 53
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