Algebraic Logic

Jerzy Pogonowski

Dept. of Logic and Cognitive Science AMU www.kognitywistyka.amu.edu.pl
pogon@amu.edu.pl
2022

Contents:

- Algebras
- Congruences
- Consequence operators
- Matrices
- Lattices
- Topology
- Signature: $\sigma=(\Omega, \tau)$, where $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a set of function symbols and τ is the arity function.
- Algebra: $\mathbf{A}=\left(A, \omega_{1}^{\mathbf{A}}, \ldots, \omega_{n}^{\mathbf{A}}\right)$, where A is a set and $\omega_{1}^{\mathbf{A}}, \ldots, \omega_{n}^{\mathbf{A}}$ are operations on A ($\omega_{i}^{\mathbf{A}}$ is the denotation of ω_{i} in \mathbf{A}).
- Formal language as an algebra: $\mathbf{S}=\left(S, o_{1}, \ldots, \circ_{n}\right)$, where S is the set of all formulas and $\circ_{1}, \ldots, \circ_{n}$ are propositional functors. Let Var be the set of propositional variables.
- $\mathbf{B}=\left(B, \omega_{1}^{\mathbf{B}}, \ldots, \omega_{n}^{\mathbf{B}}\right)$ is a subalgebra of $\mathbf{A}=\left(A, \omega_{1}^{\mathbf{A}}, \ldots, \omega_{n}^{\mathbf{A}}\right)$ iff:
(1) $B \subseteq A$ and B is closed with respect to all operations $\omega_{i}^{\mathbf{A}}$
(2) $\omega_{i}^{\mathbf{B}}=\omega_{i}^{\mathbf{A}} \upharpoonright B^{\tau\left(\omega_{i}\right)}$, where $f \upharpoonright X$ denotes restriction of f to X.
- $\operatorname{Sg}^{\mathbf{A}}(X)$ the least subalgebra of \mathbf{A} containing $X \subseteq A$.
- X is the set of generators of \mathbf{A} iff $S g^{\mathbf{A}}(X)=\mathbf{A}$.
- $h: A \rightarrow B$ is a homomorphism of \mathbf{A} into \mathbf{B}, if for all $\omega_{i} \in \Omega(1 \leqslant n)$ and all $a_{1}, \ldots, a_{\tau_{\omega_{i}}}: h\left(\omega_{i}^{\mathbf{A}}\left(a_{1}, \ldots, a_{\tau_{\omega_{i}}}\right)\right)=\omega_{i}^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{\tau_{\omega_{i}}}\right)\right)$.
- $\operatorname{Hom}(\mathbf{A}, \mathbf{B})$: the set of all homomorphisms from \mathbf{A} into \mathbf{B}.
- Isomorphism: an injective onto homomorphism.
- \mathbf{A} and \mathbf{B} are isomorphic iff there exists an isomorphism of \mathbf{A} onto \mathbf{B}.
- If $f: \mathbf{A} \rightarrow \mathbf{B}$ is a homomorphism, then the relation $\operatorname{ker}_{f} \subseteq \operatorname{dom}(\mathbf{A}) \times \operatorname{dom}(\mathbf{A})$ defined by x ker $_{f} y$ iff $f(x)=f(y)$ is called the kernel of f.
- Algebra \mathbf{A} is free in a class \mathcal{K}, if there exists a set X of generators of A such that for any $\mathbf{B} \in \mathcal{K}$ and any map $f: X \rightarrow B$ there exists a homomorphism $g: \mathbf{A} \rightarrow \mathbf{B}$ such that $g \upharpoonright X=f$.
- Algebra \mathbf{A} is absolutely free, if it is free in the class of all algebras similar to it.
- θ is a congruence of an algebra $\mathbf{A}=\left(A, \omega_{1}^{\mathbf{A}}, \ldots, \omega_{n}^{\mathbf{A}}\right)$ iff:
(1) θ is an equivalence relation of A;
(2) for all $1 \leqslant i \leqslant n$ and all $a_{1}, b_{1}, \ldots, a_{\tau_{\omega_{i}}}, b_{\tau_{\omega_{i}}} \in A$:
if $a_{1} \theta b_{1}, \ldots, a_{\tau_{\omega_{i}}} \theta b_{\tau_{\omega_{i}}}$, then $\omega_{i}^{\mathbf{A}}\left(a_{1}, \ldots, a_{\tau_{\omega_{i}}}\right) \theta \omega_{i}^{\mathbf{A}}\left(b_{1}, \ldots, b_{\tau_{\omega_{i}}}\right)$.
- $\operatorname{Con}(\mathbf{A})$: the set of all congruences of \mathbf{A}.
- $\mathbf{A} / \theta=\left(A / \theta, \omega_{1}^{\mathbf{A} / \theta}, \ldots, \omega_{n}^{\mathbf{A} / \theta}\right)$ is the quotient algebra of \mathbf{A} with respect to $\theta \in \operatorname{Con}(\mathbf{A})$, if for all $1 \leqslant i \leqslant n$ and $a_{1}, \ldots, a_{\tau_{\omega_{i}}} \in A$: $\omega_{i}^{\mathbf{A} / \theta}\left(\left[a_{1}\right]_{\theta}, \ldots,\left[a_{\tau_{\omega_{i}}}\right]_{\theta}\right)=\left[\omega_{i}^{\mathbf{A}}\left(a_{1}, \ldots, a_{\tau_{\omega_{i}}}\right)\right]_{\theta}$.
- If $f: \mathbf{A} \rightarrow \mathbf{B}$ is a homomorphism, then the relation $\sim_{f} \subseteq(\operatorname{dom}(\mathbf{A}))^{2}$ defined by $x \sim_{f} y$ iff $f(x)=f(y)$ is a congruence of \mathbf{A}.
- If θ is a congruence of \mathbf{A}, then the canonical map $k_{\theta}: \mathbf{A} \rightarrow \mathbf{A} / \theta$, defined by $k_{\theta}(a)=a / \theta$ is a homomorphism (here a / θ is an abbreviation of $\left.[a]_{\theta}\right)$.
- Algebra \mathbf{A} is simple iff its only congruences are: the identity and the full relation.
- Let $f: \mathbf{A} \rightarrow \mathbf{B}$ be a surjective homomorphism. If $\theta=k e r_{f}$, then there exists exactly one isomorphism $h: \mathbf{A} / \theta \rightarrow \mathbf{B}$ such that $h \circ k_{\theta}=f$.

- Let $\mathbf{S}=\left(S, F_{1}, \ldots, F_{n}\right)$ be a propositional language.
- $C: \wp(S) \rightarrow \wp(S)$ is a consequence (operator) in \mathbf{S} iff for all $X, Y \subseteq S$:
(1) $X \subseteq C(X)$
(2) if $X \subseteq Y$, then $C(X) \subseteq C(Y)$
(3) $C(C(X)) \subseteq C(X)$
(reflexivity) (monotonicity) (idempotency).
- Let $\operatorname{Fin}(X)$ denote the set of all finite subsets of X. We say that C is:
(1) finitary iff $C(X)=\bigcup\{C(Y): Y \in \operatorname{Fin}(X)\}$ for all $X \subseteq S$;
(2) compact iff for each $Y \subseteq S$ there exists $X \in \operatorname{Fin}(Y)$ such that: if $C(Y)=S$, then $C(X)=S$;
(3) consistent iff $C(\emptyset) \neq S$;
(9) Post-complete iff $C(\{\alpha\})=S$ for each $\alpha \notin C(\{\emptyset\})$;
(5) inconsistent iff $C(X)=S$ for all $X \subseteq S$;
(6) idle iff $C(X)=X$ for all $X \subseteq S$.
- For consequences C_{1} and C_{2} in S let $C_{1} \leqslant C_{2}$ iff $C_{1}(X) \subseteq C_{2}(X)$, for all $X \subseteq S$. The family of all consequences in S is a complete lattice.
- A set $X \subseteq S$ is C-closed (C-theory) iff $X=C(X)$. Let $T h(C)=\{X \subseteq S: X=C(X)\}$.
- A family of sets is a closure system iff it is closed under set intersections.
- The family of all C-theories is a closure system.
- If $\mathcal{X} \subseteq \wp(S)$ is a closure system, then the operation C defined by $C(X)=\bigcap\{Y \in \mathcal{X}: X \subseteq Y\}$ for all $X \subseteq S$ is a consequence in S .
- The following conditions are equivalent:
(1) $C_{1} \leqslant C_{2}$
(2) $\operatorname{Th}\left(C_{2}\right) \subseteq \operatorname{Th}\left(C_{1}\right)$.
- The following conditions are equivalent:
(1) C is finitary.
(2) $\operatorname{Th}(C)$ is inductive.
(3) $\operatorname{Th}(C)$ is closed under ultraproducts.
- A set $X \subseteq S$ is:
(1) C-consistent iff $C(X) \neq S$;
(2) C-maximal iff X is C-consistent and $C(X \cup\{\alpha\})=S$ for all $\alpha \notin C(X)$;
(3) C-axiomatizable iff there exists a finite set Y such that $C(X)=C(Y)$;
(9) C-independent iff $\alpha \notin C(X-\{\alpha\})$, for each $\alpha \in X$.
- If X is C-maximal, then $C(X)$ is \subseteq-maximal element in the family of all C-consistent theories.
- If C is finitary, then no infinite C-independent set is C-axiomatizable.
- If C is finitary in a countable language and there exists an infinite C-independent set, then:
(1) $\operatorname{Th}(C)$ is uncountable.
(2) There exist countably many sets $C(X)$, where X is finite.
(3) There exist uncountably many sets $C(X)$, where $C(X)$ is C -axiomatizable.
- Any relation $r \subseteq \wp(S) \times S$ is called a rule of inference in \mathbf{S}.
- Let \mathbb{R}_{S} denote the set of all rules of inference in \mathbf{S}.
- Any $(X, \alpha) \in r$ is called a sequent of r.
- Any pair (R, X), where $R \subseteq \mathbb{R}_{S}$ and $X \subseteq S$ is called a sentential logic (a logical system). If $\mathcal{L}=(R, X)$ is a sentential logic, then:
(1) R is the set of primitive rules of \mathcal{L}
(2) X is the set of axioms of \mathcal{L}.
- Let $\operatorname{Cld}(R, X)$ iff for all $r \in R$, all $P \subseteq S$ and all $\alpha \in S$: if $(P, \alpha) \in r$ and $P \subseteq X$, then $\alpha \in X$.
- For any $X \subseteq S$ and $R \subseteq \mathbb{R}_{S}$ let: $C(R, X)=\bigcap\{Y \subseteq S: X \subseteq Y$ and $C l d(R, Y)\}$.
- $C(R, X)=X$ iff $C l d(R, X)$, for any $X \subseteq S$ and $R \subseteq \mathbb{R}_{S}$.
- Each pair (R, X), where $R \subseteq \mathbb{R}_{S}$ determines a consequence $C_{R, X}$ in S : $C_{R, X}(Y)=C(R, X \cup Y)$.
- For any finitary consequence C there exist: a set $X \subseteq S$ and a set $R \subseteq \mathbb{R}_{S}$ such that $C=C_{R, X}$. If $C=C_{R, X}$, then (R, X) is called a base of C.
- Let $r \in \operatorname{Adm}(R, X)$ iff $C(R \cup\{r\}, X) \subseteq C(R, X)$ (admissible rules w.r.t. $X \subseteq S$ and $\left.R \subseteq \mathbb{R}_{S}\right)$.
- Let $r \in \operatorname{Der}(R, X)$ iff $C(R \cup\{r\}, X \cup Y) \subseteq C(R, X \cup Y)$, for all $Y \subseteq S$ (derivable rules w.r.t. $X \subseteq S$ and $R \subseteq \mathbb{R}_{S}$).
- It follows from these definitions that:
(1) $r \in \operatorname{Adm}(R, X)$ iff $\operatorname{Cld}(\{r\}, C(R, X))$.
(2) $r \in \operatorname{Der}(R, X)$ iff $\operatorname{Cld}(\{r\}, C(R, X \cup Y))$, for all $Y \subseteq S$.
(3) $\operatorname{Der}(R, X)=\bigcap\{\operatorname{Adm}(R, X \cup Y): Y \subseteq S\}$.
(4) $\operatorname{Der}(R, X) \subseteq \operatorname{Adm}(R, X)$.
- Admissible and derivable rules can be also defined in terms of consequence operators:
(1) $r \in \operatorname{DER}(C)$ iff $\alpha \in C(P)$, for all $(P, \alpha) \in r$;
(2) $r \in \operatorname{ADM}(C)$ iff $P \subseteq C(\emptyset)$ implies $\alpha \in C(\emptyset)$, for all $(P, \alpha) \in r$.
- Each substitution $e: \operatorname{Var} \rightarrow S$ can be extended to a homomorphism $h^{e}: S \rightarrow S$.
- The rule of substitution r_{*} is defined by: $(\{\alpha\}, \beta) \in r_{*}$ iff $\beta=h^{e}(\alpha)$, for some substitution $e: V a r \rightarrow S$.
- $\operatorname{Sb}(X)=C\left(\left\{r_{*}\right\}, X\right)=\left\{\alpha: \alpha \in h^{e}(X)\right.$ for some $\left.e: \operatorname{Var} \rightarrow S\right\}$.
- We say that a rule $r \in \mathbb{R}_{S}$ is structural iff $(P, \alpha) \in r$ implies that $\left(h^{e}(P), h^{e}(\alpha)\right) \in r$, for all $e: \operatorname{Var} \rightarrow S$.
- A system (R, X) (where $R \subseteq \mathbb{R}_{S}, X \subseteq S$) is invariant iff $R \subseteq$ Struct and $X=S b(X)$.
- A sequent (P, α) is a basic sequent of r iff $r=\left\{\left(h^{e}(P), h^{e}(\alpha)\right)\right.$: for all substitutions $\left.e\right\}$. Rules possessing a basic sequent are called standard.
- We say that a consequence C is structural iff $h^{e} C(X) \subseteq C\left(h^{e} X\right)$ for all $X \subseteq S$ and substitutions e.
- C is structural iff $T h(C)$ is closed w.r.t. counterimages of substitutions.
- Lindenbaum's Lemma. If a system (R, A) is compact and $C(R, A \cup X) \neq S$, then there exists a set $Y \subseteq S$ such that:
(1) $C(R, A \cup X) \subseteq C(R, A \cup Y) \neq S$
(2) $C(R, A \cup Y)=Y$
(3) $C(R, A \cup Y \cup\{\alpha\})=S$ for each $\alpha \notin Y$.
- By the degree of completeness of the system (R, A) we mean the cardinality of the set $\{C(R, A \cup X): X \subseteq S\}$.
- If C is a consequence determined by (R, A), then by the degree of completeness of C we mean the cardinality of the set $\{C(X): X \subseteq S\}$ (i.e. of the set $T h(C)$).
- $\mathfrak{M}=\left(\mathbf{A}, A^{*}\right)$ is called a logical matrix iff \mathbf{A} is an algebra similar to the algebra \mathbf{S} and $A^{*} \subseteq A$ is the set of distinguished values.
- $\alpha \in E(\mathfrak{M})$ iff $h^{v}(\alpha) \in A^{*}$, for all $v: \operatorname{Var} \rightarrow A$.
- $E(\mathfrak{M})$ is the set of all tautologies of \mathfrak{M}.
- Let $\mathbf{S}_{2}=\left(S_{2}, \rightarrow, \wedge, \vee, \leftrightarrow, \neg\right)$ and $\left.\mathfrak{M}_{2}=\left(\{0,1\},\{1\}, f^{\rightarrow}, f^{\wedge}, f^{\vee}, f \leftrightarrow, f\right\urcorner\right)$, where:
(1) $f \rightarrow(x, y)=\min (1-x+y, 1)$
(2) $f^{\wedge}(x, y)=\min (x, y)$
(3) $f^{\vee}(x, y)=\max (x, y)$
(3) $f \leftrightarrow(x, y)=\max (\min (1-x, 1-y), \min (x, y))$
(5) $f\urcorner(x)=1-x$.
- Let $\mathbf{S}^{\text {CKAN }}=\left(S^{C K A N}, \rightarrow, \wedge, \vee, \neg\right)$ and
(1) $\mathfrak{M}_{3}=(\{0,1,2\},\{2\}, \min (2,2-x+y), \min (x, y), \max (x, y), 2-x)$.
(2) $\mathfrak{M}_{T}=(\mathcal{O}(T),\{T\}, T-c l(X-Y), X \cap Y, X \cup Y, T-c l(X))$, where $(T, \mathcal{O}(T))$ is a T_{1}-topological space.
- Any logical matrix $\mathfrak{M}=\left(\mathbf{A}, A^{*}\right)$ determines a matrix consequence $\overrightarrow{\mathfrak{M}}$: $\alpha \in \overrightarrow{\mathfrak{M}}(X)$ iff for each $v: A t \rightarrow A$, if $h^{v}(X) \subseteq A^{*}$, then $h^{v}(\alpha) \in A^{*}$.
- $E(\mathfrak{M})=\overrightarrow{\mathfrak{M}}(\emptyset)$.
- Any matrix consequence is structural.
- Let $\mathfrak{M}=\left(\mathbf{A}, A^{*}\right)$.
- Let $X \in \operatorname{Sat}(\mathfrak{M})$ iff there exists a valuation $v: \operatorname{Var} \rightarrow A$ such that $h^{v}(X) \subseteq A^{*}$.
- Let Sat ${ }_{v}=\left(h^{v}\right)^{-1}\left(A^{*}\right)$.
- $E(\mathfrak{M})=\bigcap_{v: A t \rightarrow A}$ Sat $_{v}$.
- $\operatorname{Sb}[E(\mathfrak{M})] \subseteq E(\mathfrak{M})$.
- $r \in V(\mathfrak{M})$ iff for all $P \subseteq S$ and $\alpha \in S$: if $(P, \alpha) \in r$ and $P \subseteq E(\mathfrak{M})$, then $\alpha \in E(\mathfrak{M})$ (rules valid in \mathfrak{M});
- $r \in N(\mathfrak{M})$ iff for all $P \subseteq S, \alpha \in S$ and $v: \operatorname{Var} \rightarrow S$: if $(P, \alpha) \in r$ and $h^{\nu}[P] \subseteq A^{*}$, then $h^{\nu}(\alpha) \in A^{*}$ (rules normal in \mathfrak{M}).
- $N(\mathfrak{M})=\operatorname{Der}(\overrightarrow{\mathfrak{M}})$
- $V(\mathfrak{M})=\operatorname{Adm}(\overrightarrow{\mathfrak{M}})$
- $r_{*} \in V(\mathfrak{M})-N(\mathfrak{M})$, if $\emptyset \varsubsetneqq A^{*} \varsubsetneqq A$.
- Modus ponens rule r_{0} is valid and normal in \mathfrak{M}_{3}, while the rule $\frac{\neg \varphi \rightarrow \varphi}{\varphi}$ is not valid in \mathfrak{M}_{3}.
- If $X \subseteq E(\mathfrak{M})$ and $R \subseteq V(\mathfrak{M})$, then $C(R, X) \subseteq E(\mathfrak{M})$.
- Let $\mathfrak{M}=\left(\mathbf{A}, A^{*}\right)$ and $\mathfrak{N}=\left(\mathbf{B}, B^{*}\right)$ be similar matrices.
- \mathfrak{M} is a submatrix of \mathfrak{N} iff \mathbf{A} is a subalgebra of \mathbf{B} and $A^{*}=A \cap B^{*}$.
- \mathfrak{M} is isomorphic with \mathfrak{N} iff there exists an isomorphism h of \mathbf{A} on \mathbf{B} such that for all $x \in A: x \in A^{*}$ iff $h(x) \in B^{*}$.
- $f: A \rightarrow B$ is a homomorphism of \mathfrak{M} on \mathfrak{N} iff f is a surjective homomorphism of \mathbf{A} on \mathbf{B} and for all $a \in A: a \in A^{*}$ iff $f(a) \in B^{*}$.
- If \mathfrak{M} is a submatrix of \mathfrak{N}, then $E(\mathfrak{N}) \subseteq E(\mathfrak{M})$.
- If there exists a homomorphism of \mathfrak{M} on \mathfrak{N}, then: $V(\mathfrak{M})=V(\mathfrak{N})$, $N(\mathfrak{M}) \subseteq N(\mathfrak{N}), E(\mathfrak{M})=E(\mathfrak{N})$.
- R is a congruence of the matrix $\mathfrak{M}=\left(\mathbf{A}, A^{*}\right)$ iff $R \in \operatorname{Con}(\mathbf{A})$ and for all $x, y \in A$: if $x R y$ and $x \in A^{*}$, then $y \in A^{*}$.
- $\mathfrak{M} / R=\left(\mathbf{A} / R, A^{*} / R\right)$ is a quotient matrix iff \mathbf{A} / R is a quotient algebra, R is a congruence of \mathfrak{M} and $A^{*} / R=\left\{[a]_{R}: a \in A^{*}\right\}$.
- If R is a congruence of \mathfrak{M}, then $\overrightarrow{\mathfrak{M}}=\overrightarrow{\mathfrak{M} / R}$.
- $\prod_{t \in T} \mathfrak{M}_{t}=\left(\prod_{t \in T} \mathbf{A}_{t}, \prod_{t \in T} A_{t}^{*}\right)$ is a product of a family $\left\{\mathfrak{M}_{t}\right\}_{t \in T}$ of similar matrices.
- $E\left(\prod_{t \in T} \mathfrak{M}_{t}\right)=\bigcap\left\{E\left(\mathfrak{M}_{t}\right): t \in T\right\}$.
- For any $R \subseteq \mathbb{R}_{S}$ and $X \subseteq S$, the matrix $\mathfrak{M}^{R, X}=\left(\mathrm{S}, C_{R}(X)\right)$ is called the Lindenbaum matrix of (R, X).
- $E\left(\mathfrak{M}^{R, X}\right)=\left\{\alpha: S b(\alpha) \subseteq C_{R}(X)\right\}$.
- If $r_{*} \in \operatorname{Adm}(R, X)$, then $E\left(\mathfrak{M}^{R, X}\right)=C_{R}(X)$.
- If $r_{*} \in \operatorname{Adm}(R, X)$, then each structural rule valid in $\mathfrak{M}^{R, X}$ is normal in $\mathfrak{M}^{R, X}$.
- Let (R, X) be a logical system in a language \mathbf{S} and let \mathfrak{M} be a matrix similar to S . If $E(\mathfrak{M})=C_{R}(X)=C_{R, X}(\emptyset)$, then we say that \mathfrak{M} is weakly adequate for (R, X).
- Lindenbaum's Theorem on weak adequacy. For any logical system (R, X) such that $r_{*} \in R$ and all rules in $R-\left\{r_{*}\right\}$ are structural there exists a finite or countable matrix \mathfrak{M} such that $C(R, X)=E(\mathfrak{M})$ and $R-\left\{r_{*}\right\} \subseteq N(\mathfrak{M})$.
- Examples:
- \mathfrak{M}_{2} is weakly adequate for classical propositional logic.
- Modal logic S5 does not have a finite weakly adequate matrix, but it has an infinite weakly adequate matrix (Wajsberg).
- Finite-valued $Ł u k a s i e w i c z ~ l o g i c s ~ h a v e ~ f i n i t e ~ w e a k l y ~ a d e q u a t e ~ m a t r i c e s . ~$
- Infinite-valued Łukasiewicz logic has an infinite weakly adequate matrix.
- If $C_{R}(X)=E(\mathfrak{M})$, then: $\operatorname{Adm}(R, X)=V(\mathfrak{M}), \operatorname{Der}(R, X) \subseteq V(\mathfrak{M})$, $N(\mathfrak{M}) \subseteq \operatorname{Adm}(R, X)$.
- We say that \mathfrak{M} is strongly adequate for (R, X) (or for consequence $\left.C_{R, X}\right)$ iff for all $Y \subseteq S: C_{R}(X \cup Y)=\overrightarrow{\mathfrak{M}}(Y)$.
- \mathfrak{M} is strongly adequate for (R, X) iff $N(\mathfrak{M})=\operatorname{Der}(R, X)$.
- A system (\mathbf{S}, C) is uniform iff for all $X \subseteq S, Y \subseteq S$ and $\alpha \in S$: if $\operatorname{Var}(X) \cap \operatorname{Var}(Y)=\operatorname{Var}(\{\alpha\}) \cap V(Y)=\emptyset, C(Y) \neq S$ and $\alpha \in C(X \cup Y)$, then $\alpha \in C(X)$.
- A system (\mathbf{S}, C) is separable iff for any family \mathcal{R} of sets of formulas such that:
(1) if $X, Y \in \mathcal{R}, X \neq Y$, then $\operatorname{Var}(X) \cap \operatorname{Var}(Y)=\emptyset$
(2) $\cup\{\operatorname{Var}(X): X \in \mathcal{R}\} \neq \operatorname{Var}$
(3) if $X \in \mathcal{R}$, then $C(X) \neq S$,
we have $C(\bigcup \mathcal{R}) \neq S$.
- Theorem (Łoś, Suszko 1958, Wójcicki 1970). If a structural system (S, C) is uniform and separable, then there exists a matrix \mathfrak{M} such that $C=C_{\mathfrak{M}}$.
- Let \mathcal{K} be a class of similar matrices and define the consequence generated by $\mathcal{K}: \alpha \in C_{\mathcal{K}}(X)$ iff $\alpha \in C_{\mathfrak{M}}(X)$ for all $\mathfrak{M} \in \mathcal{K}$.
- We say that \mathcal{K} is adequate for a system (\mathbf{S}, C) iff for any $X \subseteq S$ and $\alpha \in S: \alpha \in C(X)$ iff $\alpha \in C_{\mathcal{K}}(X)$.
- Theorem. For any system (S,C) the class of all its Lindenbaum's matrices (called the Lindenbaum's bundle) is adequate for (S, C).
- A matrix \mathfrak{M} for (S, C) is called a C-matrix iff $C \leqslant C_{\mathfrak{M}}$.
- Let $\operatorname{Matr}(C)$ be the class of all C-matrices.
- If we divide each matrix in $\operatorname{Matr}(C)$ by its greatest congruence, then we obtain the class $\operatorname{Matr}^{*}(C)$ of quotient matrices whose only congruence is the identity relation.
- Ordinal definition. A partially ordered set (L, \leqslant) is called a lattice iff for all $a, b \in L$ there exist their meet (infimum) $a \wedge b$ and join (supremum) $a \vee b$.
- Algebraic definition. An algebra (L, \wedge, \vee) is called a lattice iff
(L1) $a \wedge b=b \wedge a$
$\left(L 1^{\prime}\right) \quad a \vee b=b \vee a$
(L2) $a \wedge a=a$
(L2') $\quad a \vee a=a$
(L3) $\quad a \wedge(b \wedge c)=(a \wedge b) \wedge c \quad\left(L 3^{\prime}\right) \quad a \vee(b \vee c)=(a \vee b) \vee c$
(L4) $a \wedge(a \vee b)=a$
$\left(L 4^{\prime}\right) \quad a \vee(a \wedge b)=a$
- The above two definitions are equivalent.
- $(\wp(X), \cap, \cup)$ is a lattice for any set X.
- The family $E q(X)$ of all equivalence relations on a set X is a lattice: $\theta \wedge \psi=\theta \cap \psi, \theta \vee \psi=\theta \cup(\theta \circ \psi) \cup(\theta \circ \psi \circ \theta) \cup(\theta \circ \psi \circ \theta \circ \psi) \cup \ldots$
- $\operatorname{Con}(\mathbf{A})$ is a lattice for any algebra \mathbf{A}.

Pentagon N_{5} :

We have here:
$x \wedge(y \vee z)=x \wedge 1=x$
$(x \wedge y) \vee(x \wedge z)=0 \vee z=z$

Diamond M_{3} :

We have here:
$x \wedge(y \vee z)=x \wedge 1=x$
$(x \wedge y) \vee(x \wedge z)=0 \vee 0=0$

Two Hasse diagrams of the lattice $(\wp(\{a, b, c\}), \cap, \cup)$:

- $[a, b]=\{x \in L: a \leqslant x \leqslant b\}$ interval.
- If $[a, b]=\{a, b\}$, then we say that a precedes $b(a \prec b)$.
- A lattice is bounded iff it has the smallest element $\mathbf{0}$ and the greatest element 1.
- Atoms: minimal elements in $(L-\{\mathbf{0}\} ; \leqslant)$.
- Coatoms: maximal elements in ($L-\{\mathbf{1}\} ; \leqslant)$.
- A lattice is atomic iff each non-zero element is preceded by an atom.

A lattice is atomless iff it does not have any atoms.

- $\emptyset \neq \triangle \subseteq L$ is an ideal iff
(1) if $x, y \in \triangle$, then $x \vee y \in \triangle$
(2) if $x \in \triangle$ and $y \leqslant x$, then $y \in \triangle$.
- $\emptyset \neq \nabla \subseteq L$ is a filter iff
(1) if $x, y \in \nabla$, then $x \wedge y \in \nabla$
(2) if $x \in \nabla$ and $x \leqslant y$, then $y \in \nabla$.
- A lattice L is complete iff each subset A of L has a supremum $\bigvee A$ and an infimum $\bigwedge A$ in L.
- Theorem (representation of complete lattices). For any complete lattice (L, \leqslant) there exists a closure operator C on L such that (L, \leqslant) is isomorphic with the lattice of all C-closed sets.
- Let (L, \leqslant) be a complete lattice. An element $a \in L$ is compact iff for any $X \subseteq L$: if $a \leqslant \bigvee X$, then $c \leqslant \bigvee Y$, for some finite $Y \subseteq X$.
- A complete lattice (L, \leqslant) is algebraic iff any element of L is a join of compact elements of L.
- (L, \wedge, \vee) is modular iff for all $a, b, c \in L$: if $c \leqslant a$, then $a \wedge(b \vee c)=(a \wedge b) \vee c$.
- A lattice is modular iff it does not contain N_{5} as a sublattice.
- (L, \wedge, \vee) is distributive iff for any $x, y, z \in X$: $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ and $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.
- (L, \wedge, \vee) is distributive iff it contains neither N_{5} nor M_{3} as a sublattice.
- Any distributive lattice is isomorphic with a field of sets.
- ($B, \wedge, \vee,-, 0,1)$ is a Boolean algebra iff $(B, \wedge, \vee, 0,1)$ is a distributive lattice with zero 0 and unity 1 and for all $x \in B$ there exists the complement $-x$ of x such that $(x \vee(-x))=1$ and $(x \wedge(-x))=0$.
- Examples:
- $\mathbf{2}=(\{0,1\}, \wedge, \vee,-, 0,1)$, where $(\{0,1\}, \wedge, \vee)$ is a lattice, $-0=1$, $-1=0$.
- $(\wp(X), \cap, \cup,-, \emptyset, X)$ for any set X.
- Let T be the set of all theses of classical propositional logic. Let $\varphi \sim \psi$ iff $\varphi \leftrightarrow \psi \in T$. The family of all \sim-equivalence classes is a Boolean algebra, whose operations are defined by: $[\varphi \wedge \psi]_{\sim}=[\varphi]_{\sim} \wedge[\psi]_{\sim}$, $[\varphi \vee \psi]_{\sim}=[\varphi]_{\sim} \vee[\psi]_{\sim},[\neg \psi]_{\sim}=-[\psi]_{\sim}, 0=[\perp]_{\sim}, 1=[\top]_{\sim}$.
- $(\{0, a, b, 1\}, \wedge, \vee,-, 0,1)$, where $a \neq b, a \wedge b=0, a \vee b=1$ (then $b=-a)$.

- A proper ideal J in a Boolean algebra \mathbf{A} is maximal iff J is a prime ideal, i.e.: for any $a, b \in A$, if $a \wedge b \in J$, then $a \in J$ or $b \in J$.
- A proper filter F in a Boolean algebra \mathbf{A} is maximal (is an ultrafilter) iff for any $a, b \in A$, if $a \vee b \in F$, then $a \in F$ or $b \in F$.
- Theorem (representation of Boolean algebras). Any Boolean algebra is isomorphic with a field of sets.
- Theorem. A Boolean algebra \mathbf{A} is atomic and complete iff it is isomorphic with the field of all subsets of some set.
- If J is a proper ideal in a Boolean algebra \mathbf{A}, then the relation \sim_{J} defined by $a \sim J b$ iff $a \wedge-b \in J$ and $b \wedge-a \in J$ is a congruence of \mathbf{A}.
- Each proper ideal in a Boolean algebra is a kernel of some homomorphism.
- Any two countable atomless Boolean algebras are isomorphic.
- Let (A, \wedge, \vee) be a lattice and $x, y \in A$. The greatest element in $\{z \in A: x \wedge z \leqslant y\}$, if exists, is called the pseudocomplement of x w.r.t. y and denoted by $x \Rightarrow y$.
- In any finite distributive lattice there exists a pseudocomplement of x w.r.t. y, for all x and y.
- If $x \Rightarrow y$ exists for any $x, y \in A$, then $(A, \Rightarrow, \wedge, \vee)$ is called an implicative lattice. Each implicative lattice is distributive and contains the unit $1=x \Rightarrow x$.
- If in an implicative lattice $(A, \Rightarrow, \wedge, \vee)$ there exists zero 0 , then we can define the operation of pseudocomplement $-x=x \Rightarrow 0$ for all $x \in A$. In this case $z \leqslant-x$ iff $x \wedge z=0$, and hence $-x$ is the greatest element of $\{z \in A: x \wedge z=0\}$.
- $(A, \Rightarrow, \wedge, \vee,-)$ is called a Heyting algebra (pseudoboolean algebra) iff $(A, \Rightarrow, \wedge, \vee)$ is an implicative lattice with 0 and $-x=x \Rightarrow 0$ for all $x \in A$.

The linearly ordered set $\{\mathbf{0}, a, \mathbf{1}\}$, where $\mathbf{0} \leqslant a \leqslant \mathbf{1}$) with operations defined below is a Heyting algebra:

\wedge	$\mathbf{0}$	a	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
a	$\mathbf{0}$	a	a
$\mathbf{1}$	$\mathbf{0}$	a	$\mathbf{1}$

\vee	$\mathbf{0}$	a	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	a	$\mathbf{1}$
a	a	a	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

\Rightarrow	$\mathbf{0}$	a	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
a	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	a	$\mathbf{1}$

x	$-x$
$\mathbf{0}$	$\mathbf{1}$
a	0
$\mathbf{1}$	0

Here $-x=\mathbf{0}$ for all $x \neq \mathbf{0}$. The equality $x \vee-x=\mathbf{1}$ does not hold in this algebra because $a \vee-a=a \vee(a \Rightarrow 0)=a \vee 0=a \neq 1$.

- Each finite distributive lattice is a Heyting algebra.
- Heyting algebras in which $x \vee-x=1$ are Boolean algebras.
- (X, T) is a topological space iff X is a set and $T \subseteq \wp(X)$ is a topology, i.e. a family of open sets such that:
(1) $X \in T, \emptyset \in T$
(2) if $A \in T$ and $B \in T$, then $A \cap B \in T$
(3) if $\mathcal{A} \subseteq T$, then $\bigcup \mathcal{A} \in T$.
- Complements of open sets are called closed sets. Let $A^{c}=X-A$.
- cl $(A)=\bigcap\{F \in \wp(X): A \subseteq F \wedge X-F \in T\}$ (closure of A).
- $\operatorname{int}(A)=\bigcup\{U \in T: U \subseteq A\}$ (interior of A).
- $\operatorname{fr}(A)=c l(A)-\operatorname{int}(A)$ (boundary of $A)$.
- A is open (closed) iff $A=\operatorname{int}(A)(A=c l(A))$.
- $(c l(A))^{c}=\operatorname{int}\left(A^{c}\right)$.
- $(\operatorname{int}(A))^{c}=c l\left(A^{c}\right)$.
- $U \subseteq X$ is a neighbourhood of $x \in X$ iff $x \in V \subseteq U$ for some $V \in T$.

Topological spaces may be defined also in terms of closure (interior) operators:

- (X, C) is a topological space iff X is a set and $C: \wp(X) \rightarrow \wp(X)$ is a closure operator in X, i.e.:
(1) $C(\emptyset)=\emptyset$
(2) $A \subseteq C(A)$
(3) $C(A \cup B)=C(A) \cup C(B)$
(4) $C(C(A))=C(A)$.
- Then $T=\{X-A \subseteq X: A=C(A)\}$ is a topology on X and $C(A)=c l(A)$.
- (X, I) is a topological space iff X is a set and $I: \wp(X) \rightarrow \wp(X)$ is an interior operator in X, i.e.:
(1) $I(X)=X$
(2) $I(A) \subseteq A$
(3) $I(A \cap B)=I(A) \cap I(B)$
(3) $I(I(A))=I(A)$.
- Then $T=\{A \subseteq X: A=I(A)\}$ is a topology on X and $I(A)=\operatorname{int}(A)$.
- By a Hausdorff space we mean a topological space in which any two distinct elements have disjoint neighbourhoods.
- A topological space (X, T) is compact iff any covering of X by open sets contains a finite subcovering of X.
- A topological space (X, T) is connected iff X is not the union of two disjoint open sets.
- A set A is regularly open in (X, T) iff $A=\operatorname{int}(c l(A))$ (this is equivalent to $\operatorname{fr}(A)=\operatorname{fr}(c l(A)))$.
- A topological space (X, T) is totally disconnected iff \emptyset and all one-element sets are the only connected sets in (X, T).
- $\mathcal{B} \subseteq \wp(X)$ is a base of topology T on X iff each element of T is a union of some subfamily of \mathcal{B}.
- If (X, T) is a topological space, then T is a Heyting algebra in which $A \Rightarrow B=\operatorname{int}\left(A^{c} \cup B\right)$.
- Let U_{B} be the family of all ultrafilters in a Boolean algebra \mathbf{B}.
- For any $x \in B$ let $u(x)=\left\{U \in U_{\mathbf{B}}: x \in U\right\}$.
- Then $\{u(x): x \in B\}$ is a base of topology in U_{B} and U_{B} with this topology is called the Stone space of B.
- The map $u: B \rightarrow \wp\left(U_{\mathbf{B}}\right)$ is an isomorphism of B on the field of sets which are simultaneously open and closed in this topology.
- The Stone space of a Boolean algebra B is a compact and totally disconnected Hausdorff space.

Another definition of Boolean algebras:

- We say that $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div)$ is a Boolean algebra iff
(1) $(a \wedge b) \vee c=(b \vee c) \wedge(a \vee c)$
(2) $(a \vee b) \wedge c=(b \wedge c) \vee(a \wedge c)$
(3) $a \vee(b \wedge-b)=a$
(4) $a \wedge(b \vee-b)=a$
(3) $a \triangleright b=-a \vee b$
(0) $a \div b=(a \triangleright b) \wedge(b \triangleright a)$.
- \triangleright is called codifference, \div is called symmetric codifference.
- For any a and b : $(a \vee-a)=(b \vee-b)$ and $(a \wedge-a)=(b \wedge-b)$ and hence we can define $0=a \wedge-a$ and $1=a \vee-a$. Let $a \leqslant b$ (Boolean ordering) iff $(a \triangleright b)=1$.
- U is called a normal ultrafilter of $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ iff U is an ultrafilter and for any $a, b \in A: a \circ b \in U$ iff $a=b$.
- $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, I)$ is called a topological Boolean algebra iff $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div)$ is a Boolean algebra and I is an interior operator such that:
(1) $I(1)=1$
(2) $I(a) \leqslant a$
(3) $I(a \wedge b)=I(a) \wedge I(b)$
(4) $I(I(a))=I(a)$.
- $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ is called a B-algebra iff $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div)$ is a Boolean algebra and \circ is a binary operation on A.
- A B-algebra $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ is called a $T B$-algebra iff for any $a, b, c, d \in A$:
(1) $a \circ a=1$
(2) $(a \circ b) \leqslant(a \div b)$
(3) $(a \circ b) \wedge(c \circ d) \leqslant(a \diamond c) \circ(b \diamond d)$, where $\diamond \in\{\wedge, \vee, \circ\}$.
- For any $T B$-algebra $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ and any $a \in A$ the operation I defined by $I(a)=a \circ 1$ is a topological interior operation.
- For any topological Boolean algebra $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, I)$ the operation \circ defined bya $\circ b=I(a \div b)$ satisfies the conditions from the definition of a $T B$-algebra.
- TB-algebra $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ is called well-connected iff for any $a, b, c, d \in A$: if $(a \circ b) \vee(c \circ d)=1$, then $a=b$ or $c=d$.
- Theorem. There exists a normal ultrafilter in a TB-algebra $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ iff this algebra is well-connected.
- $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div, \circ)$ is called a Henle algebra iff $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div)$ is a Boolean algebra and $a \circ b=1$ for $a=b$ and $a \circ b=0$ for $a \neq b$.
- Each Henle algebra is a TB-algebra. Interior operator I in Henle algebra is defined by $I(a)=a \circ 1$. Then $I(a)=1$ for $a=1$ and $I(a)=0$ for $a \neq 1$. Each ultrafilter in $\mathbf{A}=(A, \wedge, \vee,-, \triangleright, \div)$ is normal in this algebra.
- Burris, S., Sankappanavar, H.P. 1981. A course in universal algebra. Springer-Verlag.
- Łukasiewicz, J., Tarski, A. 1930. Untersuchungen über den Aussagenkalkül. Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie CI III, 23, 30-50.
- Łoś, J., Suszko, R. 1958. Remarks on sentential logics. Indagationes Mathematicae 20, 177-189.
- Pogorzelski, W.A., Wojtylak, P. 2008. Completeness theory for propositional logics. Birkhäuser, Basel Boston Berlin.
- Wójcicki, R. 1984. Lectures on propositional calculi. Ossolineum, Wrocław.

