Algebraic Logic

Jerzy Pogonowski

Dept. of Logic and Cognitive Science AMU www.kognitywistyka.amu.edu.pl pogon@amu.edu.pl

2022

Contents:

- Algebras
- Congruences
- Consequence operators
- Matrices
- Lattices
- Topology

Algebras

- Signature: $\sigma = (\Omega, \tau)$, where $\Omega = \{\omega_1, \dots, \omega_n\}$ is a set of function symbols and τ is the arity function.
- Algebra: $\mathbf{A} = (A, \omega_1^{\mathbf{A}}, \dots, \omega_n^{\mathbf{A}})$, where A is a set and $\omega_1^{\mathbf{A}}, \dots, \omega_n^{\mathbf{A}}$ are operations on $A(\omega_i^{\mathbf{A}})$ is the denotation of ω_i in \mathbf{A}).
- Formal language as an algebra: $\mathbf{S} = (S, \circ_1, \dots, \circ_n)$, where S is the set of all formulas and \circ_1, \dots, \circ_n are propositional functors. Let Var be the set of propositional variables.
- $\mathbf{B} = (B, \omega_1^{\mathbf{B}}, \dots, \omega_n^{\mathbf{B}})$ is a subalgebra of $\mathbf{A} = (A, \omega_1^{\mathbf{A}}, \dots, \omega_n^{\mathbf{A}})$ iff:
 - B ⊆ A and B is closed with respect to all operations ω_i^A
 ω_i^B = ω_i^A ↾ B^{τ(ω_i)}, where f ↾ X denotes restriction of f to X.
- $Sg^{\mathbf{A}}(X)$ the least subalgebra of **A** containing $X \subseteq A$.
- X is the set of generators of A iff $Sg^{A}(X) = A$.

Algebras

- $h: A \to B$ is a homomorphism of **A** into **B**, if for all $\omega_i \in \Omega$ $(1 \le n)$ and all $a_1, \ldots, a_{\tau_{\omega_i}}: h(\omega_i^{\mathbf{A}}(a_1, \ldots, a_{\tau_{\omega_i}})) = \omega_i^{\mathbf{B}}(h(a_1), \ldots, h(a_{\tau_{\omega_i}}))$.
- \bullet $\mathit{Hom}(A,B)$: the set of all homomorphisms from A into B.
- Isomorphism: an injective onto homomorphism.
- A and B are *isomorphic* iff there exists an isomorphism of A onto B.
- If $f : \mathbf{A} \to \mathbf{B}$ is a homomorphism, then the relation $ker_f \subseteq dom(\mathbf{A}) \times dom(\mathbf{A})$ defined by $x \ ker_f \ y$ iff f(x) = f(y) is called the *kernel* of f.
- Algebra A is *free* in a class K, if there exists a set X of generators of A such that for any B ∈ K and any map f : X → B there exists a homomorphism g : A → B such that g ↾ X = f.
- Algebra A is *absolutely free*, if it is free in the class of all algebras similar to it.

- θ is a congruence of an algebra $\mathbf{A} = (A, \omega_1^{\mathbf{A}}, \dots, \omega_n^{\mathbf{A}})$ iff:
 - θ is an equivalence relation of A;
 for all 1 ≤ i ≤ n and all a₁, b₁,..., a_{τωi}, b_{τωi} ∈ A: if a₁θb₁,..., a_{τωi}θb_{τωi}, then ω_i^A(a₁,..., a_{τωi})θω_i^A(b₁,..., b_{τωi}).
- Con(A): the set of all congruences of A.
- $\mathbf{A}/\theta = (A/\theta, \omega_1^{\mathbf{A}/\theta}, \dots, \omega_n^{\mathbf{A}/\theta})$ is the quotient algebra of \mathbf{A} with respect to $\theta \in Con(\mathbf{A})$, if for all $1 \leq i \leq n$ and $a_1, \dots, a_{\tau_{\omega_i}} \in A$: $\omega_i^{\mathbf{A}/\theta}([a_1]_{\theta}, \dots, [a_{\tau_{\omega_i}}]_{\theta}) = [\omega_i^{\mathbf{A}}(a_1, \dots, a_{\tau_{\omega_i}})]_{\theta}.$
- If $f : \mathbf{A} \to \mathbf{B}$ is a homomorphism, then the relation $\sim_f \subseteq (dom(\mathbf{A}))^2$ defined by $x \sim_f y$ iff f(x) = f(y) is a congruence of \mathbf{A} .
- If θ is a congruence of **A**, then the canonical map $k_{\theta} : \mathbf{A} \to \mathbf{A}/\theta$, defined by $k_{\theta}(a) = a/\theta$ is a homomorphism (here a/θ is an abbreviation of $[a]_{\theta}$).
- Algebra A is *simple* iff its only congruences are: the identity and the full relation.

Let f : A → B be a surjective homomorphism. If θ = ker_f, then there exists exactly one isomorphism h : A/θ → B such that h ∘ k_θ = f.

- Let $\mathbf{S} = (S, F_1, \dots, F_n)$ be a propositional language.
- $C : \wp(S) \to \wp(S)$ is a *consequence* (operator) in **S** iff for all $X, Y \subseteq S$:
 - **3** $X \subseteq C(X)$ (reflexivity)**3** if $X \subseteq Y$, then $C(X) \subseteq C(Y)$ (monotonicity)**3** $C(C(X)) \subseteq C(X)$ (idempotency).

• Let Fin(X) denote the set of all finite subsets of X. We say that C is:

- If initary iff $C(X) = \bigcup \{ C(Y) : Y \in Fin(X) \}$ for all $X \subseteq S$;
- Compact iff for each Y ⊆ S there exists X ∈ Fin(Y) such that: if C(Y) = S, then C(X) = S;
- 3 consistent iff $C(\emptyset) \neq S$;
- Post-complete iff $C(\{\alpha\}) = S$ for each $\alpha \notin C(\{\emptyset\})$;
- **inconsistent** iff C(X) = S for all $X \subseteq S$;
- **idle** iff C(X) = X for all $X \subseteq S$.
- For consequences C_1 and C_2 in **S** let $C_1 \leq C_2$ iff $C_1(X) \subseteq C_2(X)$, for all $X \subseteq S$. The family of all consequences in **S** is a complete lattice.

- A set $X \subseteq S$ is *C*-closed (*C*-theory) iff X = C(X). Let $Th(C) = \{X \subseteq S : X = C(X)\}.$
- A family of sets is a *closure system* iff it is closed under set intersections.
- The family of all C-theories is a closure system.
- If $\mathcal{X} \subseteq \wp(S)$ is a closure system, then the operation C defined by $C(X) = \bigcap \{Y \in \mathcal{X} : X \subseteq Y\}$ for all $X \subseteq S$ is a consequence in **S**.
- The following conditions are equivalent:
- The following conditions are equivalent:
 - C is finitary.
 - **2** Th(C) is inductive.
 - Th(C) is closed under ultraproducts.

- A set $X \subseteq S$ is:
 - C-consistent iff $C(X) \neq S$;
 - 2 *C-maximal* iff X is C-consistent and $C(X \cup \{\alpha\}) = S$ for all $\alpha \notin C(X)$;
 - So *C*-axiomatizable iff there exists a finite set *Y* such that C(X) = C(Y);
 - *C-independent* iff $\alpha \notin C(X \{\alpha\})$, for each $\alpha \in X$.
- If X is C-maximal, then C(X) is ⊆-maximal element in the family of all C-consistent theories.
- If C is finitary, then no infinite C-independent set is C-axiomatizable.
- If *C* is finitary in a countable language and there exists an infinite *C*-independent set, then:
 - **1** Th(C) is uncountable.
 - 2 There exist countably many sets C(X), where X is finite.
 - There exist uncountably many sets C(X), where C(X) is C-axiomatizable.

- Any relation $r \subseteq \wp(S) \times S$ is called a *rule of inference* in **S**.
- Let \mathbb{R}_S denote the set of all rules of inference in **S**.
- Any $(X, \alpha) \in r$ is called a *sequent* of r.
- Any pair (R, X), where $R \subseteq \mathbb{R}_S$ and $X \subseteq S$ is called a sentential logic (a logical system). If $\mathcal{L} = (R, X)$ is a sentential logic, then:
 - **1** *R* is the set of *primitive rules* of \mathcal{L}
 - **2** X is the set of *axioms* of \mathcal{L} .
- Let Cld(R, X) iff for all r ∈ R, all P ⊆ S and all α ∈ S: if (P, α) ∈ r and P ⊆ X, then α ∈ X.
- For any $X \subseteq S$ and $R \subseteq \mathbb{R}_S$ let: $C(R, X) = \bigcap \{ Y \subseteq S : X \subseteq Y \text{ and } Cld(R, Y) \}.$
- C(R, X) = X iff Cld(R, X), for any $X \subseteq S$ and $R \subseteq \mathbb{R}_S$.
- Each pair (R, X), where $R \subseteq \mathbb{R}_S$ determines a consequence $C_{R,X}$ in **S**: $C_{R,X}(Y) = C(R, X \cup Y)$.
- For any finitary consequence C there exist: a set X ⊆ S and a set R ⊆ ℝ_S such that C = C_{R,X}. If C = C_{R,X}, then (R, X) is called a base of C.

- Let $r \in Adm(R, X)$ iff $C(R \cup \{r\}, X) \subseteq C(R, X)$ (admissible rules w.r.t. $X \subseteq S$ and $R \subseteq \mathbb{R}_S$).
- Let $r \in \text{Der}(R, X)$ iff $C(R \cup \{r\}, X \cup Y) \subseteq C(R, X \cup Y)$, for all $Y \subseteq S$ (derivable rules w.r.t. $X \subseteq S$ and $R \subseteq \mathbb{R}_S$).
- It follows from these definitions that:

●
$$r \in Adm(R, X)$$
 iff $Cld(\{r\}, C(R, X))$.
● $r \in Der(R, X)$ iff $Cld(\{r\}, C(R, X \cup Y))$, for all $Y \subseteq S$.

 $I \subseteq Sci(R,X) = \bigcap \{ Adm(R, X \cup Y) : Y \subseteq S \}.$

• Admissible and derivable rules can be also defined in terms of consequence operators:

1
$$r \in \text{DER}(C)$$
 iff $\alpha \in C(P)$, for all $(P, \alpha) \in r$;
2 $r \in \text{ADM}(C)$ iff $P \subseteq C(\emptyset)$ implies $\alpha \in C(\emptyset)$, for all $(P, \alpha) \in r$.

- Each substitution $e: Var \to S$ can be extended to a homomorphism $h^e: S \to S$.
- The rule of substitution r_{*} is defined by: ({α}, β) ∈ r_{*} iff β = h^e(α), for some substitution e : Var → S.
- $Sb(X) = C(\{r_*\}, X) = \{\alpha : \alpha \in h^e(X) \text{ for some } e : Var \to S\}.$
- We say that a rule $r \in \mathbb{R}_S$ is structural iff $(P, \alpha) \in r$ implies that $(h^e(P), h^e(\alpha)) \in r$, for all $e : Var \to S$.
- A system (R, X) (where $R \subseteq \mathbb{R}_S$, $X \subseteq S$) is *invariant* iff $R \subseteq$ Struct and X = Sb(X).
- A sequent (P, α) is a *basic sequent* of r iff
 r = {(h^e(P), h^e(α)) : for all substitutions e}. Rules possessing a basic sequent are called *standard*.
- We say that a consequence C is structural iff $h^e C(X) \subseteq C(h^e X)$ for all $X \subseteq S$ and substitutions e.
- C is structural iff Th(C) is closed w.r.t. counterimages of substitutions.

• Lindenbaum's Lemma. If a system (R, A) is compact and $C(R, A \cup X) \neq S$, then there exists a set $Y \subseteq S$ such that:

•
$$C(R, A \cup X) \subseteq C(R, A \cup Y) \neq S$$

• $C(R, A \cup Y) = Y$
• $C(R, A \cup Y) = S$ for each $\alpha \notin Y$.

- By the *degree of completeness* of the system (R, A) we mean the cardinality of the set $\{C(R, A \cup X) : X \subseteq S\}$.
- If C is a consequence determined by (R, A), then by the degree of completeness of C we mean the cardinality of the set {C(X) : X ⊆ S} (i.e. of the set Th(C)).

- M = (A, A*) is called a *logical matrix* iff A is an algebra similar to the algebra S and A* ⊆ A is the set of *distinguished values*.
- $\alpha \in E(\mathfrak{M})$ iff $h^{\nu}(\alpha) \in A^*$, for all $\nu : Var \to A$.
- $E(\mathfrak{M})$ is the set of all *tautologies* of \mathfrak{M} .

• Let
$$S_2 = (S_2, \rightarrow, \wedge, \vee, \leftrightarrow, \neg)$$
 and
 $\mathfrak{M}_2 = (\{0, 1\}, \{1\}, f^{\rightarrow}, f^{\wedge}, f^{\vee}, f^{\leftrightarrow}, f^{\neg})$, where:
1 $f^{\rightarrow}(x, y) = \min(1 - x + y, 1)$
2 $f^{\wedge}(x, y) = \min(x, y)$
3 $f^{\vee}(x, y) = \max(x, y)$
4 $f^{\leftrightarrow}(x, y) = \max(\min(1 - x, 1 - y), \min(x, y))$
5 $f^{\neg}(x) = 1 - x$.
• Let $S^{CKAN} = (S^{CKAN}, \rightarrow, \wedge, \vee, \neg)$ and
1 $\mathfrak{M}_3 = (\{0, 1, 2\}, \{2\}, \min(2, 2 - x + y), \min(x, y), \max(x, y), 2 - x).$
2 $\mathfrak{M}_T = (\mathcal{O}(T), \{T\}, T - cl(X - Y), X \cap Y, X \cup Y, T - cl(X))$, where
 $(T, \mathcal{O}(T))$ is a T_1 -topological space.

- Any logical matrix M = (A, A*) determines a matrix consequence M: α ∈ M(X) iff for each v : At → A, if h^v(X) ⊆ A*, then h^v(α) ∈ A*.
 E(M) = M(Ø).
- Any matrix consequence is structural.
- Let $\mathfrak{M} = (\mathbf{A}, A^*).$
 - Let $X \in Sat(\mathfrak{M})$ iff there exists a valuation $v : Var \to A$ such that $h^{v}(X) \subseteq A^{*}$.
 - Let $Sat_v = (h^v)^{-1}(A^*)$.
 - $E(\mathfrak{M}) = \bigcap_{v:At \to A} \operatorname{Sat}_{v}$.
 - $Sb[E(\mathfrak{M})] \subseteq E(\mathfrak{M}).$
 - r ∈ V(𝔅) iff for all P ⊆ S and α ∈ S: if (P, α) ∈ r and P ⊆ E(𝔅), then α ∈ E(𝔅) (rules valid in 𝔅);
 - $r \in N(\mathfrak{M})$ iff for all $P \subseteq S$, $\alpha \in S$ and $v : Var \to S$: if $(P, \alpha) \in r$ and $h^{v}[P] \subseteq A^{*}$, then $h^{v}(\alpha) \in A^{*}$ (rules *normal* in \mathfrak{M}).

- $N(\mathfrak{M}) = \operatorname{Der}(\overrightarrow{\mathfrak{M}})$
- $V(\mathfrak{M}) = \operatorname{Adm}(\overrightarrow{\mathfrak{M}})$
- $r_* \in V(\mathfrak{M}) N(\mathfrak{M})$, if $\emptyset \subsetneq A^* \subsetneq A$.
- Modus ponens rule r_0 is valid and normal in \mathfrak{M}_3 , while the rule $\frac{\neg \varphi \rightarrow \varphi}{\varphi}$ is not valid in \mathfrak{M}_3 .
- If $X \subseteq E(\mathfrak{M})$ and $R \subseteq V(\mathfrak{M})$, then $C(R, X) \subseteq E(\mathfrak{M})$.
- Let $\mathfrak{M} = (\mathbf{A}, A^*)$ and $\mathfrak{N} = (\mathbf{B}, B^*)$ be similar matrices.
 - \mathfrak{M} is a submatrix of \mathfrak{N} iff **A** is a subalgebra of **B** and $A^* = A \cap B^*$.
 - \mathfrak{M} is *isomorphic* with \mathfrak{N} iff there exists an isomorphism *h* of **A** on **B** such that for all $x \in A$: $x \in A^*$ iff $h(x) \in B^*$.
 - f: A → B is a homomorphism of M on N iff f is a surjective homomorphism of A on B and for all a ∈ A: a ∈ A* iff f(a) ∈ B*.
 - If \mathfrak{M} is a submatrix of \mathfrak{N} , then $E(\mathfrak{N}) \subseteq E(\mathfrak{M})$.
 - If there exists a homomorphism of \mathfrak{M} on \mathfrak{N} , then: $V(\mathfrak{M}) = V(\mathfrak{N})$, $N(\mathfrak{M}) \subseteq N(\mathfrak{N})$, $E(\mathfrak{M}) = E(\mathfrak{N})$.

- *R* is a congruence of the matrix M = (A, A*) iff R ∈ Con(A) and for all x, y ∈ A: if xRy and x ∈ A*, then y ∈ A*.
- $\mathfrak{M}/R = (\mathbf{A}/R, A^*/R)$ is a quotient matrix iff \mathbf{A}/R is a quotient algebra, R is a congruence of \mathfrak{M} and $A^*/R = \{[a]_R : a \in A^*\}$.
- If R is a congruence of \mathfrak{M} , then $\overrightarrow{\mathfrak{M}} = \overrightarrow{\mathfrak{M}/R}$.
- $\prod_{t \in T} \mathfrak{M}_t = (\prod_{t \in T} \mathbf{A}_t, \prod_{t \in T} A_t^*)$ is a product of a family $\{\mathfrak{M}_t\}_{t \in T}$ of similar matrices.

•
$$E(\prod_{t\in T}\mathfrak{M}_t)=\bigcap\{E(\mathfrak{M}_t):t\in T\}.$$

- For any R ⊆ ℝ_S and X ⊆ S, the matrix M^{R,X} = (S, C_R(X)) is called the Lindenbaum matrix of (R, X).
- $E(\mathfrak{M}^{R,X}) = \{ \alpha : Sb(\alpha) \subseteq C_R(X) \}.$
- If $r_* \in \operatorname{Adm}(R, X)$, then $E(\mathfrak{M}^{R, X}) = C_R(X)$.
- If r_{*} ∈ Adm(R, X), then each structural rule valid in M^{R,X} is normal in M^{R,X}.

- Let (R, X) be a logical system in a language **S** and let \mathfrak{M} be a matrix similar to **S**. If $E(\mathfrak{M}) = C_R(X) = C_{R,X}(\emptyset)$, then we say that \mathfrak{M} is weakly adequate for (R, X).
- Lindenbaum's Theorem on weak adequacy. For any logical system (R, X) such that r_{*} ∈ R and all rules in R {r_{*}} are structural there exists a finite or countable matrix M such that C(R, X) = E(M) and R {r_{*}} ⊆ N(M).
- Examples:
 - \mathfrak{M}_2 is weakly adequate for classical propositional logic.
 - Modal logic *S*5 does not have a finite weakly adequate matrix, but it has an infinite weakly adequate matrix (Wajsberg).
 - Finite-valued Łukasiewicz logics have finite weakly adequate matrices.
 - Infinite-valued Łukasiewicz logic has an infinite weakly adequate matrix.
- If $C_R(X) = E(\mathfrak{M})$, then: $\operatorname{Adm}(R, X) = V(\mathfrak{M})$, $\operatorname{Der}(R, X) \subseteq V(\mathfrak{M})$, $N(\mathfrak{M}) \subseteq \operatorname{Adm}(R, X)$.

- We say that \mathfrak{M} is strongly adequate for (R, X) (or for consequence $C_{R,X}$) iff for all $Y \subseteq S$: $C_R(X \cup Y) = \overline{\mathfrak{M}}(Y)$.
- \mathfrak{M} is strongly adequate for (R, X) iff $N(\mathfrak{M}) = \text{Der}(R, X)$.
- A system (**S**, *C*) is *uniform* iff for all $X \subseteq S$, $Y \subseteq S$ and $\alpha \in S$: if $Var(X) \cap Var(Y) = Var(\{\alpha\}) \cap V(Y) = \emptyset$, $C(Y) \neq S$ and $\alpha \in C(X \cup Y)$, then $\alpha \in C(X)$.
- A system (**S**, *C*) is *separable* iff for any family \mathcal{R} of sets of formulas such that:
 - if $X, Y \in \mathcal{R}, X \neq Y$, then $Var(X) \cap Var(Y) = \emptyset$ ● $\bigcup \{Var(X) : X \in \mathcal{R}\} \neq Var$ ● if $X \in \mathcal{R}$, then $C(X) \neq S$,

we have $C(\bigcup \mathcal{R}) \neq S$.

• Theorem (Łoś, Suszko 1958, Wójcicki 1970). If a structural system (\mathbf{S}, C) is uniform and separable, then there exists a matrix \mathfrak{M} such that $C = C_{\mathfrak{M}}$.

- Let K be a class of similar matrices and define the consequence generated by K: α ∈ C_K(X) iff α ∈ C_M(X) for all M ∈ K.
- We say that \mathcal{K} is *adequate* for a system (\mathbf{S}, C) iff for any $X \subseteq S$ and $\alpha \in S$: $\alpha \in C(X)$ iff $\alpha \in C_{\mathcal{K}}(X)$.
- **Theorem**. For any system (**S**, *C*) the class of all its Lindenbaum's matrices (called the *Lindenbaum's bundle*) is adequate for (**S**, *C*).
- A matrix \mathfrak{M} for (\mathbf{S}, C) is called a *C*-matrix iff $C \leq C_{\mathfrak{M}}$.
- Let *Matr*(*C*) be the class of all *C*-matrices.
- If we divide each matrix in Matr(C) by its greatest congruence, then we obtain the class $Matr^*(C)$ of quotient matrices whose only congruence is the identity relation.

- Ordinal definition. A partially ordered set (L, ≤) is called a *lattice* iff for all a, b ∈ L there exist their meet (infimum) a ∧ b and join (supremum) a ∨ b.
- Algebraic definition. An algebra (L, \land, \lor) is called a *lattice* iff

- The above two definitions are equivalent.
- $(\wp(X), \cap, \cup)$ is a lattice for any set X.
- The family Eq(X) of all equivalence relations on a set X is a lattice: $\theta \land \psi = \theta \cap \psi, \ \theta \lor \psi = \theta \cup (\theta \circ \psi) \cup (\theta \circ \psi \circ \theta) \cup (\theta \circ \psi \circ \theta \circ \psi) \cup \dots$
- Con(A) is a lattice for any algebra A.

Pentagon N₅:

We have here: $x \land (y \lor z) = x \land 1 = x$ $(x \land y) \lor (x \land z) = 0 \lor z = z$ Diamond M₃:

We have here: $x \land (y \lor z) = x \land 1 = x$ $(x \land y) \lor (x \land z) = 0 \lor 0 = 0$ Two Hasse diagrams of the lattice $(\wp(\{a, b, c\}), \cap, \cup)$:

- $[a, b] = \{x \in L : a \leq x \leq b\}$ interval.
- If $[a, b] = \{a, b\}$, then we say that a precedes $b \ (a \prec b)$.
- A lattice is *bounded* iff it has the smallest element **0** and the greatest element **1**.
- Atoms: minimal elements in $(L \{0\}; \leq)$.
- Coatoms: maximal elements in $(L \{1\}; \leq)$.
- A lattice is *atomic* iff each non-zero element is preceded by an atom. A lattice is *atomless* iff it does not have any atoms.
- $\emptyset \neq \triangle \subseteq L$ is an *ideal* iff
 - **1** if $x, y \in \triangle$, then $x \lor y \in \triangle$
 - **2** if $x \in \triangle$ and $y \leq x$, then $y \in \triangle$.
- $\emptyset \neq \nabla \subseteq L$ is a *filter* iff
 - **1** if $x, y \in \nabla$, then $x \wedge y \in \nabla$
 - 2) if $x \in \nabla$ and $x \leq y$, then $y \in \nabla$.

- A lattice L is complete iff each subset A of L has a supremum ∨ A and an infimum ∧ A in L.
- Theorem (representation of complete lattices). For any complete lattice (L, ≤) there exists a closure operator C on L such that (L, ≤) is isomorphic with the lattice of all C-closed sets.
- Let (L, ≤) be a complete lattice. An element a ∈ L is compact iff for any X ⊆ L: if a ≤ ∨ X, then c ≤ ∨ Y, for some finite Y ⊆ X.
- A complete lattice (L, ≤) is algebraic iff any element of L is a join of compact elements of L.
- (L, \land, \lor) is modular iff for all $a, b, c \in L$: if $c \leq a$, then $a \land (b \lor c) = (a \land b) \lor c$.
- A lattice is modular iff it does not contain N_5 as a sublattice.
- (L, \land, \lor) is *distributive* iff for any $x, y, z \in X$: $x \land (y \lor z) = (x \land y) \lor (x \land z)$ and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.
- (L, \wedge, \vee) is distributive iff it contains neither N_5 nor M_3 as a sublattice.
- Any distributive lattice is isomorphic with a field of sets.

- (B, ∧, ∨, -, 0, 1) is a Boolean algebra iff (B, ∧, ∨, 0, 1) is a distributive lattice with zero 0 and unity 1 and for all x ∈ B there exists the complement -x of x such that (x ∨ (-x)) = 1 and (x ∧ (-x)) = 0.
- Examples:
 - $\mathbf{2} = (\{0,1\}, \land, \lor, -, 0, 1)$, where $(\{0,1\}, \land, \lor)$ is a lattice, -0 = 1, -1 = 0.
 - $(\wp(X), \cap, \cup, -, \emptyset, X)$ for any set X.
 - Let T be the set of all theses of classical propositional logic. Let φ ~ ψ iff φ ↔ ψ ∈ T. The family of all ~-equivalence classes is a Boolean algebra, whose operations are defined by: [φ ∧ ψ]_~ = [φ]_~ ∧ [ψ]_~, [φ ∨ ψ]_~ = [φ]_~ ∨ [ψ]_~, [¬ψ]_~ = -[ψ]_~, 0 = [⊥]_~, 1 = [⊤]_~.
 ({0, a, b, 1}, ∧, ∨, -, 0, 1), where a ≠ b, a ∧ b = 0, a ∨ b = 1 (then b = -a).

- A proper ideal J in a Boolean algebra A is maximal iff J is a prime ideal, i.e.: for any a, b ∈ A, if a ∧ b ∈ J, then a ∈ J or b ∈ J.
- A proper filter F in a Boolean algebra A is maximal (is an *ultrafilter*) iff for any a, b ∈ A, if a ∨ b ∈ F, then a ∈ F or b ∈ F.
- **Theorem** (representation of Boolean algebras). Any Boolean algebra is isomorphic with a field of sets.
- **Theorem**. A Boolean algebra **A** is atomic and complete iff it is isomorphic with the field of all subsets of some set.
- If J is a proper ideal in a Boolean algebra A, then the relation ~J defined by a ~J b iff a ∧ −b ∈ J and b ∧ −a ∈ J is a congruence of A.
- Each proper ideal in a Boolean algebra is a kernel of some homomorphism.
- Any two countable atomless Boolean algebras are isomorphic.

- Let (A, ∧, ∨) be a lattice and x, y ∈ A. The greatest element in {z ∈ A : x ∧ z ≤ y}, if exists, is called the *pseudocomplement* of x w.r.t. y and denoted by x ⇒ y.
- In any finite distributive lattice there exists a pseudocomplement of x w.r.t. y, for all x and y.
- If x ⇒ y exists for any x, y ∈ A, then (A, ⇒, ∧, ∨) is called an *implicative lattice*. Each implicative lattice is distributive and contains the unit 1 = x ⇒ x.
- If in an implicative lattice (A, ⇒, ∧, ∨) there exists zero 0, then we can define the operation of pseudocomplement -x = x ⇒ 0 for all x ∈ A. In this case z ≤ -x iff x ∧ z = 0, and hence -x is the greatest element of {z ∈ A : x ∧ z = 0}.
- $(A, \Rightarrow, \land, \lor, -)$ is called a *Heyting algebra* (pseudoboolean algebra) iff $(A, \Rightarrow, \land, \lor)$ is an implicative lattice with 0 and $-x = x \Rightarrow 0$ for all $x \in A$.

The linearly ordered set $\{0, a, 1\}$, where $0 \le a \le 1$) with operations defined below is a Heyting algebra:

\wedge	0	а	1	V	0	а	1	\Rightarrow	0	а	1	x	-x
0	0	0	0	0	0	а	1	0	1	1	1	0	1
а	0	а	а	а	а	а	1	а	0	1	1	а	0
1	0	а	1	1	1	1	1	1	0	а	1	1	0

Here $-x = \mathbf{0}$ for all $x \neq \mathbf{0}$. The equality $x \lor -x = \mathbf{1}$ does not hold in this algebra because $a \lor -a = a \lor (a \Rightarrow \mathbf{0}) = a \lor \mathbf{0} = a \neq \mathbf{1}$.

- Each finite distributive lattice is a Heyting algebra.
- Heyting algebras in which $x \lor -x = 1$ are Boolean algebras.

(X, T) is a topological space iff X is a set and T ⊆ ℘(X) is a topology, i.e. a family of open sets such that:

1
$$X \in T, \emptyset \in T$$

2 if $A \in T$ and $B \in T$, then $A \cap B \in T$
3 if $A \subseteq T$, then $\bigcup A \in T$.

• Complements of open sets are called *closed* sets. Let $A^c = X - A$.

•
$$cl(A) = \bigcap \{F \in \wp(X) : A \subseteq F \land X - F \in T\}$$
 (closure of A).

- $int(A) = \bigcup \{ U \in T : U \subseteq A \}$ (interior of A).
- fr(A) = cl(A) int(A) (boundary of A).
- A is open (closed) iff A = int(A) (A = cl(A)).
- $(cl(A))^{c} = int(A^{c}).$
- $(int(A))^{c} = cl(A^{c}).$
- $U \subseteq X$ is a *neighbourhood* of $x \in X$ iff $x \in V \subseteq U$ for some $V \in T$.

Topological spaces may be defined also in terms of closure (interior) operators:

- (X, C) is a topological space iff X is a set and C : ℘(X) → ℘(X) is a closure operator in X, i.e.:
 - $\begin{array}{l} \bullet C(\emptyset) = \emptyset \\ \bullet A \subseteq C(A) \\ \bullet C(A \cup B) = C(A) \cup C(B) \\ \bullet C(C(A)) = C(A). \end{array}$
- Then $T = \{X A \subseteq X : A = C(A)\}$ is a topology on X and C(A) = cl(A).
- (X, I) is a topological space iff X is a set and I : ℘(X) → ℘(X) is an interior operator in X, i.e.:

●
$$I(X) = X$$

● $I(A) \subseteq A$
● $I(A \cap B) = I(A) \cap I(B)$
● $I(I(A)) = I(A).$

• Then $T = \{A \subseteq X : A = I(A)\}$ is a topology on X and I(A) = int(A).

- By a *Hausdorff space* we mean a topological space in which any two distinct elements have disjoint neighbourhoods.
- A topological space (X, T) is *compact* iff any covering of X by open sets contains a finite subcovering of X.
- A topological space (X, T) is *connected* iff X is not the union of two disjoint open sets.
- A set A is regularly open in (X, T) iff A = int(cl(A)) (this is equivalent to fr(A) = fr(cl(A))).
- A topological space (X, T) is totally disconnected iff Ø and all one-element sets are the only connected sets in (X, T).
- B ⊆ ℘(X) is a base of topology T on X iff each element of T is a union of some subfamily of B.
- If (X, T) is a topological space, then T is a Heyting algebra in which $A \Rightarrow B = int(A^c \cup B)$.

- Let U_B be the family of all ultrafilters in a Boolean algebra **B**.
- For any $x \in B$ let $u(x) = \{U \in U_{\mathsf{B}} : x \in U\}.$
- Then {u(x) : x ∈ B} is a base of topology in U_B and U_B with this topology is called the Stone space of B.
- The map $u: B \to \wp(U_B)$ is an isomorphism of B on the field of sets which are simultaneously open and closed in this topology.
- The Stone space of a Boolean algebra **B** is a compact and totally disconnected Hausdorff space.

Another definition of Boolean algebras:

• We say that $\mathbf{A} = (A, \land, \lor, -, \triangleright, \div)$ is a *Boolean algebra* iff

$$(a \land b) \lor c = (b \lor c) \land (a \lor c)$$

$$(a \lor b) \land c = (b \land c) \lor (a \land c)$$

$$a \lor (b \land -b) = a$$

$$a \land (b \lor -b) = a$$

$$a \land (b \lor -b) = a$$

$$a \triangleright b = -a \lor b$$

$$a \div b = (a \triangleright b) \land (b \triangleright a).$$

- ▷ is called *codifference*, ÷ is called *symmetric codifference*.
- For any a and b: (a ∨ -a) = (b ∨ -b) and (a ∧ -a) = (b ∧ -b) and hence we can define 0 = a ∧ -a and 1 = a ∨ -a. Let a ≤ b (Boolean ordering) iff (a ▷ b) = 1.
- U is called a normal ultrafilter of A = (A, ∧, ∨, -, ▷, ÷, ∘) iff U is an ultrafilter and for any a, b ∈ A: a ∘ b ∈ U iff a = b.

A = (A, ∧, ∨, -, ▷, ÷, I) is called a *topological Boolean algebra* iff
 A = (A, ∧, ∨, -, ▷, ÷) is a Boolean algebra and I is an interior operator such that:

1
$$I(1) = 1$$

2 $I(a) ≤ a$
3 $I(a ∧ b) = I(a) ∧ I(b)$
4 $I(I(a)) = I(a).$

- A = (A, ∧, ∨, −, ▷, ÷, ∘) is called a B-algebra iff A = (A, ∧, ∨, −, ▷, ÷) is a Boolean algebra and ∘ is a binary operation on A.
- A B-algebra A = (A, ∧, ∨, −, ▷, ÷, ∘) is called a TB-algebra iff for any a, b, c, d ∈ A:

$$\begin{array}{l} \bullet a \circ a = 1 \\ \bullet & (a \circ b) \leqslant (a \div b) \\ \bullet & (a \circ b) \land (c \circ d) \leqslant (a \diamond c) \circ (b \diamond d), \text{ where } \diamond \in \{\land, \lor, \circ\}. \end{array}$$

- For any TB-algebra A = (A, ∧, ∨, −, ▷, ÷, ∘) and any a ∈ A the operation I defined by I(a) = a ∘ 1 is a topological interior operation.
- For any topological Boolean algebra A = (A, ∧, ∨, -, ▷, ÷, I) the operation ∘ defined bya ∘ b = I(a ÷ b) satisfies the conditions from the definition of a TB-algebra.
- TB-algebra A = (A, ∧, ∨, -, ▷, ÷, ∘) is called *well-connected* iff for any a, b, c, d ∈ A: if (a ∘ b) ∨ (c ∘ d) = 1, then a = b or c = d.
- **Theorem**. There exists a normal ultrafilter in a *TB*-algebra $\mathbf{A} = (A, \land, \lor, -, \triangleright, \div, \circ)$ iff this algebra is well-connected.
- A = (A, ∧, ∨, -, ▷, ÷, ∘) is called a *Henle algebra* iff
 A = (A, ∧, ∨, -, ▷, ÷) is a Boolean algebra and a ∘ b = 1 for a = b and a ∘ b = 0 for a ≠ b.
- Each Henle algebra is a *TB*-algebra. Interior operator *I* in Henle algebra is defined by *I*(*a*) = *a* ∘ 1. Then *I*(*a*) = 1 for *a* = 1 and *I*(*a*) = 0 for *a* ≠ 1. Each ultrafilter in **A** = (*A*, ∧, ∨, -, ⊳, ÷) is normal in this algebra.

- Burris, S., Sankappanavar, H.P. 1981. *A course in universal algebra*. Springer-Verlag.
- Łukasiewicz, J., Tarski, A. 1930. Untersuchungen über den Aussagenkalkül. *Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie* Cl III, 23, 30–50.
- Łoś, J., Suszko, R. 1958. Remarks on sentential logics. Indagationes Mathematicae 20, 177–189.
- Pogorzelski, W.A., Wojtylak, P. 2008. *Completeness theory for propositional logics.* Birkhäuser, Basel Boston Berlin.
- Wójcicki, R. 1984. *Lectures on propositional calculi.* Ossolineum, Wrocław.