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Algebras

Signature: σ = (Ω, τ), where Ω = {ω1, . . . , ωn} is a set of function
symbols and τ is the arity function.
Algebra: A = (A, ωA

1 , . . . , ω
A
n ), where A is a set and ωA

1 , . . . , ω
A
n are

operations on A (ωA
i is the denotation of ωi in A).

Formal language as an algebra: S = (S , ◦1, . . . , ◦n), where S is the set
of all formulas and ◦1, . . . , ◦n are propositional functors. Let Var be
the set of propositional variables.
B = (B, ωB

1 , . . . , ω
B
n ) is a subalgebra of A = (A, ωA

1 , . . . , ω
A
n ) iff:

1 B ⊆ A and B is closed with respect to all operations ωA
i

2 ωB
i = ωA

i � B
τ(ωi ), where f � X denotes restriction of f to X .

SgA(X ) the least subalgebra of A containing X ⊆ A.
X is the set of generators of A iff SgA(X ) = A.
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Algebras

h : A→ B is a homomorphism of A into B, if for all ωi ∈ Ω (1 6 n)
and all a1, . . . , aτωi

: h(ωA
i (a1, . . . , aτωi

)) = ωB
i (h(a1), . . . , h(aτωi

)).
Hom(A,B): the set of all homomorphisms from A into B.
Isomorphism: an injective onto homomorphism.
A and B are isomorphic iff there exists an isomorphism of A onto B.
If f : A→ B is a homomorphism, then the relation
kerf ⊆ dom(A)× dom(A) defined by x kerf y iff f (x) = f (y) is called
the kernel of f .
Algebra A is free in a class K, if there exists a set X of generators of
A such that for any B ∈ K and any map f : X → B there exists a
homomorphism g : A→ B such that g � X = f .
Algebra A is absolutely free, if it is free in the class of all algebras
similar to it.
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Congruences

θ is a congruence of an algebra A = (A, ωA
1 , . . . , ω

A
n ) iff:

1 θ is an equivalence relation of A;
2 for all 1 6 i 6 n and all a1, b1, . . . , aτωi

, bτωi
∈ A:

if a1θb1, . . . ,aτωi
θbτωi

, then ωA
i (a1, . . . , aτωi

)θωA
i (b1, . . . , bτωi

).

Con(A): the set of all congruences of A.

A/θ = (A/θ, ω
A/θ
1 , . . . , ω

A/θ
n ) is the quotient algebra of A with

respect to θ ∈ Con(A), if for all 1 6 i 6 n and a1, . . . , aτωi
∈ A:

ω
A/θ
i ([a1]θ, . . . , [aτωi

]θ) = [ωA
i (a1, . . . , aτωi

)]θ.

If f : A→ B is a homomorphism, then the relation ∼f⊆ (dom(A))2

defined by x ∼f y iff f (x) = f (y) is a congruence of A.
If θ is a congruence of A, then the canonical map kθ : A→ A/θ,
defined by kθ(a) = a/θ is a homomorphism (here a/θ is an
abbreviation of [a]θ).
Algebra A is simple iff its only congruences are: the identity and the
full relation.
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Congruences

Let f : A→ B be a surjective homomorphism. If θ = kerf , then there
exists exactly one isomorphism h : A/θ → B such that h ◦ kθ = f .

A B

A/θ

f

kθ h
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Consequence operators

Let S = (S ,F1, . . . ,Fn) be a propositional language.
C : ℘(S)→ ℘(S) is a consequence (operator) in S iff for all X ,Y ⊆ S :

1 X ⊆ C (X ) (reflexivity)
2 if X ⊆ Y , then C (X ) ⊆ C (Y ) (monotonicity)
3 C (C (X )) ⊆ C (X ) (idempotency).

Let Fin(X ) denote the set of all finite subsets of X . We say that C is:
1 finitary iff C (X ) =

⋃
{C (Y ) : Y ∈ Fin(X )} for all X ⊆ S ;

2 compact iff for each Y ⊆ S there exists X ∈ Fin(Y ) such that: if
C (Y ) = S , then C (X ) = S ;

3 consistent iff C (∅) 6= S ;
4 Post-complete iff C ({α}) = S for each α /∈ C ({∅});
5 inconsistent iff C (X ) = S for all X ⊆ S ;
6 idle iff C (X ) = X for all X ⊆ S .

For consequences C1 and C2 in S let C1 6 C2 iff C1(X ) ⊆ C2(X ), for
all X ⊆ S . The family of all consequences in S is a complete lattice.
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Consequence operators

A set X ⊆ S is C -closed (C -theory) iff X = C (X ). Let
Th(C ) = {X ⊆ S : X = C (X )}.
A family of sets is a closure system iff it is closed under set
intersections.
The family of all C -theories is a closure system.
If X ⊆ ℘(S) is a closure system, then the operation C defined by
C (X ) =

⋂
{Y ∈ X : X ⊆ Y } for all X ⊆ S is a consequence in S.

The following conditions are equivalent:
1 C1 6 C2
2 Th(C2) ⊆ Th(C1).

The following conditions are equivalent:
1 C is finitary.
2 Th(C ) is inductive.
3 Th(C ) is closed under ultraproducts.
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Consequence operators

A set X ⊆ S is:
1 C -consistent iff C (X ) 6= S ;
2 C -maximal iff X is C -consistent and C (X ∪{α}) = S for all α /∈ C (X );
3 C -axiomatizable iff there exists a finite set Y such that C (X ) = C (Y );
4 C -independent iff α /∈ C (X − {α}), for each α ∈ X .

If X is C -maximal, then C (X ) is ⊆-maximal element in the family of
all C -consistent theories.
If C is finitary, then no infinite C -independent set is C -axiomatizable.
If C is finitary in a countable language and there exists an infinite
C -independent set, then:

1 Th(C ) is uncountable.
2 There exist countably many sets C (X ), where X is finite.
3 There exist uncountably many sets C (X ), where C (X ) is

C -axiomatizable.
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Consequence operators

Any relation r ⊆ ℘(S)× S is called a rule of inference in S.
Let RS denote the set of all rules of inference in S.
Any (X , α) ∈ r is called a sequent of r .
Any pair (R,X ), where R ⊆ RS and X ⊆ S is called a sentential logic
(a logical system). If L = (R,X ) is a sentential logic, then:

1 R is the set of primitive rules of L
2 X is the set of axioms of L.

Let Cld(R,X ) iff for all r ∈ R , all P ⊆ S and all α ∈ S : if (P, α) ∈ r
and P ⊆ X , then α ∈ X .
For any X ⊆ S and R ⊆ RS let:
C (R,X ) =

⋂
{Y ⊆ S : X ⊆ Y and Cld(R,Y )}.

C (R,X ) = X iff Cld(R,X ), for any X ⊆ S and R ⊆ RS .
Each pair (R,X ), where R ⊆ RS determines a consequence CR,X in S:
CR,X (Y ) = C (R,X ∪ Y ).
For any finitary consequence C there exist: a set X ⊆ S and a set
R ⊆ RS such that C = CR,X . If C = CR,X , then (R,X ) is called a
base of C .

Jerzy Pogonowski (UAM) Algebraic Logic 2022 10 / 39



Consequence operators

Let r ∈ Adm(R,X ) iff C (R ∪ {r},X ) ⊆ C (R,X ) (admissible rules
w.r.t. X ⊆ S and R ⊆ RS).
Let r ∈ Der(R,X ) iff C (R ∪ {r},X ∪ Y ) ⊆ C (R,X ∪ Y ), for all
Y ⊆ S (derivable rules w.r.t. X ⊆ S and R ⊆ RS).
It follows from these definitions that:

1 r ∈ Adm(R,X ) iff Cld({r},C (R,X )).
2 r ∈ Der(R,X ) iff Cld({r},C (R,X ∪ Y )), for all Y ⊆ S .
3 Der(R,X ) =

⋂
{Adm(R,X ∪ Y ) : Y ⊆ S}.

4 Der(R,X ) ⊆ Adm(R,X ).

Admissible and derivable rules can be also defined in terms of
consequence operators:

1 r ∈ DER(C ) iff α ∈ C (P), for all (P, α) ∈ r ;
2 r ∈ ADM(C ) iff P ⊆ C (∅) implies α ∈ C (∅), for all (P, α) ∈ r .
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Consequence operators

Each substitution e : Var → S can be extended to a homomorphism
he : S → S .
The rule of substitution r∗ is defined by: ({α}, β) ∈ r∗ iff β = he(α),
for some substitution e : Var → S .
Sb(X ) = C ({r∗},X ) = {α : α ∈ he(X ) for some e : Var → S}.
We say that a rule r ∈ RS is structural iff (P, α) ∈ r implies that
(he(P), he(α)) ∈ r , for all e : Var → S .
A system (R,X ) (where R ⊆ RS , X ⊆ S) is invariant iff R ⊆ Struct
and X = Sb(X ).
A sequent (P, α) is a basic sequent of r iff
r = {(he(P), he(α)) : for all substitutions e}. Rules possessing a
basic sequent are called standard.
We say that a consequence C is structural iff heC (X ) ⊆ C (heX ) for
all X ⊆ S and substitutions e.
C is structural iff Th(C ) is closed w.r.t. counterimages of
substitutions.
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Consequence operators

Lindenbaum’s Lemma. If a system (R,A) is compact and
C (R,A ∪ X ) 6= S , then there exists a set Y ⊆ S such that:

1 C (R,A ∪ X ) ⊆ C (R,A ∪ Y ) 6= S
2 C (R,A ∪ Y ) = Y
3 C (R,A ∪ Y ∪ {α}) = S for each α /∈ Y .

By the degree of completeness of the system (R,A) we mean the
cardinality of the set {C (R,A ∪ X ) : X ⊆ S}.
If C is a consequence determined by (R,A), then by the degree of
completeness of C we mean the cardinality of the set {C (X ) : X ⊆ S}
(i.e. of the set Th(C )).
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Matrices

M = (A,A∗) is called a logical matrix iff A is an algebra similar to the
algebra S and A∗ ⊆ A is the set of distinguished values.
α ∈ E (M) iff hv (α) ∈ A∗, for all v : Var → A.
E (M) is the set of all tautologies of M.
Let S2 = (S2,→,∧,∨,↔,¬) and
M2 = ({0, 1}, {1}, f→, f ∧, f ∨, f↔, f ¬), where:

1 f→(x , y) = min(1− x + y , 1)
2 f ∧(x , y) = min(x , y)
3 f ∨(x , y) = max(x , y)
4 f↔(x , y) = max(min(1− x , 1− y),min(x , y))
5 f ¬(x) = 1− x .

Let SCKAN = (SCKAN ,→,∧,∨,¬) and
1 M3 = ({0, 1, 2}, {2},min(2, 2− x + y),min(x , y),max(x , y), 2− x).
2 MT = (O(T ), {T},T − cl(X − Y ),X ∩ Y ,X ∪ Y ,T − cl(X )), where

(T ,O(T )) is a T1-topological space.
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Matrices

Any logical matrix M = (A,A∗) determines a matrix consequence
−→
M:

α ∈
−→
M(X ) iff for each v : At → A, if hv (X ) ⊆ A∗, then hv (α) ∈ A∗.

E (M) =
−→
M(∅).

Any matrix consequence is structural.
Let M = (A,A∗).

Let X ∈ Sat(M) iff there exists a valuation v : Var → A such that
hv (X ) ⊆ A∗.
Let Satv = (hv )−1(A∗).
E (M) =

⋂
v :At→A

Satv .

Sb[E (M)] ⊆ E (M).
r ∈ V (M) iff for all P ⊆ S and α ∈ S : if (P, α) ∈ r and P ⊆ E (M),
then α ∈ E (M) (rules valid in M);
r ∈ N(M) iff for all P ⊆ S , α ∈ S and v : Var → S : if (P, α) ∈ r and
hv [P] ⊆ A∗, then hv (α) ∈ A∗ (rules normal in M).
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Matrices

N(M) = Der(
−→
M)

V (M) = Adm(
−→
M)

r∗ ∈ V (M)− N(M), if ∅  A∗  A.
Modus ponens rule r0 is valid and normal in M3, while the rule ¬ϕ→ϕϕ
is not valid in M3.
If X ⊆ E (M) and R ⊆ V (M), then C (R,X ) ⊆ E (M).
Let M = (A,A∗) and N = (B,B∗) be similar matrices.

M is a submatrix of N iff A is a subalgebra of B and A∗ = A ∩ B∗.
M is isomorphic with N iff there exists an isomorphism h of A on B
such that for all x ∈ A: x ∈ A∗ iff h(x) ∈ B∗.
f : A→ B is a homomorphism of M on N iff f is a surjective
homomorphism of A on B and for all a ∈ A: a ∈ A∗ iff f (a) ∈ B∗.
If M is a submatrix of N, then E (N) ⊆ E (M).
If there exists a homomorphism of M on N, then: V (M) = V (N),
N(M) ⊆ N(N), E (M) = E (N).
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Matrices

R is a congruence of the matrix M = (A,A∗) iff R ∈ Con(A) and for
all x , y ∈ A: if xRy and x ∈ A∗, then y ∈ A∗.
M/R = (A/R,A∗/R) is a quotient matrix iff A/R is a quotient
algebra, R is a congruence of M and A∗/R = {[a]R : a ∈ A∗}.

If R is a congruence of M, then
−→
M =

−−−→
M/R .∏

t∈T
Mt = (

∏
t∈T

At ,
∏
t∈T

A∗t ) is a product of a family {Mt}t∈T of

similar matrices.
E (

∏
t∈T

Mt) =
⋂
{E (Mt) : t ∈ T}.

For any R ⊆ RS and X ⊆ S , the matrix MR,X = (S,CR(X )) is called
the Lindenbaum matrix of (R,X ).
E (MR,X ) = {α : Sb(α) ⊆ CR(X )}.
If r∗ ∈ Adm(R,X ), then E (MR,X ) = CR(X ).
If r∗ ∈ Adm(R,X ), then each structural rule valid in MR,X is normal
in MR,X .
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Matrices

Let (R,X ) be a logical system in a language S and let M be a matrix
similar to S. If E (M) = CR(X ) = CR,X (∅), then we say that M is
weakly adequate for (R,X ).
Lindenbaum’s Theorem on weak adequacy. For any logical
system (R,X ) such that r∗ ∈ R and all rules in R − {r∗} are structural
there exists a finite or countable matrix M such that
C (R,X ) = E (M) and R − {r∗} ⊆ N(M).
Examples:

M2 is weakly adequate for classical propositional logic.
Modal logic S5 does not have a finite weakly adequate matrix, but it
has an infinite weakly adequate matrix (Wajsberg).
Finite-valued Łukasiewicz logics have finite weakly adequate matrices.
Infinite-valued Łukasiewicz logic has an infinite weakly adequate matrix.

If CR(X ) = E (M), then: Adm(R,X ) = V (M), Der(R,X ) ⊆ V (M),
N(M) ⊆ Adm(R,X ).
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Matrices

We say that M is strongly adequate for (R,X ) (or for consequence
CR,X ) iff for all Y ⊆ S : CR(X ∪ Y ) =

−→
M(Y ).

M is strongly adequate for (R,X ) iff N(M) = Der(R,X ).
A system (S,C ) is uniform iff for all X ⊆ S , Y ⊆ S and α ∈ S : if
Var(X ) ∩ Var(Y ) = Var({α}) ∩ V (Y ) = ∅, C (Y ) 6= S and
α ∈ C (X ∪ Y ), then α ∈ C (X ).
A system (S,C ) is separable iff for any family R of sets of formulas
such that:

1 if X ,Y ∈ R, X 6= Y , then Var(X ) ∩ Var(Y ) = ∅
2

⋃
{Var(X ) : X ∈ R} 6= Var

3 if X ∈ R, then C (X ) 6= S ,

we have C (
⋃
R) 6= S .

Theorem (Łoś, Suszko 1958, Wójcicki 1970). If a structural system
(S,C ) is uniform and separable, then there exists a matrix M such
that C = CM.
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Matrices

Let K be a class of similar matrices and define the consequence
generated by K: α ∈ CK(X ) iff α ∈ CM(X ) for all M ∈ K.
We say that K is adequate for a system (S,C ) iff for any X ⊆ S and
α ∈ S : α ∈ C (X ) iff α ∈ CK(X ).
Theorem. For any system (S,C ) the class of all its Lindenbaum’s
matrices (called the Lindenbaum’s bundle) is adequate for (S,C ).
A matrix M for (S,C ) is called a C -matrix iff C 6 CM.
Let Matr(C ) be the class of all C -matrices.
If we divide each matrix in Matr(C ) by its greatest congruence, then
we obtain the class Matr∗(C ) of quotient matrices whose only
congruence is the identity relation.
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Lattices

Ordinal definition. A partially ordered set (L,6) is called a lattice iff
for all a, b ∈ L there exist their meet (infimum) a ∧ b and join
(supremum) a ∨ b.
Algebraic definition. An algebra (L,∧,∨) is called a lattice iff

(L1) a ∧ b = b ∧ a (L1′) a ∨ b = b ∨ a
(L2) a ∧ a = a (L2′) a ∨ a = a
(L3) a ∧ (b ∧ c) = (a ∧ b) ∧ c (L3′) a ∨ (b ∨ c) = (a ∨ b) ∨ c
(L4) a ∧ (a ∨ b) = a (L4′) a ∨ (a ∧ b) = a

The above two definitions are equivalent.
(℘(X ),∩,∪) is a lattice for any set X .
The family Eq(X ) of all equivalence relations on a set X is a lattice:
θ ∧ ψ = θ ∩ ψ, θ ∨ ψ = θ ∪ (θ ◦ ψ) ∪ (θ ◦ ψ ◦ θ) ∪ (θ ◦ ψ ◦ θ ◦ ψ) ∪ . . .
Con(A) is a lattice for any algebra A.
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Lattices

Pentagon N5:

1

0

y

x

z

We have here:
x ∧ (y ∨ z) = x ∧ 1 = x
(x ∧ y) ∨ (x ∧ z) = 0 ∨ z = z
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Lattices

Diamond M3:

1

x y z

0

We have here:
x ∧ (y ∨ z) = x ∧ 1 = x
(x ∧ y) ∨ (x ∧ z) = 0 ∨ 0 = 0
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Lattices

Two Hasse diagrams of the lattice (℘({a, b, c}),∩,∪):

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

{a, b, c}

{a, c}

{b, c}

{a, b}

{c}{b}{a}

∅
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Lattices

[a, b] = {x ∈ L : a 6 x 6 b} interval.
If [a, b] = {a, b}, then we say that a precedes b (a ≺ b).
A lattice is bounded iff it has the smallest element 0 and the greatest
element 1.
Atoms: minimal elements in (L− {0};6).
Coatoms: maximal elements in (L− {1};6).
A lattice is atomic iff each non-zero element is preceded by an atom.
A lattice is atomless iff it does not have any atoms.
∅ 6= 4 ⊆ L is an ideal iff

1 if x , y ∈ 4, then x ∨ y ∈ 4
2 if x ∈ 4 and y 6 x , then y ∈ 4.

∅ 6= ∇ ⊆ L is a filter iff
1 if x , y ∈ ∇, then x ∧ y ∈ ∇
2 if x ∈ ∇ and x 6 y , then y ∈ ∇.
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Lattices

A lattice L is complete iff each subset A of L has a supremum
∨
A

and an infimum
∧

A in L.
Theorem (representation of complete lattices). For any complete
lattice (L,6) there exists a closure operator C on L such that (L,6)
is isomorphic with the lattice of all C -closed sets.
Let (L,6) be a complete lattice. An element a ∈ L is compact iff for
any X ⊆ L: if a 6

∨
X , then c 6

∨
Y , for some finite Y ⊆ X .

A complete lattice (L,6) is algebraic iff any element of L is a join of
compact elements of L.
(L,∧,∨) is modular iff for all a, b, c ∈ L: if c 6 a, then
a ∧ (b ∨ c) = (a ∧ b) ∨ c .
A lattice is modular iff it does not contain N5 as a sublattice.
(L,∧,∨) is distributive iff for any x , y , z ∈ X :
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
(L,∧,∨) is distributive iff it contains neither N5 nor M3 as a sublattice.
Any distributive lattice is isomorphic with a field of sets.
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Lattices

(B,∧,∨,−, 0, 1) is a Boolean algebra iff (B,∧,∨, 0, 1) is a distributive
lattice with zero 0 and unity 1 and for all x ∈ B there exists the
complement −x of x such that (x ∨ (−x)) = 1 and (x ∧ (−x)) = 0.
Examples:

2 = ({0, 1},∧,∨,−, 0, 1), where ({0, 1},∧,∨) is a lattice, −0 = 1,
−1 = 0.
(℘(X ),∩,∪,−, ∅,X ) for any set X .
Let T be the set of all theses of classical propositional logic. Let ϕ ∼ ψ
iff ϕ↔ ψ ∈ T . The family of all ∼-equivalence classes is a Boolean
algebra, whose operations are defined by: [ϕ ∧ ψ]∼ = [ϕ]∼ ∧ [ψ]∼,
[ϕ ∨ ψ]∼ = [ϕ]∼ ∨ [ψ]∼, [¬ψ]∼ = −[ψ]∼, 0 = [⊥]∼, 1 = [>]∼.
({0, a, b, 1},∧,∨,−, 0, 1), where a 6= b, a ∧ b = 0, a ∨ b = 1 (then
b = −a).
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Lattices

p q ¬p¬q

>

⊥

p ≡ q

p 6≡ q

p 9 q q 9 p

p ↑ qp ∨ q

p → qq → p

p ∧ q p ↓ q
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Lattices

A proper ideal J in a Boolean algebra A is maximal iff J is a prime
ideal, i.e.: for any a, b ∈ A, if a ∧ b ∈ J, then a ∈ J or b ∈ J.
A proper filter F in a Boolean algebra A is maximal (is an ultrafilter)
iff for any a, b ∈ A, if a ∨ b ∈ F , then a ∈ F or b ∈ F .
Theorem (representation of Boolean algebras). Any Boolean algebra
is isomorphic with a field of sets.
Theorem. A Boolean algebra A is atomic and complete iff it is
isomorphic with the field of all subsets of some set.
If J is a proper ideal in a Boolean algebra A, then the relation ∼J

defined by a ∼J b iff a ∧ −b ∈ J andb ∧ −a ∈ J is a congruence of A.
Each proper ideal in a Boolean algebra is a kernel of some
homomorphism.
Any two countable atomless Boolean algebras are isomorphic.
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Lattices

Let (A,∧,∨) be a lattice and x , y ∈ A. The greatest element in
{z ∈ A : x ∧ z 6 y}, if exists, is called the pseudocomplement of x
w.r.t. y and denoted by x ⇒ y .
In any finite distributive lattice there exists a pseudocomplement of x
w.r.t. y , for all x and y .
If x ⇒ y exists for any x , y ∈ A, then (A,⇒,∧,∨) is called an
implicative lattice. Each implicative lattice is distributive and contains
the unit 1 = x ⇒ x .
If in an implicative lattice (A,⇒,∧,∨) there exists zero 0, then we
can define the operation of pseudocomplement −x = x ⇒ 0 for all
x ∈ A. In this case z 6 −x iff x ∧ z = 0, and hence −x is the greatest
element of {z ∈ A : x ∧ z = 0}.
(A,⇒,∧,∨,−) is called a Heyting algebra (pseudoboolean algebra) iff
(A,⇒,∧,∨) is an implicative lattice with 0 and −x = x ⇒ 0 for all
x ∈ A.
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Lattices

The linearly ordered set {0, a, 1}, where 0 6 a 6 1) with operations
defined below is a Heyting algebra:

∧ 0 a 1
0 0 0 0
a 0 a a

1 0 a 1

∨ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

⇒ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

x −x
0 1
a 0
1 0

Here −x = 0 for all x 6= 0. The equality x ∨ −x = 1 does not hold in this
algebra because a ∨ −a = a ∨ (a⇒ 0) = a ∨ 0 = a 6= 1.

Each finite distributive lattice is a Heyting algebra.
Heyting algebras in which x ∨ −x = 1 are Boolean algebras.
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Topology

(X ,T ) is a topological space iff X is a set and T ⊆ ℘(X ) is a
topology, i.e. a family of open sets such that:

1 X ∈ T , ∅ ∈ T
2 if A ∈ T and B ∈ T , then A ∩ B ∈ T
3 if A ⊆ T , then

⋃
A ∈ T .

Complements of open sets are called closed sets. Let Ac = X − A.
cl(A) =

⋂
{F ∈ ℘(X ) : A ⊆ F ∧ X − F ∈ T} (closure of A).

int(A) =
⋃
{U ∈ T : U ⊆ A} (interior of A).

fr(A) = cl(A)− int(A) (boundary of A).
A is open (closed) iff A = int(A) (A = cl(A)).
(cl(A))c = int(Ac).
(int(A))c = cl(Ac).
U ⊆ X is a neighbourhood of x ∈ X iff x ∈ V ⊆ U for some V ∈ T .

Jerzy Pogonowski (UAM) Algebraic Logic 2022 32 / 39



Topology

Topological spaces may be defined also in terms of closure (interior)
operators:

(X ,C ) is a topological space iff X is a set and C : ℘(X )→ ℘(X ) is a
closure operator in X , i.e.:

1 C (∅) = ∅
2 A ⊆ C (A)
3 C (A ∪ B) = C (A) ∪ C (B)
4 C (C (A)) = C (A).

Then T = {X − A ⊆ X : A = C (A)} is a topology on X and
C (A) = cl(A).
(X , I ) is a topological space iff X is a set and I : ℘(X )→ ℘(X ) is an
interior operator in X , i.e.:

1 I (X ) = X
2 I (A) ⊆ A
3 I (A ∩ B) = I (A) ∩ I (B)
4 I (I (A)) = I (A).

Then T = {A ⊆ X : A = I (A)} is a topology on X and I (A) = int(A).
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Topology

By a Hausdorff space we mean a topological space in which any two
distinct elements have disjoint neighbourhoods.
A topological space (X ,T ) is compact iff any covering of X by open
sets contains a finite subcovering of X .
A topological space (X ,T ) is connected iff X is not the union of two
disjoint open sets.
A set A is regularly open in (X ,T ) iff A = int(cl(A)) (this is
equivalent to fr(A) = fr(cl(A))).
A topological space (X ,T ) is totally disconnected iff ∅ and all
one-element sets are the only connected sets in (X ,T ).
B ⊆ ℘(X ) is a base of topology T on X iff each element of T is a
union of some subfamily of B.
If (X ,T ) is a topological space, then T is a Heyting algebra in which
A⇒ B = int(Ac ∪ B).
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Topology

Let UB be the family of all ultrafilters in a Boolean algebra B.
For any x ∈ B let u(x) = {U ∈ UB : x ∈ U}.
Then {u(x) : x ∈ B} is a base of topology in UB and UB with this
topology is called the Stone space of B.
The map u : B → ℘(UB) is an isomorphism of B on the field of sets
which are simultaneously open and closed in this topology.
The Stone space of a Boolean algebra B is a compact and totally
disconnected Hausdorff space.
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Topology

Another definition of Boolean algebras:

We say that A = (A,∧,∨,−, .,÷) is a Boolean algebra iff
1 (a ∧ b) ∨ c = (b ∨ c) ∧ (a ∨ c)
2 (a ∨ b) ∧ c = (b ∧ c) ∨ (a ∧ c)
3 a ∨ (b ∧ −b) = a
4 a ∧ (b ∨ −b) = a
5 a . b = −a ∨ b
6 a÷ b = (a . b) ∧ (b . a).

. is called codifference, ÷ is called symmetric codifference.
For any a and b: (a ∨ −a) = (b ∨ −b) and (a ∧ −a) = (b ∧ −b) and
hence we can define 0 = a ∧ −a and 1 = a ∨ −a. Let a 6 b (Boolean
ordering) iff (a . b) = 1.
U is called a normal ultrafilter of A = (A,∧,∨,−, .,÷, ◦) iff U is an
ultrafilter and for any a, b ∈ A: a ◦ b ∈ U iff a = b.
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Topology

A = (A,∧,∨,−, .,÷, I ) is called a topological Boolean algebra iff
A = (A,∧,∨,−, .,÷) is a Boolean algebra and I is an interior
operator such that:

1 I (1) = 1
2 I (a) 6 a
3 I (a ∧ b) = I (a) ∧ I (b)
4 I (I (a)) = I (a).

A = (A,∧,∨,−, .,÷, ◦) is called a B-algebra iff A = (A,∧,∨,−, .,÷)
is a Boolean algebra and ◦ is a binary operation on A.
A B-algebra A = (A,∧,∨,−, .,÷, ◦) is called a TB-algebra iff for any
a, b, c, d ∈ A:

1 a ◦ a = 1
2 (a ◦ b) 6 (a÷ b)
3 (a ◦ b) ∧ (c ◦ d) 6 (a � c) ◦ (b � d), where � ∈ {∧,∨, ◦}.
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Topology

For any TB-algebra A = (A,∧,∨,−, .,÷, ◦) and any a ∈ A the
operation I defined by I (a) = a ◦ 1 is a topological interior operation.
For any topological Boolean algebra A = (A,∧,∨,−, .,÷, I ) the
operation ◦ defined bya ◦ b = I (a÷ b) satisfies the conditions from
the definition of a TB-algebra.
TB-algebra A = (A,∧,∨,−, .,÷, ◦) is called well-connected iff for
any a, b, c, d ∈ A: if (a ◦ b) ∨ (c ◦ d) = 1, then a = b or c = d .
Theorem. There exists a normal ultrafilter in a TB-algebra
A = (A,∧,∨,−, .,÷, ◦) iff this algebra is well-connected.
A = (A,∧,∨,−, .,÷, ◦) is called a Henle algebra iff
A = (A,∧,∨,−, .,÷) is a Boolean algebra and a ◦ b = 1 for a = b
and a ◦ b = 0 for a 6= b.
Each Henle algebra is a TB-algebra. Interior operator I in Henle
algebra is defined by I (a) = a ◦ 1. Then I (a) = 1 for a = 1 and
I (a) = 0 for a 6= 1. Each ultrafilter in A = (A,∧,∨,−, .,÷) is normal
in this algebra.
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