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1. Monomathematics and polymathemathics 

There are two types of mathematical theories. Theories of the first type start with a specific 

mathematical structure, given in advance. This structure is well recognized in mathematical 

investigations. It is said in this case that we have deep intuitions about it and we want to develop a 

theory which is supposed to formalize these intuitions. Examples of such structures are: natural 

numbers, real numbers, geometric Euclidean space and the universe of all sets. You may call this 

monomathematics (TENNANT 2000). The other type, polymathematics, deals with classes of structures, 

with no single specific structure fixed in advance. This is the case of, e.g.: abstract algebra, general 

topology, graph theory, and numerous other subareas of mathematics. 

We may talk about intended models in monomathematics. The intended model of a theory   is the 

mathematical structure for the description of which the theory   was formulated. This characterization 

has a pragmatic character. It may happen that   has only one model, up to isomorphism (i.e. all its 

models are isomorphic, in which case we say that   is categorical). It may happen that all models of   

are semantically indistinguishable, i.e. elementarily equivalent; in this case we say that   is complete. 

If   is complete, then for any sentence   from its language: either   or the negation of   is a 

consequence of   . If a theory is categorical, then it is complete, but not vice versa. We say that a 

theory   is κ-categorical, where κ is an infinite cardinal, if all models of   of power κ are isomorphic. 

Thus, in the case of monomathematics we are looking for categorical (categorical in power) or 

complete theories which can then characterize the intended model in a unique way, either algebraically 

(via isomorphism) or semantically (via elementary equivalence). As it happens, this goal is hard to 

achieve, due to some metamathematical facts. Anyway, we may look for some metamathematical 

characterization of intended models, pointing at some properties distinguishing them from all other 

possible models of the investigated theory. 

We do not talk about intended models in polymathematics. Rather, we are looking for some  

representation theorems characterizing all models of a theory (as e.g. the Cayley Representation 

Theorem stating that every group is isomorphic to some group of permutations, the Stone 

Representation Theorem saying that every Boolean algebra is isomorphic to a field of sets, etc.). 
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2. Expressive power of a logical system 

Possibilities of unique representation of intended models depend on the language and logic in 

question. The first order logic (FOL) has very poor expressive power: one cannot define in it several 

uppermost important mathematical concepts, as e.g. these of infinity or continuity. Due to the 

Lӧwenheim-Skolem-Tarski Theorem no consistent theory (without finite models) in the language of 

FOL is categorical. Some theories in FOL are categorical in particular powers, but in general the 

notion of categoricity seems to be rather a mathematical concept and not a purely logical one. Ryll-

Nardzewski Theorem provides necessary and sufficient conditions for   -categoricity and Morley 

Theorem provides an answer for the uncountable case (if a theory is categorical in some uncountable 

power, then it is categorical in all uncountable powers). 

But FOL has many properties desirable from a logical point of view, e.g. it is complete and compact. 

One may say that FOL has great deductive power. On the other hand, logical systems stronger than 

FOL (second order logic, infinitary logics, logics with generalized quantifiers) usually have 

considerably great expressive power, but not all fundamental deductive properties of FOL have 

immediate counterparts in these strong systems. Rather, we must coin new concepts of completeness 

or compactness applicable in these cases. In this sense, strong logical systems have poor deductive 

power (compared with that of FOL). 

Several mathematical structures can be characterized up to isomorphism in the full second order logic. 

However, this logic does not admit any effective deductive system, so the ordinary completeness fails 

in this case. It is a Logician, who cares a lot about completeness. The Mathematicians prefer to have 

categorical descriptions of mathematical structures (in particular, their intended models) and do not 

worry that much about completeness of the underlying system of logic. 

3. Lessons from metatheory 

The Lӧwenheim-Skolem-Tarski Theorem says that FOL does not distinguish infinite powers. There 

are several other limitative theorems which describe what is and what is not possible in a given system 

of logic. For example, the Lindstrӧm Theorem says that no logic satisfying both: the Completeness 

Theorem (or the Compactness Theorem) and the Downward Lӧwenheim-Skolem Theorem is stronger 

than FOL. Further examples of limitative theorems may concern particular theories formulated in one 

or another system of logic. The well known examples are results about incompleteness and 

undecidability of theories, most notably the first order Peano arithmetic PA and the first order 

axiomatic set theory ZF. We are not going to report here on these results; they can be found in any 

advanced logic textbook. 

For our purposes it is sufficient to note that as a consequence of these limitative theorems we obtain 

theorems on existence of non standard models of theories belonging to monomathematics. Hence our 

hope to win categorical or at least complete characterization of intended models appears in these cases 

unjustified. For example, Peano arithmetic PA has continuum pairwise elementarily non-equivalent 

(and hence also pairwise non-isomorphic) countable models. Only one of them (the one defined in the 

known way in set theory) is standard and coincides with the intended model. Actually, PA has in any 

infinite cardinality κ the maximum possible number of pairwise non-isomorphic models, i.e.   . Thus, 

PA is a wild theory. 

The situation is even more complicated in the case of set theory ZF. This theory inherits the 

incompleteness phenomena from arithmetic PA (which is interpretable in ZF). The very existence of a 

lot of sentences independent from the axioms of ZF shows that the notions of set and the relation   are 



characterized by the axioms rather weakly. If ZF is consistent, then it has countable models which 

obviously differ from the intended interpretation of set theory. The power set operation may be 

interpreted in several different ways, giving raise to several distinct universes of sets. We do not have 

a single intended model of set theory ZF. Rather, we still are looking for new axioms which could 

characterize the notion of set in a more complete way. Some examples are provided below. 

There is still another possibility for the future of set theory. At the present moment it is customary to 

base all mathematical investigations on set theory. But we may not exclude that a time will come when 

we will treat different models of set theory in the same way as today we treat, say, different 

topological spaces. Notice that Thoralf Skolem and John von Neumann, two of the Fathers of Modern 

Set Theory were both very sceptical about set theory as the basis of the whole of mathematics. 

Zermelo's opinion was different, of course. 

4. Extremal axioms: examples 

Extremal axioms have been formulated in order to determine intended models in a unique way. They 

are either the axioms of maximality, or the axioms of minimality. Moreover, it is not only the mere 

volume of the universe of a model that counts: the ``richness'' of the structure of a model is taken into 

account as well. 

4.1. Induction 

Axiom of induction may be considered either as a single sentence in a second order language or as an 

axiom schema in a first order language: 

Second order axiom:   (      (     ( )   )    (   )), where s is the symbol for 

successor. 

First order schema:  ( )    ( ( )   ( ( )))     ( ), where  ( ) is any formula with one 

free variable of the language of Peano arithmetic. 

In each of these cases induction (axiom or schema) is a certain minimality condition imposed on the 

universe of all natural numbers. The very existence of non standard models of (first order) PA shows 

that the existence of alien intruders (i.e. non standard numbers) cannot be prohibited by PA and FOL. 

There are several methods of proving the existence of non standard models of PA: you may use an 

argument from compactness, or the ultraproduct construction or the tree of expansions of PA, etc. 

The schema of induction cannot be replaced by any finite number of axioms equivalent to it: PA is not 

finitely axiomatizable. Neither can we restrict the complexity of formulas in it and simultaneously 

keep the full force of PA. 

Let    denote the standard model of PA. We know that it cannot be uniquely characterized in FOL 

either in terms of isomorphism or in terms of elementary equivalence. We can only distinguish it from 

all other countable models of PA on the metalevel: 

1.     is the only well-founded model of PA. 

2.     is a  prime model of PA. 

3. Tennenbaum Theorem.    is the only recursive model of PA. 

All countable non standard models of PA have the same ordinal type:   (    )    (a copy of 

natural numbers followed by that many copies of integers as there are rational numbers). They differ in 



properties of addition and multiplication: as a consequence of the Tennenbaum Theorem, both these 

operations cannot simultaneously be given recursive definitions in non standard models. 

The investigations of models of arithmetic are already highly advanced, with many very sophisticated 

mathematical tools used in them. We are not going to even roughly summarize these results. An 

interested reader is kindly invited to compare in this respect e.g. KAYE 1991 or HÁJEK & PUDLÁK 

1993. 

The first axiomatizations of arithmetic, i.e. these given by Giuseppe Peano and Richard Dedekind 

were essentially second order. In such an approach you can of course determine the standard model of 

arithmetic up to isomorphism, as Dedekind did in his Kettentheorie. Dedekind in Was sind ud was 

sollen die Zahlen? (1888) was not really interested in the logical aspects of his system. He defined 

natural numbers as the least infinite set being the universe of a structure (     ) with a function 

      and a distinguished element   outside the range of  . 

The schema of induction was also explicitly present in Grassmann's  Lehrbuch der Arithmetik (1861). 

It is claimed that already Pascal used induction. Notably, inductive arguments took place in Ancient 

Greece, in the reasoning based on infinite regress. In order to prove that no (natural) number has the 

property   it suffices to show that for any number   with the property   there exists a number     

which also has  . If there would exist a number with the property  , then we could get smaller and 

smaller numbers with that property, which was conceived as absurd. This method was later 

rediscovered by Fermat. 

4.2. Continuity 

Investigations of continuity origin in difficulties with mathematical description of the geometric 

continuum. These difficulties were connected, among others, with: the problem of infinite divisibility 

(of the continuum itself), the question how is it possible to obtain the continuum out of points which 

do not have extension, etc. The discovery of irrational numbers showed that they are not included in 

the dense ordering of rational numbers. By the way, it was also a revolutionary change in the world-

perspective according to which the ultimate structure of reality should be based on numbers. The 

mysterious structure of the geometric continuum was hidden in mathematical applications in physics, 

e.g. the description of movement, velocity or change. Today, we see the essence of these difficulties in 

the very notion of continuity. 

Two early opposite positions concerning the structure of the geometric continuum were the following 

ones: 

1. the continuum does not consist of atoms but of infinitely divisible parts (Aristotle, Awerroes, 

Bradwardine, Kepler, Cavaglieri); 

2. the continuum consists of (ultimately non-divisible) parts: atoms (Democritus) or non-

divisible points (Plato, Pythagoras); there was also a controversy concerning the number of 

these parts –  should it be finite or infinite? 

As Bradwardine wrote: Nullum continuum ex athomis integrari. The continuum should rather be 

integrated from other smaller continua of the same kind. 

The view that velocity may be related to a single point (moment) was alien to Aristotle. This view 

changed to the opposite one in the Middle Ages and we find the latter in an elaborated form in the 

work of Galileo. 



Only after the rapid development of Analysis in the works of Newton, Leibniz, Euler and others there 

appeared a necessity of establishing it on solid logical background. First, Lagrange formulated some 

restrictions. Then the notions of a completely arbitrary function has been coined. As it is known, to 

that time by a function one understood a kind of a rule, or recipe, or algorithm according to which the 

value of a function was associated with each of its arguments. 

The program of arithmetization of Analysis belongs to XIX century. According to it, one obtains an 

arithmetical representation of the continuum and the arguments, as well as the values of the 

investigated functions vary in arithmetic domains. Already in the works of Gauss and Cauchy we find 

representations of the most important concepts of Analysis: these of limit and continuity. Bolzano 

showed that a continuous function takes all the intermediate values between any given two of its 

values. He also explicitly expressed the view that the continuum consists of points. The highest degree 

of precision in Analysis was reached in the works of Weierstrass. Here we find the well known     

convention and the explicit use of quantifiers. In the second part of XIX century several theories of 

real numbers were proposed, e.g.: Méray (1869), Cantor (1872), Heine (1872), Dedekind (1858, 

published in 1872), Weber (1895). In 1890 Schwartz proved in a precise way that if the derivative of   

is everywhere equal to  , then   is a constant function. This fact was taken as a dogma, without proof, 

in Newton's system. 

Dedekind's theory of real numbers is based on the notion of cut of the set   of all rational numbers 

with their usual ordering  . Recall that a pair (   ) of subsets of   is a cut, if       and for all 

    and     we have    . The ordering of  , though dense, does contain gaps, in the sense that 

there are cuts (   ) with no greatest element in   and no smallest element in  . Dedekind's idea was 

to  associate a new number with each cut of  . This completion of   gives the set of all real numbers. 

Dedekind's theory required two auxiliary components: theory of rational numbers and theory of sets. 

The first was provided by Weber in 1895, who based the theory of rational numbers on the arithmetic 

of natural numbers. The second originated in the Cantor's set theory (1972, 1983). The first 

axiomatization of set theory was given by Zermelo in 1908. Peano gave his axiomatization of the 

arithmetic of natural numbers in 1889. 

Another well known construction of real numbers is that proposed by Cantor. Here real numbers are 

understood as abstraction classes of sequences of rational numbers satisfying the Cauchy condition. 

Do we now finally have a complete representation of the geometric continuum? Should it be simply 

represented by the continuous ordering of the real numbers? Well, at the present moment Analysis is 

soundly based on the structures of real and complex numbers. The notion of an infinitely small 

magnitude can be represented in a precise way in the non standard analysis. However, some problems 

still remain open, just to mention the Continuum Hypothesis, which cannot be either proved or refuted 

in the Zermelo-Fraenkel set theory.  

4.2.1. Algebra 

There are two methods of construction of number systems: genetic and axiomatic. In the first case we 

begin with natural numbers (together with addition and multiplication of them) and then we construct 

the other number systems: the integers, rational, real and complex numbers, in each case with the 

corresponding arithmetical operations on them. These step-by-step extensions are connected with the 

fact that some arithmetical operations are not in general applicable in the ``smaller'' number system (as 

e.g. subtraction of natural numbers, division of integers) and we construct a ``larger'' system in which 

these operations are applicable. The second, axiomatic method begins with a list of axioms which 



should be satisfied by all objects belonging to the number system in question. Thus, we have separate 

axiom systems for, e.g., natural numbers and real numbers. 

The axiom schema of induction is an example of an extremal axiom of minimality, as we have seen. 

On the other hand, it is the  Axiom of Continuity (synonymously: Axiom of Completeness) which is an 

extremal axiom specific for the real numbers: it is an axiom of maximality, in turn. The Axiom of 

Continuity is added to the usual axioms of an ordered field (           ) and may have e.g. one of 

the following forms (cf. BŁASZCZYK 2007: 306): 

1. For any cut (   ) in (   ) either in   there exists the greatest element, or in   there exists 

the smallest element. 

2. Any non-empty bounded from above subset     has the lowest upper bound in  . 

3. Any infinite and bounded subset     has a limit point in   (in order topology). 

4. (           ) is an Archimedean field and for any sequence      there exists     such 

that           . 

5. (           ) is an Archimedean field and for any descending chain of closed intervals (  ) 

we have ⋂      . 

The roots of the theory of real numbers possessing such continuity properties can be found, among 

others, in: 

1. David Hilbert. Über den Zahlbegriff (1900). 

2. Georg Cantor. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen 

Reihen (1872). This was later developed in § 9 of Über unendliche lineare 

Punktmannigfaltigkeiten (1883). 

3. Richard Dedekind. Stetigkeit und irrationale Zahlen (1872). 

4. Eduard Heine. Die Elemente der Functionenlehre (1872). 

Despite some differences in formulation or the basic constructions, all these approaches have some 

properties in common, e.g.: 

1. A clear distinction is made between the geometric continuum and the set of all real numbers. 

2. The introduction of real numbers is accompanied by definitions of arithmetic operations on 

them. 

3. The authors explicitly state that there are no rigorous proofs that the structure of reality, space, 

time, degrees of intensiveness of features, etc. has indeed a continuous nature. It may well be 

the case that the reality has ultimately a discrete nature and the concept of continuity is a free 

projection of the mind, present in mathematical constructions only. 

Now, what about the intended model of a continuous number system, like the real numbers? One can 

prove several isomorphism theorems which characterize the corresponding systems up to 

isomorphism, by taking into account: arithmetical operations, ordering and topological properties of 

the systems in question. Here are a few most known examples (        correspond, respectively, to: 

real numbers, complex numbers, quaternions and octonions; in each of the theorems below a suitable 

structure on these sets is presupposed): 

1. Frobenius Theorem. Each associative algebra with division over   is isomorphic either with 

 , or  , or  . 

2. Hurwitz Theorem. Any normed algebra with division is isomorphic either with  , or  , or   

or  . 



3. Ostrowski Theorem. Any field complete with respect to an Archimedean norm is isomorphic 

with either   or   and the norm is equivalent with the usual norm determined by the absolute 

value. 

4. Pontriagin Theorem. Any connected locally compact topological field is isomorphic with 

either  , or   or  . 

5. 1,2,4,8—Theorem (Bott, Milnor, Kervaire). Each algebra with division over   has dimension 

      or  . 

6. Hopf Theorem. Each commutative algebra with division over   has dimension   . 

Let us recall that another Ostrowski Theorem says that any non-trivial absolute value on the rational 

numbers   is equivalent to either the usual real absolute value or the  -adic absolute value. 

Some further properties allow for distinctions between the above number systems, just take two 

examples: 

1.   (as constructed by Dedekind) is linearly and densely ordered. This ordering is also 

continuous (as Dedekind proved). The rational numbers   form a dense countable subset of 

 . On the other hand, the complex numbers   cannot be linearly ordered in such a way that 

the ordering will be compatible with the arithmetic operations. 

2.   is commutative (with respect to multiplication) and   is not. 

According to the theorems mentioned above there are only a few algebraic structures (up to 

isomorphism) which may serve as a basis for all usual arithmetical operations. In this sense, we may 

say that the intended models for numer systems are characterized in a unique way. Let us only mention 

that non standard analysis offers still another mathematical representation of a number system (the 

hyperreal numbers) which is obtained from the ``usual'' real numbers by the construction of an 

appropriate ultrapower. The field of hyperreal numbers is not Archimedean, and the field of real 

numbers is Archimedean. Among hyperreal numbers there are infinitely small numbers, which can be 

used for explication of some statements of classical Analysis previously formulated in a very vague 

manner. 

Still another (second order) axiomatization of the real numbers was given in 1936 by Tarski. It 

describes the structure (       ), where   is a linear dense and Dedekind-complete ordering of  ,   

is the operation of addition (compatible with  ) and   is a distinguished element satisfying      . 

The axioms imply that this structure is a linearly ordered Abelian group under addition with 

distinguished element  . It is also Dedekind-complete and divisible. It can be shown that the axioms 

imply the existence of a binary operation having all the expected properties of multiplication. 

This note is not supposed to be a complete survey of closure properties investigated in algebra which 

may show close affinity to the extremal axioms. An interested reader should consult any advanced 

book in abstract algebra in this respect. Let us close this section with the following sketchy remarks: 

1. The (first order) axiomatic theory of real closed fields is complete. It admits elimination of 

quantifiers. Hence it is decidable. 

2. Real closed fields have exactly the same first order properties as the real numbers. 

3. Artin-Schreier Theorem. Let   be an ordered field (i.e. with a definite ordering   on it). Then 

  has an algebraic extension, say  , called the real closure of   such that   is a real closed 

field and its ordering, say  , is an extension of  . Such   is unique, up to isomorphism. 



On the other hand, the real numbers remain still a little bit mysterious. There are indeed many 

statements concerning the set of real numbers, as well as its subsets which are independent from the 

axioms of Zermelo-Fraenkel set theory. The famous examples are e.g.: The Continuum Hypothesis, 

The Suslin Hypothesis, the sentence PM (all projective sets are Lebesgue measurable). The continuum 

(i.e. the cardinal number    ) may take almost every value on the scale of alephs (with exception of 

cardinal numbers with countable cofinality, as e.g.   ).  One formulation of The Suslin Hypothesis 

states that each set with a linear order without first and last element satisfying the ccc (countable 

chains condition, stating that every antichain is at most countable) and such that the corresponding 

order topology is connected is isomorphic to the set of all real numbers with their usual ordering. 

4.2.2. Geometry 

Hilbert's Axiom of Completeness from his Grudlagen der Geometrie has the following form in editions 

2—6: 

The elements (points, lines, planes) of geometry constitute a system of things which cannot be 

extended while maintaining simultaneously the cited axioms, i.e., it is not possible to add to this 

system of points, lines, and planes another system of things such that the system arising from this 

addition satisfies axioms AI—V1.  

As it is well known, the above axiom was later reformulated to the following Linear Completeness 

Axiom (HILBERT 1999
14

: 30): 

V 2 (Axiom der linearen Vollständigkeit). Das System der Punkte einer Geraden mit seinen 

Anordnungs- und Kongruenz-beziehungen ist keiner solchen Erweiterung fähig, bei welcher die 

zwischen den vorigen Elementen bestehenden Beziehungen sowie auch die aus den Axiomen I—III 

folgenden Grundeigeschaften der linearen Anordnung und Kongruenz, und V 1 erhalten bleiben. 

This formulation, in turn, was replaced by the usual Axiom of Completeness for the real numbers 

system. In such a form the axiom in question must be formulated in a second order language. This 

system of geometry is categorical, i.e. it has exactly one model, up to isomorphism. The system of 

geometry presented in BORSUK & SZMIELEW 1975 has the following primitive terms: 

1. the space (understood as a set of all  points), 

2. the families of lines and planes, 

3. the three-argument relation      (     is to be read: the point   lies between the points   

and  ), 

4. the four-argument relation       (      is to be read: the distance between   and   is the 

same as the distance between   and  ). 

It can be shown that the Axiom of Completeness is independent from the other axioms of the system 

of absolute geometry (i.e. the above system without the Euclid parallel postulate). Thus, absolute 

geometry admits models which are not continuous. Moreover, absolute geometry is not categorical: it 

has a Cartesian model as well as the Klein's model and these models are not isomorphic. Its 

extensions, obtained by either taking the Euclid parallel axiom (i.e. the Euclidean geometry) or its 

negation (the hyperbolic geometry) are categorical. 

The Axiom of Completeness is necessary for distinguishing the intended model of Euclidean geometry 

(i.e. the Cartesian model, known from the school). By the way, notice that the Euclidean geometry is 

privileged on historical grounds and most likely on grounds connected with our (mostly visual) 



perception of the physical world on the medium scale. Should we be, say, clouds living in the cloudy 

environment (without any rigid solid bodies around us), then we could possibly begin with another 

geometric representation of reality. 

The Axiom of Continuity has the following form in the case of the system of geometry  from BORSUK 

& SZMIELEW 1975 (this is the only second order axiom of the system): 

If     are non empty sets of points and there exists a point   such that     and     imply 

    , then there exists a point   such that         and         imply     . 

The axiomatic system of geometry proposed by Tarski has as primitive terms the predicates      and 

      (read as above), but it is an elementary (i.e. first order) system. Here the Axiom of Continuity 

is not a single sentence, but a scheme of the following form: 

      (( ( )   ( ))      )        (( ( )   ( ))      )  

where  ( ) is any formula in which       are not free and  ( ) is any formula in which       are 

not free. 

This system is complete and decidable. Its axioms contain only the primitive terms. It may be added 

that the system has many ``nice'' metamathematical properties. However, it also has some 

disadvantages from the point of view of practical applications. 

Again, this note is not supposed to present any summary of applications of extremal axioms in 

geometry: we have limited ourselves to a few examples only. 

Let us also marginally add that the notion of completeness is applicable in the case of general 

topological spaces. However, in this case we of course do not speak about intended models –  it seems 

that there was no one, fixed in advance complete topological space when the theory of such spaces 

was developed. Recall that by a complete topological space we understand any metric space in which 

every Cauchy sequence has the limit belonging to this space. 

4.3. Axioms of restriction in set theory 

Historically, first axiom of minimality in set theory was the axiom of restriction formulated by 

Fraenkel in 1922 and then repeated in his Einleitung in die Mengenlehre. It says, roughly speaking: 

``there are no other sets besides these, whose existence can be proven from the axioms of set theory.'' 

It is thus a proposal to understand the notion of set as narrowly as possible. Fraenkel intended to 

obtain some version of completeness in set theory with this axiom. It should be remembered that these 

considerations took place before Gӧdel's results about incompleteness of arithmetic (and, 

consequently, set theory, in which one can interpret arithmetic). Fraenkel aimed also at exclusion of 

infinite descending  -chains of sets; this goal has been later achieved by accepting the axiom of 

regularity. 

The idea of an axiom of restriction was criticized both by John von Neumann and Ernst Zermelo. On 

the other hand, Roman Suszko and independently John Myhill tried to attach a precise mathematical 

content to the restriction axiom in Fraenkel's style (cf. SUSZKO 1951; MYHILL 1952). The idea that each 

set should be associated with its name is also present later in Paul Cohen's origin of the forcing method 

(cf. COHEN 1966). 



Kurt Gӧdel's Axiom of Constructibility (   , to be read: all sets are constructible) was not conceived 

as a restriction axiom, though it has a form of an axiom of minimality in set theory. The inner model 

of all constructible sets was devised in order to prove that if set theory ZF is consistent, then also ZF 

plus the axiom of choice and the Generalized Continuum Hypothesis is consistent. 

Let us recall that at successor stages in building the constructible universe one makes use of the 

poorest powerset operation possible: the powerset of   contains only definable subsets of  . At limit 

stages we take of course unions of all stages constructed so far. The class of all constructible sets is a 

minimal countable transitive model of set theory containing all ordinal numbers. 

The method of inner models has its own limitations, as shown in SHEPHERDSON 1951—1953. 

However, it is a very convenient point of departure for some more subtle constructions, including the 

celebrated method of forcing, due to Paul Cohen. 

Kurt Gӧdel himself was against axioms of restriction in set theory and he overtly expressed his view in 

favor of axioms of maximality (GÖDEL 1964, quotation after Collected Works II, 262—263): 

On the other hand, from an axiom in some sense opposite to this one [i.e. to the Axiom of 

Constructibility –  JP], the negation of Cantor's conjecture could perhaps be derived. I am thinking 

of an axiom which (similar to Hilbert's completeness axiom in geometry) would state some 

maximum property of the system of all sets, whereas axiom A [i.e. the Axiom of Constructibility –  

JP] states a minimum property. Note that only a maximum property would seem to harmonize with 

the concept of set […]. 

It seems that nobody in the community of set theoreticians has ever seriously taken into account a 

possibility of adjoining the Axiom of Constructibility to the body of fundamental axioms of set theory. 

``Normal'' mathematicians may have different opinion in this respect – cf. Friedman's judgment 

(FEFERMAN et al. 2000, 436—437): 

The set theorist is looking for deep theoretic phenomena, and so      is anathema since it 

restricts the set theoretic universe so drastically that all sorts of phenomena are demonstrably not 

present. Furthermore, for set theorist, any advantage that      has in terms of power can be 

obtained with more powerful axioms of the same rough type that accommodate measurable 

cardinals and the like – e.g.,    ( ), or the universe is a canonical inner model of a large 

cardinal. 

However, for the normal mathematician, since set theory is merely a vehicle for interpreting 

mathematics as to establish rigor, and not mathematically interesting in its own right, the less set 

theoretic difficulties and phenomena the better. 

I.e., less is more and more is less. So if mathematicians were concerned with the set theoretic 

independence results – and they generally are not – then      is by far the most attractive 

solution for them. 

This is because it appears to solve all set theoretic problems (except for those asserting the 

existence of sets of unrestricted cardinality), and is also demonstrably relatively consistent. 

Set theorist also say that      has implausible consequences – e.g., there is a PCA well ordering 

of the reals, or there are nonmeasurable PCA sets. 



The set theorists claim to have a direct intuition which allows them to view these as so implausible 

that this provides ``evidence'' against    . 

However, mathematicians disclaim such direct intuition about complicated sets of reals. Some say 

they have no direct intuition about all multivariate functions from   into  ! 

Nevertheless, the Axiom of Constructibility, taken as a working assumption, has many consequences 

of considerable interest, in combinatorics, algebra, model theory, theory of recursive functions, etc. 

However, the Axiom of Constructibility implies e.g. the nonexistence of measurable cardinals as well 

as the negation of Suslin hypothesis. The prize to be paid, if one accepts this axiom seems to be too 

high, compared with its alleged naturalness and evident economy. We prefer to stay in the Cantor's 

Paradise. 

The most destructive critique of minimal axioms is presented in FRAENKEL et al. 1973. The authors 

formulate two axioms of restriction. The main idea captured by the first of them is the following. 

The First Axiom of Restriction. If   is a property such that each set whose existence follows from the 

axioms has this property, then every set has the property  . 

Now, the property   should be closed with respect to the set-forming operations described in the 

axioms. Thus, e.g., if   and   have  , then       has  , if   has  , then    has   , etc. Also the 

axiom schemas of comprehension and replacement can be translated into the suitable closure 

conditions with respect to  . One can then show the following facts, among others: 

1. The First Axiom of Restriction is equivalent to the conjunction of axiom of regularity and the 

sentence saying that there are no strongly inaccessible cardinals. Obviously, all the 

consequences of nonexistence of strongly inaccessible cardinals are also provable. 

2. If we consider set theory in a second order language with a suitable version of The First 

Axiom of Restriction, then we can prove categoricity of such a theory. 

3. No consequences concerning the Continuum Hypothesis can be drawn from The First Axiom 

of Restriction. 

The Second Axiom of Restriction is the conjunction of the following sentences: 

1. All sets are constructible (in Gӧdel's sense). 

2. There are no transitive sets which are models of ZF. 

It follows from 1) that all sets are well founded. As it is known from Gӧdel's work, 1) implies the 

GCH. The sentence 2), in turn, implies that there are no strongly inaccessible cardinals. Thus, The 

Second Axiom of Restriction implies the first one. Both Axioms of Restriction share some common 

features: 

1. Each of them states that some ``big'' cardinals or sets with high rank do not exist: First Axiom of 

Restriction –  inaccessible cardinal numbers; Second Axiom of Restriction –  transitive sets which 

are models of ZF. 

2. Some complicated sets do not exist: First Axiom of Restriction –  non well founded sets; Second 

Axiom of Restriction –  non-constructible sets. 

The author's arguments against axioms of restriction may be summarized as follows. 



1. Analogy. ``In the case of the axiom of induction in arithmetic and the axiom of completeness in 

geometry, we adopt these axioms not because they make the axiom systems categorical or because 

of some metamathematical properties of these axioms, but because, once these axioms are added, 

we obtain axiomatic systems which perfectly fit our intuitive ideas about arithmeticand geometry. 

In analogy, we shall have to judge the axioms ofrestriction in set theory on the basis of how the set 

theory obtained after adding these axioms fits our intuitive ideas about sets'' (FRAENKEL et al. 

1973: 117). Observe that this argument has mostly a pragmatic character. 

2. Faith. One could restrict the notion of a set to the narrowest possible only if one could have 

absolute faith in the axioms of ZF, which does not seem to be the case. Even if one had such a 

faith, it is more likely that one would look for maximality axioms (as in geometry), rather than for 

restriction axioms. 

Two more arguments against axioms of restriction are correlated with author's attitude to the axiom of 

constructibility (cf. FRAENKEL et al. 1973: 108—109): 

1. Mathematical elegance. Axioms of restriction do not improve mathematical elegance of set 

theory, in the sense that one can prove more powerful theorems based on them. Rather, they may 

be involved only in proofs that some sets do not exist. 

2. Platonistic point of view. Axioms of restriction are unnatural also when we consider theuniverse of 

all sets as an entity capable of growing, inthe sense that we can always produce new and new sets. 

If an axiom of restriction forces us to accept that the universe of all sets is a fixed entity, then why 

couldn't we consider it as a new set in a still bigger universe? ``In other words, there is no property 

expressible in the language of set theory which distinguishes the universe from some ``temporary 

universes''. These ideas are embodied in the principles of reflection, which are, mostly, strong 

axioms of strong infinity.'' (FRAENKEL et al. 1973: 118). 

4.4. Axioms of maximality in set theory 

The idea of an axiom of maximality in set theory has been investigated even before the formulation of 

set theory ZF in its present shape (cf. BAER 1928). In a sense, Zermelo's demand concerning the 

existence of a transfinite sequence of inaccessible cardinals can also be viewed as an axiom of 

maximality (cf. ZERMELO 1930). More recently, maximal axioms, in form of the axioms of existence 

of very large cardinal numbers are just one of the central topics in the contemporary set theory. 

There are several criteria to be met when formulating new axioms (of existence of large cardinal 

numbers), among others: necessity (or non-arbitrariness) and fruitfulness in their consequences. 

Adding the axiom of infinity to (ZF minus this axiom) enables us to prove theorems about infinite sets. 

In a similar way, adding an axiom stating the existence of inaccessible cardinals makes it possible to 

extend operations of set formation beyond what is provable in ZFC. Large cardinals axioms have 

decisive importance for Descriptive Set Theory and in this sense they appear fruitful. The same 

concerns their applications in, say, infinitary combinatorics. 

Joan Bagaria recalls fundamental principles by which (according to Hao Wang quotations of Gӧdel 

ideas in WANG 1974, 1996) new axioms of set theory should be introduced (BAGARIA 2005: 47—48): 

According to Gӧdel there are five such principles: Intuitive Range, the Closure Principle, the 

Reflection Principle, Extensionalization, and Uniformity. The first, Intuitive Range, is the principle 

of intuitive set formation, which is embodied into the ZFC axioms. The Closure Principle can be 

subsumed into the principle of Reflection, which may be summarized as follows: The universe   

of all sets cannot be uniquely characterized, i.e., distinguished from all its initial segments, by any 



property expressible in any reasonable logic involving the membership relation. A weak form of 

this principle is the ZFC-provable reflection theorem of Montague and Levy (see KANAMORI 

1994): 

Any sentence in the first-order language of Set Theory that holds in   holds also in some   . 

Gӧdel's Reflection principle consists precisely of the extension of this theorem to higher-order 

logics, infinitary logics, etc. 

The principle of Extensionalization asserts that   satisfies an extensional form of the Axiom of 

Replacement and it is introduced in order to justify the existence of inaccessible cardinals. […] 

The principle of Uniformity asserts that the universe   is uniform, in the sense that its structure is 

similar everywhere. In Gӧdel's words (WANG 1996: 8.7.5): The same or analogous states of 

affairs reappear again and again (perhaps in more complicated versions). He also says that this 

principle may also be called the principle of proportionality of the universe, according to which, 

analogues of the properties of small cardinals lead to large cardinals. Gӧdel claims that this 

principle makes plausible the introduction of measurable or strongly compact cardinals, insofar as 

those large-cardinal notions are obtained by generalizing to uncountable cardinals some properties 

of  . 

Bagaria discusses then ``some heuristic principles, which may be regarded as Meta-Axioms of Set 

Theory, that provide a criterion for assessing the naturalness of the set-theoretic axioms.'' Axioms in 

question are either axioms of existence of large cardinal numbers or some forcing axioms. 

It is of course not possible to give even a rough summary of all the problems concerning axioms of 

existence of large cardinals in a short paper like this one. The interested reader is kindly invited to 

consult e.g., KANAMORI 1994 in this respect. Below, we limit ourselves to few remarks pointing at 

some interconnections between large cardinal axioms and the consistency strength. We follow the 

presentation contained in KOELLNER 2010. 

According to Mostowski (MOSTOWSKI 1967) there are two principles of introducing new axioms of 

infinity: 

1. The principle of passing from potential to actual infinity. We build new sets using the axioms of 

infinity and replacement of ZF. The universe of all sets is potentially infinite and closed with 

respect to some operations. We postulate the existence of a set which itself is closed with respect 

to these operations. In this way we obtain for instance inaccessible cardinals. 

2. The principle of existence of peculiar sets. Suppose that while constructing sets according to the 

known operations on them we always meet sets with a certain property  . If there are no evident 

reasons which should force us to assume that all sets have  , then we propose a new axiom saying 

that there exist sets without the property  . In this way we obtain for example measurable 

cardinals. 

In the last few decades several kinds of large cardinals have been investigated. Postulating the 

existence of a large cardinal (whose existence can not be proved from the axioms of ZF) is, of course, 

a kind of a maximality condition. But it is not only a mere demand on the volume of the universe of 

set theory: large cardinal axioms are also closely related to the deductive strength of the theories 

obtained by adjoining such axioms. Let us look at some very elementary examples. 



Let    denote ZFC without the axioms of infinity and replacement. The standard model for this theory 

is   . The existence of this set follows from the axiom of infinity. Let    denote    with the axiom of 

infinity. Then we can prove in   : 

1.    is consistent. 

2. There exists a standard model for    . 

The standard model for    is     . The existence of this set follows from the axiom of replacement. 

Let    denote    with the axiom of replacement. Then we can prove in   : 

1.    is consistent. 

2. There exists a standard model for    . 

The standard model for    is   , where   is an inaccessible cardinal. Thus, the next axiom of infinity 

in this hierarchy will be the sentence ``There exists an inaccessible cardinal.'' The next theory, i.e. ZFC 

together with this sentence proves the existence of a level of the cumulative hierarchy which is a 

model for ZFC. And so on: in this way we obtain stronger and stronger set theories. 

Let    (   ) denote the sentence expressing consistency of the  -th order arithmetic    . Then 

   (   )  can not be decided in    , but it can be decided in      . These sentences are connected 

with the levels of the cumulative hierarchy of sets. Recall that    , i.e. the first order system of Peano 

arithmetic PA is mutually interpretable with ZF minus the axiom of infinity, because   , the first 

infinite level of the cumulative hierarchy consists of hereditarily finite sets which can be coded by 

natural numbers. However, the sentences    (   ) are not the only undecidable statements (cf. 

KOELLNER 2010: 3—4): 

The trouble is that when one climbs the hierarchy of sets in this fashion the greater expressive 

resources that become available lead to more intractable instances of undecidable sentences and 

this is true already of the second and third infinite levels. For example, at the second infinite level 

one can formulate the statement PM (that all projective sets are Lebesgue measurable) and at the 

third infinite level one can formulate CH (Cantor's continuum hypothesis). [… Here Koellner 

briefly summarizes Gӧdel's and Cohen's results showing together the independence of CH from 

ZFC – JP.] 

These instances of independence are more intractable in that no simple iteration of the hierarchy of 

types leads to their resolution. They led to a more profound search for new axioms. 

Due to Gӧdel's and Cohen's results concerning the independence of CH from ZFC one can see that 

ZFC is mutually interpretable with ZFC+CH, as well as with ZFC+ CH. The situation with PM is, 

however, different. The method of inner models shows that  PM holds in the constructible universe  . 

Hence ZFC and ZFC+ PM are mutually interpretable. But Shelah has shown that ZFC+PM implies 

the consistency of ZFC and therefore, due to Gӧdel's second incompleteness theorem, ZFC+PM is not 

interpretable in ZFC. It follows that in order to establish the independence of PM from ZFC we need 

to assume the consistency of some stronger theory – namely that of ZFC plus the sentence ``There 

exists a strongly inaccessible cardinal''. 

This was only a very elementary example. One considers a plentitude of axioms of existence of large 

cardinals which have relevant impact on the independence proofs. Let us only add that there exists a 

pattern of formulating large cardinal axioms in terms of elementary embeddings. Generally speaking, 

one considers non trivial (i.e. different from identity) elementary embeddings       of the 



cumulative hierarchy   into a transitive class  . The least ordinal moved by such an embedding is 

called the critical point of   and denoted by     ( ). For example, a cardinal is measurable if and only 

if it is the critical point of some such embedding. Further conditions imposed on   and   enable us to 

create several sorts of large cardinal axioms. As Kunen has shown, there is no elementary embedding 

     . 

The structure of degrees of interpretability of theories is very complicated. However, natural theories 

having practical mathematical applications happen to be orderly comparable, which of course is only 

an empirical fact. Theories can be compared through large cardinal axioms corresponding to them (cf. 

KOELLNER 2010: 10—11): 

Given ZFC+  and ZFC+  one finds large cardinal axioms   and   such that (using the methods 

of inner and outer models) ZFC+   and ZFC+   are mutually interpretable and ZFC+   and 

ZFC+   are mutually interpretable. One then compares ZFC+   and ZFC+   (in terms of 

interpretability) by mediating through the natural interpretability relationship between ZFC+   

and ZFC+  . So large cardinal axioms (in conjunction with the dual method of inner and outer 

models) lie at the heart of the remarkable empirical fact that natural theories from completely 

distinct domains can be compared in terms of interpretability. 

Sometimes the procedure sketched above is the only known way to compare theories, which provides 

a pragmatic justification for the investigations of large cardinal axioms. 

5. Intended model: a purely pragmatic concept? 

We have seen that FOL does not provide sufficient tools for unique characterization of intended 

models. We may characterize such models either in some stronger logical systems or at the level of 

metatheory. 

This shortcoming may bother a logician, but it is not very important for the working mathematicians. 

The latter cares first of all about characterization of models up to isomorphism, paying less attention to 

logical matters. As Jon Barwise has put it (BARWISE 1985: 7): 

But if you think of logic as the mathematicians in the street, then the logic in a given concept is 

what it is, and if there is no set of rules which generate all the valid sentences, well, that is just a 

fact about the complexity of the concept that has to be lived with. 

We have pointed at some possibilities of a purely mathematical characterization of intended models: 

Tennenbaum theorem with respect to Peano arithmetic, isomorphism theorems with respect to number 

systems, theorems concerning categoricity of some chosen systems of geometry. These 

characterizations are all given at the level of metalanguage. The same concerns the role of maximal 

axioms in set theory in the context of comparing theories with respect to interpretability. Finally, let us 

give one more example connected again with Peano arithmetic. 

Let       and let    be any sentence undecidable in   . Further, let             and     

        . For any finite sequence   of elements being equal either to   or   let: 

1.           

2.           , 

(where    is any sentence undecidable in   ). We get an infinite binary tree of extensions of PA in 

this way. This tree has     branches. Due to the compactness theorem the union of theories on each 



branch is consistent (under the assumption that PA itself is consistent). On behalf of the downward 

Lӧwenheim-Skolem theorem each such union has a countable model. No two of these models are 

elementarily equivalent, due to the construction of the tree. 

If we let    to be    (  ) and    to be    (  ) then   , i.e. the standard model of PA is a model of 

the leftmost branch of the tree. All the other branches have non standard (countable) models. Each 

sentence of the form     (  ) has a Gӧdel number which is a non standard number in the 

corresponding model. 

We see that we can pick up the standard model of PA from all these models. But again, the rule 

underlying this choice belongs to metatheory. 

The debate about intended models became vivid in the general methodology of the sciences after 

publication of Hilary Putnam's famous essay Models and reality (cf. PUTNAM 1980). It should be 

stressed that it is not only the Putnam's model-theoretic argument (based essentially on the 

Lӧwenheim-Skolem Theorem) which is relevant at this issue. We have seen that much more is 

involved in the problem of distinguishing the intended model of some theory and the situation depends 

on the area of mathematics we are dealing with. 

We did not report in this short note about several positions taken in the general methodology of the 

sciences concerning intended models. An interested reader may consult, e.g.: GAIFMAN 2004, 

GROBLER 2006, NOWACZYK 1990, PRZEŁĘCKI 1988, WOLEŃSKI 1993, 2005, WÓJCICKI 1974. 

The above considerations contain no essentially new original reflections. All the problems discussed 

here have been widely known for several years. Anyway, we think that it is an interesting enterprize to 

look collectively at the extremal axioms formulated in different areas in mathematics. At the present 

moment, the works devoted to the extremal axioms in general are not that numerous yet (cf. e.g. 

CARNAP & BACHMANN 1936, 1981, HINTIKKA 1986, 1991, remarks on extremal axioms in several 

monographs on arithmetic, geometry, algebra and set theory). The present author works on a 

monograph  Extremal Axioms. Hopefully, he will finish it before his Ultimate End. 
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